The Potential of Ecological Restoration Programs to Increase Erosion-Induced Carbon Sinks in Response to Future Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model LUC Patterns
2.3. Shared Socioeconomic Pathway and Representative Concentration Pathway Scenarios
2.4. Statistical Downscaling of the RCP4.5 and RCP8.5 Scenarios
2.5. Scenario Simulation of Soil Erosion
2.6. Erosion−Induced CO2 Flux Equation
3. Results
3.1. Scenario Analysis of LUC Patterns
3.2. Scenario Analysis of Soil Erosion
3.3. Climate Change Scenario Analysis of Carbon Sinks Induced by Soil Erosion
4. Discussion
4.1. Impact of ERPs on Carbon Sinks Caused by Soil Erosion
4.2. Future of the Implementation of ERPs to Meet Global Climate Change
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yue, Y.; Ni, J.R.; Ciais, P.; Piao, S.L.; Wang, T.; Huang, M.; Borthwick, A.; Li, T.; Wang, Y.; Chappell, A.; et al. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China. Proc. Natl. Acad. Sci. USA 2016, 113, 6617–6622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Lugato, E.; Paustian, K.; Panagos, P.; Jones, A.; Borrelli, P. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution. Global Chang. Biol. 2016, 22, 1976–1984. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.B.; Li, Z.W.; Chang, X.F.; Huang, B.; Nie, X.D.; Liu, C.; Liu, L.; Wang, D.Y.; Jiang, J.Y. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma 2018, 329, 73–81. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Z.; Leung, L.R.; Li, H.Y.; Tesfa, T.; Zhu, Q.; Huang, M. A substantial role of soil erosion in the land carbon sink and its future changes. Global Chang. Biol. 2020, 26, 2642–2655. [Google Scholar] [CrossRef]
- Oost, K.V.; Quine, T.A.; Govers, G.; Gryze, S.D.; Six, J.; Harden, J.W. The impact of agricultural soil erosion on the global carbon cycle. Science 2007, 318, 626–629. [Google Scholar] [CrossRef]
- Hassler, E.; Corre, M.D.; Tjoa, A.; Damris, M.; Utami, S.R.; Veldkamp, E. Soil fertility controls soil–atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations. Biogeosciences 2015, 12, 5831–5852. [Google Scholar] [CrossRef] [Green Version]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land−use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [Green Version]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit. Rev. Plant Sci. 2003, 22, 151–184. [Google Scholar] [CrossRef]
- Dawson, J.J.; Smith, P. Carbon losses from soil and its consequences for land−use management. Sci. Total Environ. 2007, 382, 165–190. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Peng, C.; Zhou, G.; Jiang, H.; Wang, W. Chinese Grain for Green Program led to highly increased soil organic carbon levels: A meta−analysis. Sci. Rep. 2014, 4, 4460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Cui, L. Soil carbon change and its affecting factors following afforestation in China. Landsc. Urban Plan. 2010, 98, 75–85. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Hu, S.; Zhang, X.; Ouyang, Z.; Zhang, G.; Huang, B.; Zhao, S.; Wu, J.; Xie, D.; et al. Economics−and policy−driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [Green Version]
- Asadolahi, Z.; Salmanmahiny, A.; Sakieh Mirkarimi, S.H.; Baral, H.; Azimi, M. Dynamic trade−off analysis of multiple ecosystem services under land use change scenarios: Towards putting ecosystem services into planning in Iran. Ecol. Complex. 2018, 36, 250–260. [Google Scholar] [CrossRef]
- Pan, H.; Page, J.; Zhang, L.; Cong, C.; Ferreira, C.; Jonsson, E.; Näsström, H.; Destouni, G.; Deal, B.; Kalantari, Z. Understanding interactions between urban development policies and GHG emissions: A case study in Stockholm Region. Ambio 2020, 49, 1313–1327. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.S.; Sarmin, N.S.; Miah, M.G. Assessment of scenario−based land use changes in the Chittagong Hill Tracts of Bangladesh. Environ. Dev. 2020, 34, 100463. [Google Scholar] [CrossRef]
- Debolini, M.; Schoorl, J.M.; Temme, A.; Galli, M.; Bonari, E. Changes in agricultural land use affecting future soil redistribution patterns: A case study in southern Tuscany (Italy). Land Degrad. Dev. 2015, 26, 574–586. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Liu, Z.; Yang, Y. Mapping spatial non−stationarity of human−natural factors associated with agricultural landscape multifunctionality in Beijing–Tianjin–Hebei region, China. Agr. Ecosyst. Environ. 2017, 246, 221–233. [Google Scholar] [CrossRef]
- Albers, A.; Avadi, A.; Benoist, A.; Collet, P.; Hélias, A. Modelling dynamic soil organic carbon flows of annual and perennial energy crops to inform energy−transport policy scenarios in France. Sci. Total Environ. 2020, 718, 135278. [Google Scholar] [CrossRef] [PubMed]
- Naipal, V.; Ciais, P.; Wang, Y.; Lauerwald, R.; Guenet, B.; Oost, K.V. Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005. Biogeosciences 2018, 15, 4459–4480. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- Simonneaux, V.; Cheggour, A.; Deschamps, C.; Mouillot, F.; Cerdan, O.; Le Bissonnais, Y. Land use and climate change effects on soil erosion in a semi−arid mountainous watershed (High Atlas, Morocco). J. Arid Environ. 2015, 122, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth−Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Albaladejo, J.; Ortiz, R.; Garcia−Franco, N.; Navarro, A.R.; Almagro, M.; Pintado, J.G.; Martínez−Mena, M. Land use and climate change impacts on soil organic carbon stocks in semi−arid Spain. J. Soil. Sediment. 2013, 13, 265–277. [Google Scholar] [CrossRef]
- Varney, R.M.; Chadburn, S.E.; Friedlingstein, P.; Burke, E.J.; Koven, C.D.; Hugelius, G.; Cox, P.M. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat. Commun. 2020, 11, 5544. [Google Scholar] [CrossRef]
- Wiebe, K.; Lotze−Campen, H.; Sands, R.; Tabeau, A.; van der Mensbrugghe, D.; Biewald, A.; Bodirsky, B.; Islam, S.; Kavallari, A.; Willenbockel, D. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 2015, 10, 085010. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of land use changes under the plant functional type classification in different SSP−RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T.; et al. Insight from CMIP6 SSP−RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar] [CrossRef]
- Qin, Z.; Deng, X.; Griscom, B.; Huang, Y.; Li, T.; Smith, P.; Yuam, W.; Zhang, W. Natural Climate Solutions for China: The Last Mile to Carbon Neutrality. Adv. Atmos. Sci. 2021, 38, 889–895. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, H.B.; Li, Z.W.; Liu, C.; Ning, K.; Tang, C.J. How effective are soil and water conservation measures (SWCMs) in reducing soil and water losses in the red soil hilly region of China? A meta−analysis of field plot data. Sci. Total Environ. 2020, 735, 139517. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.W.; Ning, K.; Chen, J.; Liu, C.; Wang, D.Y.; Nie, X.D.; Hu, X.Q.; Wang, L.X.; Wang, T.W. Soil and water conservation effects driven by the implementation of ecological restoration projects: Evidence from the red soil hilly region of China in the last three decades. J. Clean. Prod. 2020, 260, 121109. [Google Scholar] [CrossRef]
- Fang, N.F.; Wang, L.; Shi, Z.H. Runoff and soil erosion of field plots in a subtropical mountainous region of China. J. Hydrol. 2017, 552, 387–395. [Google Scholar] [CrossRef]
- Hu, X.Q.; Li, Z.W.; Chen, J.; Nie, X.D.; Liu, J.Y.; Wang, L.W.; Ning, K. Carbon sequestration benefits of the grain for Green Program in the hilly red soil region of southern China. Int. Soil Water Conserv. Res. 2021, 9, 271–278. [Google Scholar] [CrossRef]
- Ning, K.; Chen, J.; Li, Z.W.; Liu, C.; Nie, X.D.; Liu, Y.J.; Wang, L.X.; Hu, X.Q. Land use change induced by the implementation of ecological restoration Programs increases future terrestrial ecosystem carbon sequestration in red soil hilly region of China. Ecol. Indic. 2021, 133, 108409. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Rose, S.K. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change: Fourth Assessment Report: Climate Change; Synthesis Report; Working Papers id: 1325; World Meteorological Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Chen, H.; Xu, C.Y.; Guo, S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on run−off. J. Hydrol. 2012, 434–435, 36–45. [Google Scholar] [CrossRef]
- Liu, B.Y.; Zhang, K.L.; Xie, Y. An Empirical Soil Loss Equation. In Proceedings of the 12th International Soil Conservation Organization Conference, Beijing, China, 26 May 2002; Tsinghua University Press: Beijing, China; Volume III, pp. 21–25. [Google Scholar]
- Liang, A.Z.; Zhang, X.P.; Yang, X.M.; Mclaughlin, N.B.; Shen, Y.; Li, W.F. Estimation of total erosion in cultivated Black soils in northeast China from vertical profiles of soil organic carbon. Eur. J. Soil Sci. 2009, 60, 223–229. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land−use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford−Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land−system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Long, H.L.; Heilig, G.K.; Wang, J.; Li, X.B.; Luo, M.; Wu, X.Q.; Zhang, M. Land use and soil erosion in the upper reaches of the Yangtze River: Some socio-economic considerations on China’s Grain−for−Green Program. Land Degrad. Dev. 2006, 17, 589–603. [Google Scholar] [CrossRef]
- Cohen−Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnisd, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature−based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Zeng, Y.; Fang, N.; Shi, Z. Effects of human activities on soil organic carbon redistribution at an agricultural watershed scale on the Chinese Loess Plateau. Agr. Ecosyst. Environ. 2020, 303, 107112. [Google Scholar] [CrossRef]
- Chaopricha, N.T.; Marín−Spiotta, E. Soil burial contributes to deep soil organic carbon storage. Soil Biol. Biochem. 2014, 69, 251–264. [Google Scholar] [CrossRef]
- Wang, H.; Yue, C.; Mao, Q.; Zhao, J.; Ciais, P.; Li, W.; Yu, Q.; Mu, X. Vegetation and species impacts on soil organic carbon sequestration following ecological restoration over the Loess Plateau, China. Geoderma 2020, 371, 114389. [Google Scholar] [CrossRef]
- Song, Z.; Seitz, S.; Li, J.; Goebes, P.; Schmidt, K.; Kühn, P.; Schmidt, K.; Kühn, P.; Shi, X.; Scholten, T. Tree diversity reduced soil erosion by affecting tree canopy and biological soil crust development in a subtropical forest experiment. Forest Ecol. Manag. 2019, 444, 69–77. [Google Scholar] [CrossRef]
- Huang, Y.; Xin, Z.; Hou, J.; Li, Z.; Yang, L.; Yuan, H.; Majid, A. Soil organic carbon stocks in an investigated watershed transect linked to ecological restoration practices on the Loess Plateau. Land Degrad. Dev. 2021, 32, 1148–1163. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Castillo−Monroy, A.P.; Maestre, F.T.; Delgado−Baquerizo, M.; Gallardo, A. Biological soil crusts modulate nitrogen availability in semi−arid ecosystems: Insights from a Mediterranean grassland. Plant Soil 2010, 333, 21–34. [Google Scholar] [CrossRef]
Parameter | Carbon Flux | Unit | Description | Equation | Data Source |
---|---|---|---|---|---|
Aero | D1 | m2 | Erosion area | (2) | The area of slight, light, moderate, intense, very intense and severe soil erosion in cultivated land, forestland and grassland under two land use patterns (BAU and ERP) in 2030 and 2060. |
T | D1 | y | Time period | (2) | The value was set to 1. |
IB | D1 | gC m−2 y−1 | Carbon input to the soil | (3), (4) | The value was set to 357 [1]. |
K0 | D1 | y−1 | Turnover rate of soil carbon with respect to decomposition in the absence of erosion | (3), (4) | The value was set to 0.027 [1]. |
KE | D1 | y−1 | Erosion rate of soil carbon obtained by calculating the ratio of the soil erosion rate to the depth of carbon in the top soil layer, which dominates erosion | (4) | The value was set to Vero/0.2 [1]. |
Vero | D1, D2 | m y−1 | Erosion rate | (4), (5), (7) | Vero of soil erosion in red soil was 0.16, 1.21, 2.64, 4.91, 8.50 and 13.85, respectively, according to the ratio between the median soil erosion modulus and soil bulk density (1.35) under different water erosion intensities measured by Liang [41]. Vero of cultivated land, forestland and grassland was calculated by weighing the area of soil erosion of different degrees in the three types of land. |
Cmin/CSOC-surf | D1 | / | Ratio of organic carbon content in the top layer to that in the bottom layer | (5) | The value was set to 0.01 [1]. |
CSOC-surf | D2 | kg m−3 | Soil organic carbon content in the top 4.5 cm soil layer | (7) | The SOC of the surface soil layer of cultivated land, forestland and grassland were 9.88, 10.67 and 13.03, respectively [42]. |
SDR | D2 | Ratio of the total sediment exported out to the total eroded soil within the grid | (7) | The SDR of slight, light, moderate, intense, very intense and severe soil erosion in red soil were 0.2, 0.4, 0.6, 0.8 and 0.95, respectively. The SDR of cultivated land, forestland and grassland was calculated by weighing the areas of soil erosion of different degrees in the three land types. | |
K0-subsoil | D2 | y−1 | K0 value in the subsoil layer | (7) | Taking 0.2 m as the subsoil depth, the value was 0.016. |
Pattern | Time | Cropland | Forestland | Grassland | Water Area | Construction Land | Unused Land | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | ||
BAU | 2030 | 115,597 | 14.53 | 482,065 | 60.58 | 65,078 | 8.18 | 39,508 | 4.96 | 91,797 | 11.54 | 1691 | 0.21 |
2060 | 103,799 | 13.04 | 438,892 | 55.16 | 68,085 | 8.56 | 50,899 | 6.40 | 132,146 | 16.61 | 1915 | 0.24 | |
ER | 2030 | 130,384 | 16.39 | 523,203 | 65.75 | 63,470 | 7.98 | 19,676 | 2.47 | 57,474 | 7.22 | 1537 | 0.19 |
2060 | 86,075 | 10.82 | 528,018 | 66.36 | 76,284 | 9.59 | 19,676 | 2.47 | 83,957 | 10.55 | 1734 | 0.22 | |
No LUC | 2015 | 185,538 | 23.32 | 514,656 | 64.68 | 50,948 | 6.40 | 19,700 | 2.48 | 24,973 | 3.14 | 911 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Ning, K.; Li, Z.; Liu, C.; Wang, L.; Luo, Y. The Potential of Ecological Restoration Programs to Increase Erosion-Induced Carbon Sinks in Response to Future Climate Change. Forests 2022, 13, 785. https://doi.org/10.3390/f13050785
Chen J, Ning K, Li Z, Liu C, Wang L, Luo Y. The Potential of Ecological Restoration Programs to Increase Erosion-Induced Carbon Sinks in Response to Future Climate Change. Forests. 2022; 13(5):785. https://doi.org/10.3390/f13050785
Chicago/Turabian StyleChen, Jia, Ke Ning, Zhongwu Li, Cheng Liu, Lingxia Wang, and Yaxue Luo. 2022. "The Potential of Ecological Restoration Programs to Increase Erosion-Induced Carbon Sinks in Response to Future Climate Change" Forests 13, no. 5: 785. https://doi.org/10.3390/f13050785
APA StyleChen, J., Ning, K., Li, Z., Liu, C., Wang, L., & Luo, Y. (2022). The Potential of Ecological Restoration Programs to Increase Erosion-Induced Carbon Sinks in Response to Future Climate Change. Forests, 13(5), 785. https://doi.org/10.3390/f13050785