Wastewater-Fertigated Short-Rotation Coppice, a Combined Scheme of Wastewater Treatment and Biomass Production: A State-of-the-Art Review
Abstract
:1. Introduction
1.1. Background and Definition of Short-Rotation Coppice Systems
1.2. Wastewater Treatment in SRC Systems (Vegetation Filter)
2. Materials and Methods
3. Results and Discussion
3.1. Types of Wastewater-Fertigated Short-Rotation Coppice Systems
3.2. Size of wfSRC Systems
3.3. Tree Selection
3.4. Planting Density
3.5. Overview of Used Tree Species and Geographical Location
3.6. Geographical Distribution
3.7. Treatment Performance
3.7.1. Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD)
3.7.2. Total Nitrogen (TN)
3.7.3. Total Phosphorus (TP)
3.7.4. Total Potassium (K+)
3.7.5. Pathogens, Micropollutants, and Heavy Metal Removal
3.8. Biomass Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kerr, G. A Review of the Growth, Yield and Biomass Distribution of Species Planted in the English Network Trials of Short Rotation Forestry. In Forest Research Monograph 2; McKay, H.M., Ed.; Short rotation forestry: Review of growth and environmental impacts(PDF-3255K); Forest Research: Surrey, UK, 2011; ISBN 978-0-85538-827-0. [Google Scholar]
- Agri, D.G. The impact of a minimum 10% obligation for biofuel use in the EU-27 in 2020 on agricultural markets. Directorate G. Econ. Anal. Perspect. Eval. Intern. Memo 2007, 343, 1–25. [Google Scholar]
- Özdemir, E.D.; Härdtlein, M.; Eltrop, L. Land Substitution Effects of Biofuel Side Products and Implications on the Land Area Requirement for EU 2020 Biofuel Targets. Energy Policy 2009, 37, 2986–2996. [Google Scholar] [CrossRef]
- Moya, R.; Tenorio, C.; Oporto, G. Short Rotation Wood Crops in Latin American: A Review on Status and Potential Uses as Biofuel. Energies 2019, 12, 705. [Google Scholar] [CrossRef] [Green Version]
- Heinsoo, K.; Foellner, S.; Klasa, A.; Dimitriou, I.; Corboni, A. BIOPROS-Guidelines for Efficient Biomass Production with the Safe Application of Wastewater and Sewage Sludge; BIOPROS: Belfast, North Ireland, 2008. [Google Scholar]
- EIA Bioenergy. Sustainable Production of Woody Biomass for Energy. Biomass Bioenergy 2003, 25, 2–11.
- Ericsson, T. Growth and Nutrition of Three Salix Clones in Low Conductivity Solutions. Physiol. Plant. 1981, 52, 239–244. [Google Scholar] [CrossRef]
- Kowalik, P.J.; Randerson, P.F. Nitrogen and Phosphorus Removal by Willow Stands Irrigated with Municipal Waste Water—A Review of the Polish Experience. Biomass Bioenergy 1993, 6, 133–139. [Google Scholar] [CrossRef]
- Perttu, K.L. Environmental and Hygienic Aspects of Willow Coppice in Sweden. Biomass Bioenergy 1999, 16, 291–297. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C.A. Use of Willows in Evapotranspirative Systems for Onsite Wastewater Management—Theory and Experiences from Denmark. In Proceedings of the “STREPOW” International Workshop, Andrevlje-Novi Sad, Serbia, 23–24 February 2011; pp. 15–29. [Google Scholar]
- Conti, F.; Toor, S.S.; Pedersen, T.H.; Nielsen, A.H.; Rosendahl, L.A. Biocrude Production and Nutrients Recovery through Hydrothermal Liquefaction of Wastewater Irrigated Willow. Biomass Bioenergy 2018, 118, 24–31. [Google Scholar] [CrossRef]
- Dimitriou, I.; Aronsson, P. Nitrogen Leaching from Short-Rotation Willow Coppice after Intensive Irrigation with Wastewater. Biomass Bioenergy 2003, 26, 433–441. [Google Scholar] [CrossRef]
- Dimitriou, I. Performance and Sustainability of Short-Rotation Energy Crops Treated With Municipal and Industrial Residues. Ph.D. Thesis, Acta Universitatis Agriculturae Sueciae, Uppsala, Sweden, 2005; p. 38. [Google Scholar]
- Dimitriou, I.; Rosenqvist, H. Sewage Sludge and Wastewater Fertilisation of Short Rotation Coppice (SRC) for Increased Bioenergy Production d Biological and Economic Potential. Biomass Bioenergy 2010, 35, 835–842. [Google Scholar] [CrossRef]
- Dimitriou, I.; Aronsson, P. Wastewater and Sewage Sludge Application to Willows and Poplars Grown in Lysimeters-Plant Response and Treatment Efficiency. Biomass Bioenergy 2011, 35, 161–170. [Google Scholar] [CrossRef]
- Rosenqvist, H.; Aronsson, P.; Hasselgren, K.; Perttu, K. Economics of Using Municipal Wastewater Irrigation of Willow Coppice Crops. Biomass Bioenergy 1997, 12, 1–8. [Google Scholar] [CrossRef]
- Aronsson, P.; Perttu, K.; Forestry, R. Willow Vegetation Filters for Wastewater Treatment and Soil Remediation Combined with Biomass Production. For. Chron. 2001, 77, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Aronsson, P.; Heinsoo, K.; Perttu, K.; Hasselgren, K. Spatial Variation in Above-Ground Growth in Unevenly Wastewater-Irrigated Willow Salix Viminalis Plantations. Ecol. Eng. 2002, 19, 281–287. [Google Scholar] [CrossRef]
- Börjesson, P. Environmental Effects of Energy Crop Cultivation in Sweden—I: Identification and Quantification. Biomass Bioenergy 1999, 16, 137–154. [Google Scholar] [CrossRef]
- Börjesson, P.; Berndes, G. The Prospects for Willow Plantations for Wastewater Treatment in Sweden. Biomass Bioenergy 2006, 30, 428–438. [Google Scholar] [CrossRef]
- Kotowska, U.; Wlodarczyk, T.; Witkowska-Walczak, B.; Baranowski, P.; Slawiński, C. Wastewater Purification by Muck Soil and Willow (Salix Americana). Pol. J. Environ. Stud. 2008, 18, 305–312. [Google Scholar]
- Mosiej, J.; Karczmarczyk, A.; Wyporska, K.; Rodzkin, A. Biomass Production in Energy Forests—Short Rotation Plantations. For. Energy 2012, 1, 196–203. [Google Scholar]
- Holm, B.; Heinsoo, K. Municipal Wastewater Application to Short Rotation Coppice of Willows—Treatment Efficiency and Clone Response in Estonian Case Study. Biomass Bioenergy 2013, 57, 126–135. [Google Scholar] [CrossRef]
- Kuusemets, V.; Heinsoo, K.; Sild, E.; Koppel, A. Short Rotation Willow Plantation for Wastewater Purification: Case Study at Aarike, Estonia. Adv. Ecol. Sci. 2001, 10, 61–68. [Google Scholar]
- Guidi Nissim, W.; Jerbi, A.; Lafleur, B.; Fluet, R.; Labrecque, M. Willows for the Treatment of Municipal Wastewater: Performance under Different Irrigation Rates. Ecol. Eng. 2015, 81, 395–404. [Google Scholar] [CrossRef]
- Myers, B.J.; Theiveyanathan, S.; Brien, N.D.O.; Bond, W.J. Plantations Irrigated With Effluent. Tree Physiol. 1996, 16, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopmans, P.; Stewart, H.T.L.; Flinn, D.W.; Hillman, T.J. Growth, Biomass Production and Nutrient Accumulation by Seven Tree Species Irrigated with Municipal Effluent at Wodonga, Australia. For. Ecol. Manag. 1990, 30, 203–211. [Google Scholar] [CrossRef]
- Guo, L.B.; Sims, R.E.H.; Horne, D.J. Biomass Production and Nutrient Cycling in Eucalyptus Short Rotation Energy Forests in New Zealand. I: Biomass and Nutrient Accumulation. Bioresour. Technol. 2002, 85, 273–283. [Google Scholar] [CrossRef]
- Curneen, S.; Gill, L.W. Willow-Based Evapotranspiration Systems for on-Site Wastewater Effluent in Areas of Low Permeability Subsoils. Ecol. Eng. 2016, 92, 199–209. [Google Scholar] [CrossRef]
- Braatz, S.; Kandiah, A. The Use of Municipal Waste Water for Forest and Tree Irrigation. Unasylva 1996, 1, 45–51. [Google Scholar]
- Toky, O.P.; Riddell-Black, D.; Harris, P.J.C.; Vasudevan, P.; Davies, P.A. Biomass Production in Short Rotation Effluent-Irrigated Plantations in North-West India. J. Sci. Ind. Res. 2011, 70, 601–609. [Google Scholar]
- Tzanakakis, V.A.; Mauromoustakos, A.; Angelakis, A.N. Prediction of Biomass Production and Nutrient Uptake in Land Application Using Partial Least Squares Regression Analysis. Water 2015, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Frédette, C.; Labrecque, M.; Comeau, Y.; Brisson, J. Willows for Environmental Projects: A Literature Review of Results on Evapotranspiration Rate and Its Driving Factors across the Genus Salix. J. Environ. Manag. 2019, 246, 526–537. [Google Scholar] [CrossRef]
- Frédette, C.; Comeau, Y.; Brisson, J. Design of a Zero Liquid Discharge Leachate Treatment System Using an Evapotranspiration Willow Bed. Water Res. 2021, 209, 117950. [Google Scholar] [CrossRef]
- Sopper, W.E. Disposal of Municipal Waste Water through Forest Irrigation. Environ. Pollut. 1971, 1, 263–284. [Google Scholar] [CrossRef]
- Johnston, C.; Mccracken, A.R.; Walsh, L. ANSWER (Agricultural Need for Sustainable Willow Effluent Recycling): An Eu Funded Project To Encourage the Use of Src Willow for Bioremediation; National Hydrology Conference; AFBI Environment and Renewable Energy Centre: Hillsboroug, UK, 2014; p. 12. [Google Scholar]
- Bioazul, S.L. WACOSYS, Monitoring and Control System for Wastewater Irrigated Energy Plantations. EU-Project FP6, Final Activity Report. 2007. Available online: https://www.slideserve.com/huslu/wacosys-monitoring-and-control-system-for-wastewater-irrigated-energy-plantations (accessed on 19 April 2022).
- Univeristat Politécnica de Catalunya; Ttz Bremerhaven. PAVITR—Potential and Validation of Sustainable Natural & Advance Technologies for Water &Wastewater Treatment, Monitoring and Safe Water Reuse in India. EU Project, H2020, Deliverable D7.4; Univeristat Politécnica de Catalunya: Barcelona, Spain, 2020. [Google Scholar]
- Jerbi, A.; Brereton, N.J.B.; Sas, E.; Amiot, S.; Lachapelle-T, X.; Comeau, Y.; Pitre, F.E.; Labrecque, M. High Biomass Yield Increases in a Primary Effluent Wastewater Phytofiltration Are Associated to Altered Leaf Morphology and Stomatal Size in Salix Miyabeana. Sci. Total Environ. 2020, 738, 139728. [Google Scholar] [CrossRef]
- Guidi, W.; Piccioni, E.; Bonari, E. Evapotranspiration and Crop Coefficient of Poplar and Willow Short-Rotation Coppice Used as Vegetation Filter. Sciencedirect 2007, 99, 4832–4840. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; Sun, T.; Li, P.; Yediler, A. A Production-Scale Ecological Engineering Forest System for the Treatment and Reutilization of Municipal Wastewater in the Inner Mongolia. China. Ecol. Eng. 1997, 9, 71–88. [Google Scholar] [CrossRef]
- Mccracken, A.; Black, A.; Cairns, P.; Duddy, A.-M.; Galbally, P.; Finnan, J.; Johnston, C.; McLaughlin, C.; Moss, B.; Mulligan, O.; et al. Use of Short Rotation Coppice Willow for the Bioremediation of Effluents and Leachates-Current Knowledge. ANSWER Proj. Close Out Event 2014, 1, 7–42. [Google Scholar]
- Toome, M.; Heinsoo, K.; Holm, B.; Luik, A. The Influence of Canopy Density on Willow Leaf Rust (Melampsora epitea) Severity in Willow Short Rotation Coppice. Biomass Bioenergy 2009, 34, 1201–1206. [Google Scholar] [CrossRef]
- Bergkvist, P.; Ledin, S. Stem Biomass Yields at Different Planting Designs and Spacings in Willow Coppice Systems. Biomass Bioenergy 1998, 14, 149–156. [Google Scholar] [CrossRef]
- Forbes, E.G.A.; Johnston, C.R.; Archer, J.E.; McCracken, A.R. SRC Willow as a Bioremediation Medium for a Dairy Farm Effluent with High Pollution Potential. Biomass Bioenergy 2017, 105, 174–189. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Evans, E.J.; Bilsborrow, P.E.; Wright, C.; Hewison, W.O.; Pilbeam, D.J. Yield of Willow Cultivars at Different Planting Densities in a Commercial Short Rotation Coppice in the North of England. Biomass Bioenergy 2007, 31, 469–474. [Google Scholar] [CrossRef]
- Cañellas, I.; Huelin, P.; Hernández, M.J.; Ciria, P.; Calvo, R.; Gea-Izquierdo, G.; Sixto, H. The Effect of Density on Short Rotation Populus sp. Plantations in the Mediterranean Area. Biomass Bioenergy 2012, 46, 645–652. [Google Scholar] [CrossRef]
- Van Cuyk, S.; Siegrist, R.; Logan, A.; Masson, S.; Fischer, E.; Figueroa, L. Hydraulic and Purification Behaviors and Their Interactions during Wastewater Treatment in Soil Infiltration Systems. Water Res. 2001, 35, 953–964. [Google Scholar] [CrossRef]
- Tzanakakis, V.E.; Paranychianakis, N.V.; Angelakis, A.N. Performance of Slow Rate Systems for Treatment of Domestic Wastewater. Water Sci. Technol. 2007, 55, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Jenkins, M.; Fogarty, E.; Bowman, D. Cryptosporidium Parvum Oocyst Inactivation in Field Soil and Its Relation to Soil Characteristics: Analyses Using the Geographic Information Systems. Sci. Total Environ. 2004, 321, 47–58. [Google Scholar] [CrossRef] [PubMed]
- John, D.E.; Rose, J.B. Review of Factors Affecting Microbial Survival in Groundwater. Environ. Sci. Technol. 2005, 39, 7345–7356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodard, K.R.; French, E.C.; Sweat, L.A.; Graetz, D.A.; Sollenberger, L.E.; Macoon, B.; Portier, K.M.; Wade, B.L.; Rymph, S.J.; Prine, G.M.; et al. Nitrogen Removal and Nitrate Leaching for Forage Systems Receiving Dairy Effluent. J. Environ. Qual. 2002, 31, 1980–1992. [Google Scholar] [CrossRef] [PubMed]
- Paranychianakis, N.V.; Angelakis, A.N.; Leverenz, H.; Tchobanoglous, G. Treatment of Wastewater with Slow Rate Systems: A Review of Treatment Processes and Plant Functions. Crit. Rev. Environ. Sci. Technol. 2006, 36, 187–259. [Google Scholar] [CrossRef]
- Khurelbaatar, G.; Sullivan, C.M.; van Afferden, M.; Rahman, K.Z.; Fühner, C.; Gerel, O.; Londong, J.; Müller, R.A. Application of Primary Treated Wastewater to Short Rotation Coppice of Willow and Poplar in Mongolia: Influence of Plants on Treatment Performance. Ecol. Eng. 2016, 98, 82–90. [Google Scholar] [CrossRef]
- Lachapelle-T, X.; Labrecque, M.; Comeau, Y. Treatment and Valorization of a Primary Municipal Wastewater by a Short Rotation Willow Coppice Vegetation Filter. Ecol. Eng. 2019, 130, 32–44. [Google Scholar] [CrossRef]
- Amiot, S.; Jerbi, A.; Lachapelle-T, X.; Frédette, C.; Labrecque, M.; Comeau, Y. Optimization of the Wastewater Treatment Capacity of a Short Rotation Willow Coppice Vegetation Filter. Ecol. Eng. 2020, 158, 106013. [Google Scholar] [CrossRef]
- Arronson, P.; Perttu, K. Willow Vegetation Filters for Municipal Wastewaters and Sludges: A Biological Purification System; Swedish University of Agricultural Sciences: Uppsala, Sweden, 1994; ISBN 9157649162. [Google Scholar]
- Perttu, K.L.; Kowalik, P.J. Salix Vegetation Filters for Purification of Waters and Soils. Biomass Bioenergy 1997, 12, 9–19. [Google Scholar] [CrossRef]
- Hasselgren, K. Use of Municipal Waste Products in Energy Forestry: Highlights from 15 Years of Experience. Biomass Bioenergy 1998, 15, 71–74. [Google Scholar] [CrossRef]
- O’Hogain, S.; McCarton, L.; Reid, A.; Turner, J.; Fox, S. A Review of Zero Discharge Wastewater Treatment Systems Using Reed Willow Bed Combinations in Ireland. Water Pract. Technol. 2011, 6, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Amofah, L.R.; Mattsson, J.; Hedström, A. Willow Bed Fertigated with Domestic Wastewater to Recover Nutrients in Subarctic Climates. Ecol. Eng. 2012, 47, 174–181. [Google Scholar] [CrossRef]
- Larson, A.; Arronson, P.; Backlund, A.; Carlander, A. Short-Rotation Willow Biomass Plantations Irrigated and Fertilised with Wastewaters; Danish Environmental Protection Agency: Odense, Denmark, 2003. [Google Scholar] [CrossRef]
- Khurelbaatar, G.; van Afferden, M.; Sullivan, C.M.; Fühner, C.; Amgalan, J.; Londong, J.; Müller, R.A. Wastewater Treatment and Wood Production of Willow System in Cold Climate. Water 2021, 13, 1630. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, M.; Srivastava, R.K.; Vasudevan, P. Pollutant Removal Potential, Growth and Nutritional Characteristics of Short Rotation Woody Crops in Grey Water Vegetation Filter System. J. Sci. Ind. Res. 2011, 70, 610–615. [Google Scholar]
- De Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; Martínez-Hernández, V.; Lillo, J.; Martín, I.; Salas, J.J.; de Bustamante, I. Treating Municipal Wastewater through a Vegetation Filter with a Short-Rotation Poplar Species. Ecol. Eng. 2014, 73, 560–568. [Google Scholar] [CrossRef]
- Tzanakakis, V.E.; Paranychianakis, N.V.; Kyritsis, S.; Angelakis, A.N. Wastewater Treatment and Biomass Production by Slow Rate Systems Using Different Plant Species. Water Supply 2003, 3, 185–192. [Google Scholar] [CrossRef]
- Nercessian, G. Renovation of Wastewater by a Short Rotation Intensive Culture Hybrid Poplar Plantation in Vernon, BC. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1992. [Google Scholar]
- Dimitriou, I.; Aronsson, P. Willows for Energy and Phytoremediation in Sweden. Unasylva 2005, 56, 47–50. [Google Scholar]
- Truu, M.; Truu, J.; Heinsoo, K. Changes in Soil Microbial Community under Willow Coppice: The Effect of Irrigation with Secondary-Treated Municipal Wastewater. Ecol. Eng. 2009, 35, 1011–1020. [Google Scholar] [CrossRef]
- Curneen, S.J.; Gill, L.W. A Comparison of the Suitability of Different Willow Varieties to Treat on-Site Wastewater Effluent in an Irish Climate. J. Environ. Manag. 2013, 133, 153–161. [Google Scholar] [CrossRef]
- Postila, H.; Heiderscheidt, E. Function and Biomass Production of Willow Wetlands Applied in the Polishing Phase of Sewage Treatment in Cold Climate Conditions. Sci. Total Environ. 2020, 727, 138620. [Google Scholar] [CrossRef] [PubMed]
- Istenič, D.; Božič, G. Short-Rotationwillows as a Wastewater Treatment Plant: Biomass Production and the Fate of Macronutrients and Metals. Forests 2021, 12, 554. [Google Scholar] [CrossRef]
- Mohsin, M.; Kaipiainen, E.; Salam, M.M.A.; Evstishenkov, N.; Nawrot, N.; Villa, A.; Wojciechowska, E.; Kuittinen, S.; Pappinen, A. Biomass Production and Removal of Nitrogen and Phosphorus from Processed Municipal Wastewater by Salix schwerinii: A Field Trial. Water 2021, 13, 2298. [Google Scholar] [CrossRef]
- Carlson, M. Municipal Effluent Irrigation of Fast-Growing Hybrid Poplar Plantations near Vernon, British Columbia. For. Chron. 1992, 68, 206–208. [Google Scholar] [CrossRef] [Green Version]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Nutrient Removal and Biomass Production in Land Treatment Systems Receiving Domestic Effluent. Ecol. Eng. 2009, 35, 1485–1492. [Google Scholar] [CrossRef]
- Stewart, H.T.L.; Hopmans, P.; Flinn, D.W.; Hillman, T.J. Nutrient Accumulation in Trees and Soil Following Irrigation with Municipal Effluent in Australia. Environ. Pollut. 1990, 63, 155–177. [Google Scholar] [CrossRef]
- Tomer, M.D.; Schipper, L.A.; Knowles, S.F.; Rijkse, W.C.; McMahon, S.D.; Smith, C.T.; Thorn, A.; Charleson, T. Land-Based System for Treatment of Municipal Wastewater at Whakarewarewa Forest, New Zealand. FRI Bull. 1997, 1, 11–22. [Google Scholar]
- Duncan, M.G.; Baker, T.G.; Wall, G.C. Wastewater irrigated tree plantations: Productivity and sustainability. In Proceedings of the 61st Annual Water Industry Engineers and Operators Conference, Melbourne, Australia, 2–3 September 1998; pp. 18–26. [Google Scholar]
- Myers, B.J.; Benyon, R.G.; Bond, W.J.; Falkiner, R.A.; O’Brien, N.D.; Polglase, P.J.; Smith, C.J.; Snow, V.O.; Theiveyanathan, S. Environmentally Sound Management of Water and Nutrients in Australian Effluent-Irrigated Plantations. In Proceedings of the WaterTech 98, Brisbane, Australian, 27–29 April 1998; Australian Water & Wastewater Association Inc.: Artarmon, Australian, 1998. [Google Scholar]
- Arienzo, M.; Christen, E.W.; Quayle, W.; Kumar, A. A Review of the Fate of Potassium in the Soil-Plant System after Land Application of Wastewaters. J. Hazard. Mater. 2009, 164, 415–422. [Google Scholar] [CrossRef]
- Reed, S.C.; Crites, R.W. Handbook of Land Treatment Systems for Industrial and Municipal Wastes. Available online: https://vdocuments.net/handbook-of-land-treatment-systems-for-industrial-and-municipal-wastes.html (accessed on 19 April 2022).
- Martínez-hernández, V.; Leal, M.; Meffe, R.; de Miguel, A.; Alonso-alonso, C. Removal of Emerging Organic Contaminants in a Poplar Vegetation Filter. J. Hazard. Mater. 2017, 342, 482–491. [Google Scholar] [CrossRef]
- Dimitriou, I.; Aronsson, P. Landfill Leachate Treatment with Willows and Poplars—Efficiency and Plant Response. Waste Manag. 2010, 30, 2137–2145. [Google Scholar] [CrossRef]
- Gregersen, P.; Brix, H. Zero-Discharge of Nutrients and Water in a Willow Dominated Constructed Wetland. Water Sci. Technol. 2001, 44, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landberg, T.; Greger, M. Differences in Uptake and Tolerance to Heavy Metals in Salix from Unpolluted and Polluted Areas. Appl. Geochem. 1996, 11, 175–180. [Google Scholar] [CrossRef]
- Meers, E.; Vandecasteele, B.; Ruttens, A.; Vangronsveld, J.; Tack, F.M.G. Potential of Five Willow Species (Salix spp.) for Phytoextraction of Heavy Metals. Environ. Exp. Bot. 2007, 60, 57–68. [Google Scholar] [CrossRef]
- Minogue, P.J.; Miwa, M.; Rockwood, D.L.; Mackowiak, C.L. Removal of Nitrogen and Phosphorus by Eucalyptus and Populus at a Tertiary Treated Municipal Wastewater Sprayfield. Int. J. Phytoremediation 2012, 14, 1010–1023. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Marinho, L.E.; Filho, B.C.; Roston, D.M.; Stefanutti, R.; Tonetti, A.L. Evaluation of the Productivity of Irrigated Eucalyptus grandis with Reclaimed Wastewater and Effects on Soil. Water Air Soil Pollut. 2013, 225, 1830. [Google Scholar] [CrossRef]
- Christersson, L.; Verma, K. Short-Rotation Forestry—A Complement to “Conventional” Forestry. Unasylva 2006, 57, 34–39. [Google Scholar]
- Heaton, R.J.; Sims, R.E.H.; Tungcul, R.O. The Root Growth of Salix Viminalis and Eucalyptus Nitens in Response to Dairy Farm Pond Effluent Irrigation. Bioresour. Technol. 2002, 81, 1–6. [Google Scholar] [CrossRef]
- Moffat, A.J.; Armstrong, A.T.; Ockleston, J. The Optimization of Sewage Sludge and Effluent Disposal on Energy Crops of Short Rotation Hybrid Poplar. Biomass Bioenergy 2001, 20, 161–169. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Chatzakis, M.K.; Angelakis, A.N. Energetic Environmental and Economic Assessment of Three Tree Species and One Herbaceous Crop Irrigated with Primary Treated Sewage Effluent. Biomass Bioenergy 2012, 47, 115–124. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hänel, M.; Istenič, D.; Brix, H.; Arias, C.A. Wastewater-Fertigated Short-Rotation Coppice, a Combined Scheme of Wastewater Treatment and Biomass Production: A State-of-the-Art Review. Forests 2022, 13, 810. https://doi.org/10.3390/f13050810
Hänel M, Istenič D, Brix H, Arias CA. Wastewater-Fertigated Short-Rotation Coppice, a Combined Scheme of Wastewater Treatment and Biomass Production: A State-of-the-Art Review. Forests. 2022; 13(5):810. https://doi.org/10.3390/f13050810
Chicago/Turabian StyleHänel, Mirko, Darja Istenič, Hans Brix, and Carlos A. Arias. 2022. "Wastewater-Fertigated Short-Rotation Coppice, a Combined Scheme of Wastewater Treatment and Biomass Production: A State-of-the-Art Review" Forests 13, no. 5: 810. https://doi.org/10.3390/f13050810
APA StyleHänel, M., Istenič, D., Brix, H., & Arias, C. A. (2022). Wastewater-Fertigated Short-Rotation Coppice, a Combined Scheme of Wastewater Treatment and Biomass Production: A State-of-the-Art Review. Forests, 13(5), 810. https://doi.org/10.3390/f13050810