Histological, Morpho-Physiological, and Biochemical Changes during Adventitious Rooting Induced by Exogenous Auxin in Magnolia wufengensis Cuttings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Growth Conditions, and Planting
2.2. Rooting Assessments
2.3. Morphological and Histological Analysis of the Cuttings during Rooting
2.4. Measurement of Antioxidant Enzymes Activities and Soluble Protein Contents
2.5. Endogenous Hormones Quantification by HPLC
2.6. Statistical Analysis
3. Results
3.1. Effect of Auxin Combinations on Stem Cutting of M. wufengensis
3.2. Morphological and Histological Observations in Stem Cuttings of M. wufengensis
3.3. Metabolic Changes during the Adventitious Root Formation of M. wufengensis
3.4. Endogenous Hormones Changes during the Adventitious Root Formation of M. wufengensis
4. Discussion
4.1. Auxin Combinations Positively Affect Rooting Performance of M. wufengensis
4.2. Anatomical Evaluation and Root Primordia Development during Adventitious Root Formation
4.3. Changes of Metabolic Process in Response to Application of Auxin Combination during Adventitious Root Formation
4.4. Changes of Endogenous Hormones in Response to Application of Auxin Combination during Adventitious Root Formation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ma, L.Y.; Wang, L.R.; He, S.C.; Liu, X.; Wang, X.Q. A new species of Magnolia (Magnoliaceae) from Hubei, China. Bull. Bot. Res. 2006, 26, 4–7. [Google Scholar]
- Ma, L.Y.; Wang, L.R.; He, S.C.; Liu, X.; Wang, X.Q. A new variety of Magnolia (Magnoliaceae) from Hubei, China. Bull. Bot. Res. 2006, 26, 517–519. [Google Scholar]
- Sang, Z.Y.; Ma, L.Y.; Chen, F.J.; Zhang, P.; Zhu, Y.C. Protection status and utilization countermeasure of germplasm resources of Magnolia wufengensis in Wufeng County. Hubei Agric. Sci. 2011, 50, 1564–1567. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, Z.K.; Chen, F.J.; Sang, Z.Y.; Ma, L.Y. Natural cold acclimatisation and de-acclimatisation of Magnolia wufengensis in response to alternative methods of application of abscisic acid. J. Hortic. Sci. Biotech. 2016, 90, 704–710. [Google Scholar] [CrossRef]
- Shi, X.D.; Yin, Q.; Sang, Z.Y.; Zhu, Z.L.; Jia, Z.K.; Ma, L.Y. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecol. Indic. 2021, 127, 107762. [Google Scholar] [CrossRef]
- Hao, Y.; Peng, Z.D.; Liang, D.W. Sowing, seedling raising and tending management technology of Magnolia wufengensis. For. Sci. Technol. 2010, 3, 47–48. [Google Scholar] [CrossRef]
- Justamante, M.S.; Ibanez, S.; Villanova, J.; Perez-Perez, J.M. Vegetative propagation of argan tree (Argania spinosa (L.) Skeels) using in vitro germinated seeds and stem cuttings. Sci. Hortic. 2017, 225, 81–87. [Google Scholar] [CrossRef]
- Kimber, W.; Harsharn, G.; Jamie, S. Willow bark extract and the biostimulant complex Root Nectar® increase propagation efficiency in chrysanthemum and lavender cuttings. Sci. Hortic. 2020, 263, 109108. [Google Scholar] [CrossRef]
- Bhardwaj, D.R.; Mishra, V.K. Vegetative propagation of Ulmus villosa: Effects of plant growth regulations, collection time, type of donor and position of shoot on adventitious root formation in stem cuttings. New For. 2005, 29, 105–116. [Google Scholar] [CrossRef]
- Khan, M.A.; Wang, Y.; Uddin, S.; Muhammad, B.; Badshan, M.T.; Khan, D. Propagation of Magnolia Biondii Pamp through stem cuttings using exogenous hormones. Appl. Ecol. Environ. Res. 2020, 182, 2213–2229. [Google Scholar] [CrossRef]
- Anat, I.; Yiftah, Y.; Tsuf, B.; Israel, D.; Arie, R.; Joseph, R. Rooting of cuttings of selected Diosphyros virginiana clonal rootstocks and bud growth in rooted cuttings. Sci. Hortic. 2018, 232, 13–21. [Google Scholar] [CrossRef]
- Preece, J.E. A century of progress with vegetative plant propagation. Hortic. Sci. 2003, 38, 1015–1025. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jia, Z.K.; Ma, L.Y.; Deng, S.X.; Zhu, Z.L.; Sang, Z.Y. Effects of four plant growth regulators on rooting of softwood cutting of Magnolia wufengensis. Sci. Slivae Sin. 2019, 55, 35–45. [Google Scholar] [CrossRef]
- Liang, Y.T.; Deng, Y.X.; Xia, W.S. Study of indole-3-acetic acid and 1-naphthaleneacetic acid treatment on the rooting of softwood-cutting of Magnolia wufengensis L.Y.Ma et L.R.Wang. Anhui Agric. Sci. Bull. 2018, 24, 87–88. [Google Scholar]
- Zheng, L.; Xiao, Z.B.; Song, W.T. Effects of substrate and exogenous auxin on the adventitious rooting of Dianthus caryophyllus L. Hortic. Sci. 2020, 55, 170–173. [Google Scholar] [CrossRef] [Green Version]
- Blythe, E.K.; Sibley, J.L.; Ruter, J.M.; Tilt, K.M. Cutting propagation of foliage crops using a foliar application of auxin. Sci. Hortic. 2004, 103, 31–37. [Google Scholar] [CrossRef]
- Kaviani, B.; Negahdar, N. Propagation, micropropagation and cryopreservation of Buxus hyrcana Pojark., an endangered ornamental shrub. S. Afr. J. Bot. 2017, 111, 326–335. [Google Scholar] [CrossRef]
- Su, J.S.; Chung, H.K.; Un, S.S.; Hye, J.O. Successful stem cutting propagation of Patrinia rupestris for horticulture. Rhizosphere 2019, 9, 90–92. [Google Scholar] [CrossRef]
- Zhou, L.L.; Lin, S.B.; Huang, P.; Lin, S.J. Effects of leaf age and exogenous hormones on callus initiation, rooting formation, bud germination and plantlet formation in Chinese Fir leaf cuttings. Forests 2018, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Bellini, C.; Pacurar, D.I.; Perrone, I. Adventitious roots and lateral roots: Similarities and differences. Annu. Rev. Plant Biol. 2014, 65, 639–666. [Google Scholar] [CrossRef]
- Kevers, C.; Hausman, J.F.; Faivre Rampant, O.; Evers, D.; Gaspar, T. Hormonal control of adventitious rooting: Progress and questions. Angew. Bot. 1997, 71, 71–79. [Google Scholar]
- De Klerk, G.J.; van der Krieken, W.; DeJong, J.C. The formation of adventitious roots: New concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant 1999, 35, 189–199. [Google Scholar] [CrossRef]
- Steffens, B.; Wang, J.; Sauter, M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 2006, 223, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.X.; Fan, J.J.; Tian, Q.Q.; Zhao, M.M.; Zhou, T.; Cao, F.L. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings. PLoS ONE 2017, 12, e0172320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elena, P.; Laura, P.; Sabrina, S. Plant hormone cross-talk: The pivot of root growth. J. Exp. B 2015, 66, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Ilczuk, A.; Jacygrad, E. The effect of IBA on anatomical changes and antioxidant enzyme activity during the in vitro rooting of smoke tree (Cotinus coggygria Scop.). Sci. Hortic. 2016, 210, 268–276. [Google Scholar] [CrossRef]
- Aumond, M.L., Jr.; de Araujo, A.T., Jr.; Junkes, C.F.d.; de Almeida, M.R.; Matsuura, H.N.; de Costa, F.; Fett-Neto, A.G. Events associated with early age-related decline in adventitious rooting competence of Eucalyptus globulus Labill. Front. Plant Sci. 2017, 8, 1734. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.L.; Qu, W.J. Experimental Course of Plant Physiology; China Forestry Press: Beijing, China, 2003; pp. 88–104. [Google Scholar]
- Lu, W.J.; Li, Y.S. Experimental Course of Plant Physiology; China Forestry Press: Beijing, China, 2012; pp. 43–45. [Google Scholar]
- Xiao, A.H.; Chen, F.J.; Jia, Z.K.; Sang, Z.; Zhu, Z.L.; Ma, L.Y. Determination of 4 plant hormones in Magnolia wufengensis by gradient elution high performance liquid chromatography. Chin. J. Anal. Lab. 2020, 39, 249–254. [Google Scholar] [CrossRef]
- Anderson, V.L.; McLean, R.A. Design of Experiments; Marcel Dekker Inc.: New York, NY, USA, 1974. [Google Scholar]
- Moncousin, C.H.; Gaspar, T.H. Peroxidase as a marker for rooting improvement of cynara scolymus L. cultured in vitro. Biochem. Physiol. Pflanz. 1983, 178, 263–271. [Google Scholar] [CrossRef]
- Nordstrom, A.C.; Eliasson, J. Levels of endogenous indole-3-acetic acid and indole-3-acetylaspartic acid during adventitious root formation in pea cuttings. Physiol. Plant. 1991, 82, 599–605. [Google Scholar] [CrossRef]
- Da Costa, C.T.; De Almeida, M.R.; Ruedell, C.M.; Schwambach, J.; Maraschin, F.D.S.; Fett-Neto, A.G. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. Front. Plant. Sci. 2013, 4, 133. [Google Scholar] [CrossRef] [Green Version]
- Druege, U.; Hilo, A.; Perez-Perez, J.M.; Klopotek, Y.; Acosta, M.; Shahinnia, F. Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Ann. Bot. 2019, 123, 929–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergio, I.; Helena, R.C.; María, A.F.; Ana, B.S.G.; Joan, V.; José, L.M.; José, M.P.P. A network-guided genetic approach to identify novel regulators of adventitious root formation in Arabidopsis thaliana. Front. Plant Sci. 2019, 10, 461. [Google Scholar] [CrossRef]
- Garrido, G.; Guerrero, J.R.; Cano, E.A.; Acosta, M.; Sanchez-Bravo, J. Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings. Physiol. Plant 2002, 114, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Plant Propagation Principles and Practices, 5th ed.; Prentice Hall: Hoboken, NJ, USA, 2001. [Google Scholar]
- Denaxa, N.K.; Vemmos, S.N.; Roussos, P.A.; Kostelenos, G. The effect of IBA, NAA and carbohydrates on rooting capacity of leafy cuttings in three olive cultivars (Olea europaea, L.). Acta Hortic. 2010, 924, 101–109. [Google Scholar] [CrossRef]
- Ioannis, D.; Katerina, B.; Despoina, B.; Maritina, S. The effect that indole-3-butyric acid (IBA) and position of cane segment have on the rooting of cuttings from grapevine rootstocks and from Cabernet franc (Vitis vinifera, L.) under conditions of a hydroponic culture system. Sci. Hortic. 2018, 227, 79–84. [Google Scholar] [CrossRef]
- Wiesman, Z.; Lavee, S. Enhancement of stimulatory effects on rooting of olive cultivar stem cuttings. Sci. Hortic. 1995, 62, 189–198. [Google Scholar] [CrossRef]
- Ragonezi, C.; Klimaszewska, K.; Castro, M.R.; Lim, M.; Oliveira, P.; Zavattieri, M.A. Adventitious rooting of conifers: Influence of physical and chemical factors. Trees 2010, 24, 975–992. [Google Scholar] [CrossRef] [Green Version]
- Sedaghathoor, S.; Kayghobadi, S.; Tajvar, Y. Rooting of Mugo pine (Pinus mugo) cuttings as affected by IBA, NAA and planting substrate. For. Syst. 2016, 25, eSC08. [Google Scholar] [CrossRef] [Green Version]
- Henselova, M. Synergistic effect of benzolinone with IBA and fungicides on the vegetative propagation of ornamental plants, park and fruit woody species. Hortic. Sci. 2002, 29, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Kesari, V.; Krishnamachari, A.; Rangan, L. Effect of auxins on adventitious rooting from stem cuttings of candidate plus tree Pongamia pinnata (L.), a potential biodiesel plant. Trees 2009, 23, 597–604. [Google Scholar] [CrossRef]
- Naija, S.; Elloumi, N.; Jbir, N.; Ammar, S.; Kevers, C. Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cultured in vitro. Comptes Rendus Biol. 2008, 331, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Agulló-Antón, M.Á.; Ferrández-Ayela, A.; Fernández-Garcia, N.; Nicolás, C.; Albacete, A.; Pérez-Alfocea, F. Early steps of adventitious rooting: Morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Physiol. Plant 2014, 150, 446–462. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Hartmann and Kester’s Plant Propagation: Principles and Practices, 8th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2014. [Google Scholar]
- Strzelecka, K. Anatomical structure and adventitious root formation in Rhododendron ponticum, L. cuttings. Acta Sci. Pol. Hortorum Cultus 2007, 6, 15–22. [Google Scholar] [CrossRef]
- Trofmuk, L.P.; Kirillov, P.S.; Egorov, A.A. Application of biostimulants for vegetative propagation of endangered Abies gracilis. J. For. Res. 2020, 31, 1195–1199. [Google Scholar] [CrossRef]
- Chen, W.Z.; He, L.B.; Tian, S.Y.; Joseph, M.; Xiong, H.; Zou, F.; Yuan, D.Y. Factors involved in the success of Castanea henryi stem cuttings in different cutting mediums and cutting selection periods. J. For. Res. 2021, 32, 627–1639. [Google Scholar] [CrossRef]
- Wróblewska, K. The infuence of benzyladenine and naphthalene-1-acetic acid on rooting and growth of Fuchsia hybrida cuttings. Acta Sci. Pol. Hortorum Cultus 2013, 12, 101–113. [Google Scholar] [CrossRef]
- Tetsumura, T.; Ishimura, S.; Honsho, C.; Chijiwa, H. Improvement in rooting of cuttings of FDR-1, a dwarfing rootstock for kaki©. Acta Hortic. 2016, 1140, 113–116. [Google Scholar] [CrossRef]
- Legué, V.; Rigal, A.; Bhalerao, R.P. Adventitious root formation in tree species: Involvement of transcription factors. Physiol. Plant 2014, 151, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Jesús, M.V.; Nieves, V.; Jose, M.C.S.; Saleta, R.; Conchi, S. Recent advances in adventitious root formation in Chestnut. Plants 2020, 9, 1543. [Google Scholar] [CrossRef]
- Druege, U.; Franken, P.; Hajirezaei, M.R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front. Plant Sci. 2016, 7, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, C.J.; Sun, J.C.; Chen, W.; Ji, J.; Jang, Z.P.; Shi, S.Q. Comparison of physiological and anatomical characteristics between seedlings and graftings derived from old Platycladus orientalis. Sci. Silvae Sin. 2019, 55, 41–49. [Google Scholar] [CrossRef]
- Hartmann, H.T.; Kester, D.E. Plant Propagation Principles and Practices, 4th ed.; Upper Saddle River: Prentice Hall, NJ, USA, 1983. [Google Scholar]
- Sergio, T.; Alberto, P.; Stefano, P.; Daniela, F. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L. Front. Plant Sci. 2015, 6, 973. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Sugiyama, M.; Gorecki, R.J.; Fukuda, H.; Komamine, A. Interrelationship between lignin deposition and the activities of peroxidase isoenzymes in differentiating tracheary elements of Zinnia. Planta 1993, 189, 584–589. [Google Scholar] [CrossRef]
- Aeschbacher, R.A.; Schiefelbein, J.W.; Benfey, P.N. The genetic and molecular basis of root development. Ann. Rev. Plant Biol. 1994, 45, 25–45. [Google Scholar] [CrossRef]
- Fett-Neto, A.G.; Teixeira, S.L.; Da Silva, E.A.M.; Sant’ Anna, R. Biochemical and morphological changes during in vitro rhizogenesis in cuttings of Sequoia sempervirens (D. Don) Endl. J. Plant Physiol. 1992, 140, 720–728. [Google Scholar] [CrossRef]
- Schwambach, J.; Ruedell, C.M.; de Almeida, M.R.; Penchel, R.M.; de Araújo, E.F.; Fett-Neto, A.G. Adventitious rooting of Eucalyptus globulus × maidennii mini-cuttings derived from mini-stumps grown in sand bed and intermittent flooding trays: A comparative study. New For. 2008, 36, 261–271. [Google Scholar] [CrossRef]
- Haissig, B.E. Metabolic processes in adventitious rooting of cuttings. In New Root Formation in Plants and Cuttings; Jackson, M.B., Ed.; Springer: Dordrecht, The Netherlands, 1986; pp. 141–189. [Google Scholar]
- González, A.; Tamés, R.S.; Rodríguez, R. Ethylene in relation to protein, peroxidase and polyphenol oxidase activities during rooting in hazelnut cotyledons. Physiol. Plant 1991, 83, 611–620. [Google Scholar] [CrossRef]
- Yilmaz, H.; Taşkin, T.; Otludil, B. Polyphenol oxidase activity during rooting in cuttings of grape (Vitis vinifera, L.) varieties. Turk. J. Bot. 2003, 27, 495. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Francioso, O.; Ertani, A.; Muscolo, A.; Nardi, S. Isopentenyladenosine and cytokinin-like activity of different humic substances. J. Geochem. Explor. 2013, 129, 70–75. [Google Scholar] [CrossRef]
- Mohamed, S.E.; Hong, Z.; Yan, C.; Bing, L.; Xia, Y.P. The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Sci. Hortic. 2018, 227, 234–243. [Google Scholar] [CrossRef]
- Fu, Z.; Xu, P.; He, S.; Teixeira da Silva, J.A.; Tanaka, M. Dynamic changes in enzyme activities and phenolic content during in vitro rooting of tree peony (Paeonia suffruticosa Andr.) plantlets. Maejo Int. J. Sci. Technol. 2011, 5, 252–265. [Google Scholar]
- Meng, X.Y.; Wang, Z.; He, S.L.; Shi, L.Y.; Song, Y.L. Endogenous hormone levels and avtivities of IAA-modifying enzymes during adventitious rooting of tree peony cuttings and grafted scions. Hortic. Environ. Biotechnol. 2019, 60, 187–197. [Google Scholar] [CrossRef]
- Song, J.Y.; He, W.L.; Li, S.B.; Liu, Y.J.; Sun, Y.J. Analysis of physiological and biochemical characteristics related to cutting and rooting of chimera in populous tomentosa carr. Sci. Silvae Sin. 2001, 37, 64–67. [Google Scholar] [CrossRef]
- Günes, T. Peroxidase and IAA-oxidase activities during rooting in cuttings of three poplar species. Turk. J. Bot. 2000, 24, 97–101. [Google Scholar] [CrossRef]
- Altman, A.; Wareing, P.F. Effect of IAA on sugar accumulation and basipetal transport of C14-labeled assimilates in relation to root formation in Phaseolus vulgaris cuttings. Physiol. Plant 1975, 33, 32–38. [Google Scholar] [CrossRef]
- Ahkami, A.H.; Melzer, M.; Ghaffari, M.R.; Pollmann, S.; Majid, G.J.; Shahinnia, F.; Hajirezaei, M.R.; Druege, U. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 2013, 238, 499–517. [Google Scholar] [CrossRef] [Green Version]
- Lakehal, A.; Bellini, C. Control of adventitious root formation: Insights into synergistic and antagonistic hormonal interactions. Physiol. Plant 2019, 165, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Druege, U. Overcoming physiological bottlenecks of leaf vitality and root development in cuttings: A systemic perspective. Front. Plant Sci. 2020, 11, 907. [Google Scholar] [CrossRef]
- Guo, D.; Liang, J.; Qiao, Y.; Yan, Y.; Li, L.; Dai, Y. Involvement of G1-to-S transition and AhAUX-dependent auxin transport in abscisic acid-induced inhibition of lateral root primodia initiation in Arachis hypogaea L. J. Plant Physiol. 2012, 169, 1102–1111. [Google Scholar] [CrossRef]
- McAdam, S.A.M.; Brodribb, T.J.; Ross, J.J. Shoot-derived abscisic acid promotes root growth. Plant Cell Environ. 2016, 39, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Leon, J.; Rojo, E.; S’anchez-Serrano, J.J. Wound signalling in plants. J. Exp. Bot. 2001, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hooley, R. Gibberellins: Perception, transduction and responses. Plant Mol. Biol. 1994, 26, 1529–1555. [Google Scholar] [CrossRef]
- Davies, P.J. Plant Hormones: Physiology, Biochemistry, and Molecular Biology; Kluwer: London, UK, 1995; pp. 6–7. [Google Scholar]
- Busov, V.; Meilan, R.; Pearce, D.W.; Rood, S.B.; Ma, C.; Tschaplinski, T.J.; Strauss, S.H. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta 2006, 224, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Silverstone, A.L.; Chang, C.; Krol, E.; Sun, T.P. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J. 1997, 12, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, K.; Shasha, D.E.; Wang, J.Y.; Jung, J.W.; Lambert, G.M.; Galbraith, D.W.; Benfey, P.N. A gene expression map of the Arabidopsis root. Science 2003, 302, 1956–1960. [Google Scholar] [CrossRef] [Green Version]
- Shani, E.; Weinstain, R.; Zhang, Y.; Castillejo, C.; Kaiserli, E.; Chory, J.; Tsien, R.Y.; Estelle, M. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc. Natl. Acad. Sci. USA 2013, 110, 4834–4839. [Google Scholar] [CrossRef] [Green Version]
- Dello, I.R.; Nakamura, K.; Moubayidin, L.; Perilli, S.; Taniguchi, M.; Morita, M.T. A genetic framework for the control of cell division and differentiation in the root meristem. Science 2008, 322, 1380–1384. [Google Scholar] [CrossRef] [Green Version]
- Martin, V.P.; Wong, O.C. Identification of cytokinins from xylem exudate of Phaseolus vulgaris L. Plant Physiol. 1985, 79, 296–298. [Google Scholar] [CrossRef] [Green Version]
- Davey, J.E.; van Staden, J. Cytokinin translocation: Changes in zeatin and zeatin-riboside levels in the root exudate of tomato plants during their development. Planta 1976, 13, 69–72. [Google Scholar] [CrossRef]
- Blakesley, D. Auxin metabolism and adventitious root initiation. In Biology of Adventitious Root Formation; Davis, T.D., Haissig, B.E., Eds.; Plenum Press: New York, NY, USA, 1994; pp. 143–154. [Google Scholar]
- Rasmussen, A.; Hosseini, S.A.; Hajirezaei, M.R.; Druege, U.; Geelen, D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J. Exp. Bot. 2015, 66, 1437–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villacorta-Martín, C.; Sanchez-Garcia, A.B.; Villanova, J. Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC Genom. 2015, 16, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marta, D.B.; Leonardo, G.; Sabrina, S. Spatiotemporal changes in the role of cytokinin during root development. New Phytol. 2013, 199, 324–338. [Google Scholar] [CrossRef]
- Hatzilazarou, S.P.; Syrosa, T.D.; Yupsanis, T.A.; Bosabalidis, A.M.; Economou, A.S. Peroxidases, lignin, and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots. J. Plant. Physiol. 2006, 163, 827–836. [Google Scholar] [CrossRef]
Treatments | Auxin Combinations | Amount of Exogenous Hormones |
---|---|---|
CK(Control) | Water | 0 |
T1 | NAA:IBA (1:0) | NAA 1000 mg |
T2 | NAA:IBA (0:1) | IBA 1000 mg |
T3 | NAA:IBA (1:1) | NAA 500 mg + IBA 500 mg |
T4 | NAA:IBA (1:2) | NAA 333.3 mg + IBA 666.7 mg |
T5 | NAA:IBA (2:1) | NAA 666.7 mg + IBA 333.3 mg |
Score | Description of Each Stage |
---|---|
1 | Number of adventitious roots ≤ 3, no lateral roots, the root system is simple and undeveloped |
2 | Number of adventitious roots > 3, with several lateral roots, the root system is equally distributed, and the thickness is moderate |
3 | The root system is well-developed, with many lateral roots, has a good fixation effect on the substrate around the root system |
Auxin Combinations | Average Rooting Percentage (%) |
---|---|
NAA:IBA (2:1) | 71.1 ± 0.47 E |
NAA:IBA (1:0) | 51.1 ± 0.47 d |
NAA:IBA (1:2) | 45.6 ± 0.47 c |
NAA:IBA (1:1) | 38.9 ± 0.94 b |
NAA:IBA (0:1) | 35.6 ± 1.25 b |
CK (Control) | 4.4 ± 0.47 A |
Auxin Combinations | Average Root Numbers | Average Root Length/(cm) | Average Root Diameter/(mm) | Rate of Root Quality Score/(%) |
---|---|---|---|---|
CK(Control) | 1.67 ± 0.47 a | 5.50 ± 0.39 a | 1.75 ± 0.17 b | 33.33 ± 0.00 a |
NAA:IBA (1:0) | 11.34 ± 0.18 C | 12.09 ± 0.09 Cc | 2.34 ± 0.30 a | 52.14 ± 3.02 ab |
NAA:IBA (0:1) | 5.11 ± 0.11 ab | 10.44 ± 0.17 bc | 1.98 ± 0.07 bc | 59.52 ± 7.01 bc |
NAA:IBA (1:1) | 4.13 ± 0.09 ab | 9.90 ± 0.58 bc | 2.45 ± 0.02 a | 54.38 ± 3.20 ab |
NAA:IBA (1:2) | 6.36 ± 0.10 Cb | 9.41 ± 0.30 Cb | 2.23 ± 0.03 ac | 62.59 ± 2.92 bc |
NAA:IBA (2:1) | 10.10 ± 0.09 C | 8.19 ± 0.22 b | 2.47 ± 0.04 a | 74.21 ± 2.56 c |
Composition | Initial Eigenvalue | Extracted Square Sum | ||||
---|---|---|---|---|---|---|
Total | Variance/(%) | Accumulation/(%) | Total | Variance/(%) | Accumulation/(%) | |
1 | 3.619 | 72.386 | 72.386 | 3.619 | 72.386 | 72.386 |
2 | 0.693 | 13.864 | 86.250 | |||
3 | 0.407 | 8.141 | 94.392 | |||
4 | 0.280 | 5.605 | 99.997 | |||
5 | 0.000 | 0.003 | 100.000 |
Treatments | C | Total Rank |
---|---|---|
NAA:IBA (2:1) | 3.712 | 1 |
NAA:IBA (1:0) | 2.558 | 2 |
NAA:IBA (1:2) | 0.667 | 3 |
NAA:IBA (1:1) | 0.354 | 4 |
NAA:IBA (0:1) | −0.64 | 5 |
CK (Control) | −6.65 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Khan, M.A.; Zhu, Z.; Hai, T.; Sang, Z.; Jia, Z.; Ma, L. Histological, Morpho-Physiological, and Biochemical Changes during Adventitious Rooting Induced by Exogenous Auxin in Magnolia wufengensis Cuttings. Forests 2022, 13, 925. https://doi.org/10.3390/f13060925
Wang Y, Khan MA, Zhu Z, Hai T, Sang Z, Jia Z, Ma L. Histological, Morpho-Physiological, and Biochemical Changes during Adventitious Rooting Induced by Exogenous Auxin in Magnolia wufengensis Cuttings. Forests. 2022; 13(6):925. https://doi.org/10.3390/f13060925
Chicago/Turabian StyleWang, Yi, Muhammad Asif Khan, Zhonglong Zhu, Tiemei Hai, Ziyang Sang, Zhongkui Jia, and Luyi Ma. 2022. "Histological, Morpho-Physiological, and Biochemical Changes during Adventitious Rooting Induced by Exogenous Auxin in Magnolia wufengensis Cuttings" Forests 13, no. 6: 925. https://doi.org/10.3390/f13060925
APA StyleWang, Y., Khan, M. A., Zhu, Z., Hai, T., Sang, Z., Jia, Z., & Ma, L. (2022). Histological, Morpho-Physiological, and Biochemical Changes during Adventitious Rooting Induced by Exogenous Auxin in Magnolia wufengensis Cuttings. Forests, 13(6), 925. https://doi.org/10.3390/f13060925