Windstorm Impacts on Forest-Related Socio-Ecological Systems: An Analysis from a Socio-Economic and Institutional Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Step 1: Framing the Review Approach
- (i)
- Articles published in English and only in peer-reviewed journals, thus excluding technical reports and grey literature;
- (ii)
- Pertinence to the scope of the review: analysis of windstorm impacts on forest-related dimensions relevant for this study (socio-economic, institutional, cultural and governance dimensions);
- (iii)
- Geographical restriction: focus on windstorms that hit European forests only.
2.2. Step 2: Papers Search and Screening
- (1)
- A first and preliminary screening of titles and abstracts to ensure articles comply with the inclusion criteria mentioned above;
- (2)
- Papers with relevant titles and abstracts were further screened via an in-depth reading to assess articles’ compliance and pertinence to research questions, review scope and main objectives;
- (3)
- A duplicate-cleaning procedure between first and second review rounds to avoid eventual double accounting of papers;
- (4)
- Finally, the pool of papers collected via search terms was complemented by papers suggested by advisory scholars’ consultations after having assessed their relevance and pertinence to this study.
2.3. Step 3: Data Categorization and Analysis
- (i)
- A first database was created to report bibliographic and specific case-study information such as: methodological approach implemented, data concerning the study area and (eventually) estimated economic damages related to the study area.
- (ii)
- A second database summarized information on storm characteristics, including: name and year, spatial scale and size of the affected area, total loss of forest cover and overall insured losses.
- (iii)
- A third database included primary and secondary windstorm impacts and cause-effect linkages identified in the papers reviewed. In addition to windstorm impacts, the database included information regarding methodology used to assess the impact, time span and nature of the impact (i.e., if the impact had positive or negative consequences in the dimension considered). It is worth remembering that the main goal of the paper is analyzing windstorm impacts on socio-economic, cultural, governance and institutional dimensions. Thus, impacts related to non-socio-economic dimensions (e.g., forest ecology, mechanization, etc.) were included in the database only if articles reviewed assessed direct consequences or cascade effects on key reference dimensions.
2.4. Step 4: Cause–Effect Map Representation and Guidelines Formulation
2.5. Step 5: Analysis of the Results
3. Results
3.1. Scientific Literature Search
3.2. Time Span and Geographical Scope
3.3. Data Collection Methodologies
3.4. Primary Windstorm Effects
3.5. Secondary Windstorm Effects
4. Discussion: Windstorm Cause–Effect Linkages among Forest-Related SES Dimensions
4.1. Forest Management Interventions and Strategies
4.2. Forest Stakeholder Reactions and Practices
4.3. Institutional Support and Role of Institutions in Post-Windstorm Management
4.4. Main Traits of Socio-Economic and Institutional Windstorm Impact Analysis and Cause–Effect Visualization
4.5. Suggestions for Post-Windstorm Policy Design
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Search Strings
Round of Review | Search string in Article, Abstract, Keywords | No. of Papers |
---|---|---|
First round | Windstorm OR hurricane AND Soc* AND econom* AND European | 33 |
Wind* OR hurricane* AND damage* AND cost* AND community | 132 | |
Forest* AND wind* AND soc* AND econom* AND impact* AND Europe | 12 | |
Forest* AND wind* AND soc* economic* AND damage* | 51 | |
Forest* AND wind* AND soc* economic* AND damage* or cost* | 85 | |
Forest* AND wind* AND soc* AND econom* AND effect* | 135 | |
Forest* AND wind* AND soc* AND econom* AND risk* | 59 | |
Second round | Forest* OR woodland AND wind* AND disturb* OR damage* AND soc* AND economic* OR financial* | 84 |
Forest* OR woodland AND wind* AND disturb* OR damage* AND ecosystem* AND service* | 99 | |
Forest* OR woodland AND wind* AND disturb* OR damage* AND institution* AND govern*: | 5 | |
Forest* OR woodland AND wind* AND disturb* OR damage* AND poli* | 17.420 | |
Total of both rounds | 18.115 |
Appendix B. Dimensions and Categories Used in Data Categorization
Dimensions | Effects | |
---|---|---|
Macro-Categories | Sub-Categories | |
Cultural | Recreational activities | (1) Leisure activities |
Knowledge production | (2) Hunting activities | |
Tourism sector | (1) Academic knowledge | |
Traditional forest use | (2) Technical information | |
Landscape value | ||
Economic | Timber market and prices | (1) Wood quality |
(2) Timber prices fluctuations | ||
(3) Raw material availability | ||
Forest stakeholders‘ income | (1) Non-industrial private forest owners | |
(2) Forest sector supply chain | ||
(3) Forest related industries | ||
(4) Primary processing industries | ||
National and international trade | (1) Import/export balance trade | |
(2) National timber market features | ||
Ecosystem services provisioning | Provisioning services | |
Regulating services | ||
Forest management and operations | Forest management | (1) Plans |
(2) Strategies | ||
(3) Operations | ||
Forest operations | (1) Costs | |
(2) Investments | ||
(3) Labor specialization | ||
(4) Technological improvements | ||
(5) Windthrown management and logging | ||
Wood logistics | (1) Transportation | |
(2) Storage | ||
(3) Infrastructure | ||
Risk mitigation strategies | ||
Forest ecology | Pest Outbreaks | |
Forest structure | (1) Species composition | |
(2) Fragmentation and tree dieback | ||
(3) Natural subsequent disturbance | ||
Forest regeneration dynamics | ||
Institutional | Role of institution | (1) Policy formulation |
(2) Leadership and coordination | ||
Institutional support | (1) Financial compensation/subsidies | |
(2) Technical assistance | ||
Local population engagement | ||
Stakeholders’ engagement | (1) Management of different interests | |
National and international legal framework | (1) Risk mitigation strategies | |
Insurance sector | Insurance market | |
Insurance policy | ||
Social | Private forest owners’ reactions | (1) Post-windstorm behaviors |
(2) Beliefs and attitudes | ||
(3) Technical skills | ||
(4) Management Plans | ||
(5) Psychological wellbeing | ||
Forest stakeholders’ interactions | (1) Private/public sector interactions | |
(2) Stakeholders’ networks/peers relations | ||
(3) Power dynamics | ||
(4) Decision making process | ||
Community related aspects | (1) Health and wellbeing | |
(2) Engagement in Environmental protection | ||
Forest consultants | (1) Attitudes and perceptions | |
(2) Technical skills | ||
Infrastructural damages |
Appendix C. Methodological Approach for the Categorization of Observations: An Example
“The economic implications of storms are thus a great concern and challenge to the interviewees in their forest ownership, mainly because of their level of economic dependence on their forest. A number of them talked about their own and neighbors’ losses due to the storm, and emphasized the great values that disappeared overnight and the dreams and plans connected to these”…“This situation of uncertainty introduced instability into the discourse on forest management and the authorities within the field. In relation to their own capacities and resources, some of the forest owners expressed this uncertainty about whom to trust, both in terms of advice on forest management and in the event of a future storm”…“ How the storm altered their perception of forests and forestry was thus a recurring theme among many of the forest owners. It forced them to change not only their understanding, but also their actions in relation to their forest.”
ID | Direct Windstorm Effect | Related Text | Secondary Windstorm Effect | Related Text | ||||
---|---|---|---|---|---|---|---|---|
Dimension | Macro Cat. | Sub. Cat | Dimension | Macro Cat. | Sub. Cat | |||
1 | Forest Ecology | Forest Structure | their own and neighbors’ losses due to the storm | Economic | Forest stakeholders’ income | NIPF owners | The economic implications of storms are thus a great concern | |
Social | Private Forest owners’ reactions | Belief and attitudes | great values that disappeared overnight and the dreams and plans connected to these | |||||
2 | Social | Private Forest owners’ reactions | Belief and attitudes | This situation of uncertainty | Forest management and operations | Forest management | Plans | instability into the discourse on forest management and the authorities |
Social | Private Forest owners’ reactions | Technical skills | In relation to their own capacities and resources | |||||
Social | Private Forest owners’ reactions | Belief and attitudes | some of the forest owners expressed this uncertainty about whom to trust, both in terms of advice on forest management and in the event of a future storm | |||||
3 | Social | Private Forest owners’ reactions | Belief and attitudes | the storm altered their perception of forests and forestry | Forest management and operations | Forest management | Strategies | It forced them to change their actions in relation to their forest |
References
- Ostrom, E. Frameworks and theories of environmental change. Glob. Environ. Chang. 2008, 18, 249–252. [Google Scholar] [CrossRef]
- Fischer, A.P. Forest landscapes as social-ecological systems and implications for management. Landsc. Urban. Plan. 2018, 177, 138–147. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Folke, C.; Alberti, M.; Redman, C.L.; Schneider, S.H.; Ostrom, E.; Pell, A.N.; Lubchenco, J.; et al. Coupled Human and Natural Systems. AMBIO A J. Hum. Environ. 2007, 36, 639–649. [Google Scholar] [CrossRef]
- Folke, C. Resilience (Republished). Ecol. Soc. 2016, 21, 30. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Elmqvist, T.; Gunderson, L.; Holling, C.S.; Walker, B.; Bengtsson, J.; Berkes, F.; Colding, J.; Danell, K.; et al. Resilience and Sustainable Development: Building Adaptive Capacity in a World of Transformations. AMBIO A J. Hum. Environ. 2002, 31, 437–440. [Google Scholar] [CrossRef]
- Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. For. Ecol. Manag. 2017, 388, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Huber, R.; Rigling, A.; Bebi, P.; Brand, S.; Briner, S.; Buttler, A.; Elkin, C.; Gillet, F.; Grêt-Regamey, A.; Hirschi, C.; et al. Sustainable Land Use in Mountain Regions Under Global Change: Synthesis Across Scales and Disciplines. Ecol. Soc. 2013, 18, 20. [Google Scholar] [CrossRef] [Green Version]
- Kulakowski, D.; Seidl, R.; Holeksa, J.; Kuuluvainen, T.; Nagel, T.A.; Panayotov, M.; Svoboda, M.; Thorn, S.; Vacchiano, G.; Whitlock, C.; et al. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. For. Ecol. Manag. 2017, 388, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Forest Europe. State of Europe’s Forests 2020; Forest Europe: Bonn, Germany, 2020. [Google Scholar]
- Gardiner, B.; Schuck, A.; Schelhaas, M.-J.; Orazio, C.; Blennow, K.; Nicoll, B. Living with Storm Damage to Forests. What Science Can Tell Us 3; Hetemaki, L., Ed.; EFI European Forest Institute: Joensuu, Finland, 2013; ISBN 9789525980080. [Google Scholar]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Manfred, J.L. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Hengeveld, G.; Moriondo, M.; Reinds, G.J.; Kundzewicz, Z.W.; Ter Maat, H.; Bindi, M. Assessing risk and adaptation options to fires and windstorms in European forestry. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 681–701. [Google Scholar] [CrossRef]
- Forzieri, G.; Pecchi, M.; Girardello, M.; Mauri, A.; Klaus, M.; Nikolov, C.; Rüetschi, M.; Gardiner, B.; Tomaštík, J.; Small, D.; et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 2020, 12, 257–276. [Google Scholar] [CrossRef] [Green Version]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moatti, J.; Thiébault, S. The Mediterranean Region under Climate Change; IRD Editions: Marseille, France, 2016; ISBN 9782709922203. [Google Scholar]
- Angelstam, P.; Elbakidze, M.; Axelsson, R.; Čupa, P.; Halada, L.; Molnar, Z.; Pătru-Stupariu, I.; Perzanowski, K.; Rozulowicz, L.; Standovar, T.; et al. Maintaining Cultural and Natural Biodiversity in the Carpathian Mountain Ecoregion: Need for An Integrated Landscape Approach. In The Carpathians: Integrating Nature and Society Towards Sustainability; Kozak, J., Ostapowicz, K., Bytnerowicz, A., Wyżga, B., Eds.; Springer: Berlin, Germany, 2013; pp. 393–424. ISBN 9783642127250. [Google Scholar]
- Jönsson, A.M.; Lagergren, F.; Smith, B. Forest management facing climate change—An ecosystem model analysis of adaptation strategies. Mitig. Adapt. Strateg. Glob. Chang. 2013, 20, 201–220. [Google Scholar] [CrossRef]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Roberts, J.F.; Champion, A.J.; Dawkins, L.C.; Hodges, K.I.; Shaffrey, L.C.; Stephenson, D.B.; Stringer, M.A.; Thornton, H.E.; Youngman, B.D. The XWS open access catalogue of extreme European windstorms from 1979 to 2012. Nat. Hazards Earth Syst. Sci. 2014, 14, 2487–2501. [Google Scholar] [CrossRef] [Green Version]
- Fabiánek, P.; Henžlík, V.; Vančura, K. Development of forest stands condition and its monitoring in the Czech Republic. J. For. Sci. 2004, 50, 514–519. [Google Scholar] [CrossRef] [Green Version]
- Heinimann, H.R. A concept in adaptive ecosystem management-An engineering perspective. For. Ecol. Manag. 2010, 259, 848–856. [Google Scholar] [CrossRef]
- Berz, G. Windstorm and Storm Surges in Europe: Loss Trends and Possible Counter-Actions from the Viewpoint of an International Reinsurer. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 363, 1431–1440. [Google Scholar] [CrossRef]
- Fuhrer, J.; Beniston, M.; Fischlin, A.; Frei, C.; Goyette, S.; Jasper, K.; Pfister, C. Climate Risks and Their Impact on Agriculture and Forests in Switzerland. Clim. Chang. 2006, 79, 79–102. [Google Scholar] [CrossRef] [Green Version]
- Jahn, M. Economics of extreme weather events: Terminology and regional impact models. Weather. Clim. Extrem. 2015, 10, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Riguelle, S.; Hébert, J.; Jourez, B. WIND-STORM: A Decision Support System for the Strategic Management of Windthrow Crises by the Forest Community. Forests 2015, 6, 3412–3432. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, P.; Pichler, V.; Flaischer, P.; Holko, L.; Mális, F.; Gömöryová, E.; Cudlín, P.; Holeksa, J.; Michalová, Z.; Homolová, Z.; et al. Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Clim. Res. 2017, 73, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Leverkus, A.B.; Benayas, J.M.R.; Castro, J.; Boucher, D.; Brewer, S.; Collins, B.M.; Donato, D.; Fraver, S.; Kishchuk, B.E.; Lee, E.-J.; et al. Salvage logging effects on regulating and supporting ecosystem services—A systematic map. Can. J. For. Res. 2018, 48, 983–1000. [Google Scholar] [CrossRef]
- Seidl, R.; Spies, T.A.; Peterson, D.L.; Stephens, S.L.; Jeffrey, A. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 2016, 53, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Barredo, J.I. No upward trend in normalised windstorm losses in Europe, 1970–2008. Nat. Hazards Earth Syst. Sci. 2010, 10, 97–104. [Google Scholar] [CrossRef]
- Aquilué, N.; Filotas, É.; Craven, D.; Fortin, M.J.; Brotons, L.; Messier, C. Evaluating forest resilience to global threats using functional response traits and network properties. Ecol. Appl. 2020, 30, e02095. [Google Scholar] [CrossRef]
- Härtl, F.H.; Barka, I.; Andreas Hahn, W.; Hlásny, T.; Irauschek, F.; Knoke, T.; Lexer, M.J.; Griess, V.C.; Härtl, F.; Hahn, W.; et al. Multifunctionality in European mountain forests-an optimization under changing climatic conditions. Can. J. For. Res. 2016, 46, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Riguelle, S.; Hébert, J.; Jourez, B. Integrated and systemic management of storm damage by the forest-based sector and public authorities. Ann. For. Sci. 2016, 73, 585–600. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K.; Persson, J.; Tomé, M.; Hanewinkel, M. Climate Change: Believing and Seeing Implies Adapting. PLoS ONE 2012, 7, 50182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, E.; Carina, E.; Keskitalo, H.; Bergstén, S. In the eye of the storm: Adaptation logics of forest owners in management and planning in Swedish areas. Scand. J. For. Res. 2018, 33, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K.; Persson, E.; Persson, J. Are values related to culture, identity, community cohesion and sense of place the values most vulnerable to climate change? PLoS ONE 2019, 14, e0210426. [Google Scholar] [CrossRef] [PubMed]
- Deuffic, P.; Ní Dhubháin, Á. Invisible losses. What a catastrophe does to forest owners’ identity and trust in afforestation programmes. Sociol. Rural. 2020, 60, 104–128. [Google Scholar] [CrossRef]
- Rist, L.; Moen, J. Sustainability in forest management and a new role for resilience thinking. For. Ecol. Manag. 2013, 310, 416–427. [Google Scholar] [CrossRef]
- Nikinmaa, L.; Lindner, M.; Cantarello, E.; Jump, A.S.; Seidl, R.; Winkel, G.; Muys, B. Reviewing the Use of Resilience Concepts in Forest Sciences. Curr. For. Rep. 2020, 6, 61–80. [Google Scholar] [CrossRef]
- Blanco, V.; Brown, C.; Holzhauer, S.; Vulturius, G.; Rounsevell, M.D.A. The importance of socio-ecological system dynamics in understanding adaptation to global change in the forestry sector. J. Environ. Manag. 2017, 196, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Solár, J.; Solár, V. Land-cover change in the tatra mountains, with a particular focus on vegetation. Eco. Mont. 2020, 12, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Leverkus, A.B.; Buma, B.; Wagenbrenner, J.; Burton, P.J.; Lingua, E.; Marzano, R.; Thorn, S. Tamm review: Does salvage logging mitigate subsequent forest disturbances? For. Ecol. Manag. 2021, 481, 118721. [Google Scholar] [CrossRef]
- Polevshchikova, I. Disturbance Analyses of Forest Cover Dynamics Using Remote Sensing and GIS; IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2019; Volume 316, p. 12053. [Google Scholar]
- Kerner, D.; Thomas, J. Resilience Attributes of Social-Ecological Systems: Framing Metrics for Management. Resources 2014, 3, 672–702. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 2004, 9, 9. [Google Scholar] [CrossRef]
- Acheson, J.M. Institutional failure in resource management. Annu. Rev. Anthropol. 2006, 35, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Zasada, I.; Häfner, K.; Schaller, L.; van Zanten, B.T.; Lefebvre, M.; Malak-Rawlikowska, A.; Nikolov, D.; Rodríguez-Entrena, M.; Manrique, R.; Ungaro, F.; et al. A conceptual model to integrate the regional context in landscape policy, management and contribution to rural development: Literature review and European case study evidence. Geoforum 2017, 82, 1–12. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Godfrey, C.M.; Khalil, H.; McInerney, P.; Parker, D.; Soares, C.B. Guidance for conducting systematic scoping reviews. Int. J. Evid. Based. Healthc. 2015, 13, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, A.; Lukasiewicz, K.; Seaberg, D.; Zhuang, J. Trends in Multidisciplinary Hazard and Disaster Research: A 1982–2017 Case Study. Risk Anal. 2021, 41, 1195–1203. [Google Scholar] [CrossRef]
- Nakagawa, S.; Samarasinghe, G.; Haddaway, N.R.; Westgate, M.J.; O’Dea, R.E.; Noble, D.W.A.; Lagisz, M. Research Weaving: Visualizing the Future of Research Synthesis. Trends Ecol. Evol. 2019, 34, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Arksey; Malley Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [CrossRef] [Green Version]
- Doyle, E.E.H.; Johnston, D.M.; Smith, R.; Paton, D. Communicating model uncertainty for natural hazards: A qualitative systematic thematic review. Int. J. Disaster Risk Reduct. 2019, 33, 449–476. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 105906. [Google Scholar]
- Blennow, K.; Persson, J.; Wallin, A.; Vareman, N.; Persson, E. Understanding risk in forest ecosystem services: Implications for effective risk management, communication and planning. Forestry 2014, 87, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Forsell, N.; Wikström, P.; Garcia, F.; Sabbadin, R.; Blennow, K.; Eriksson, L.O. A graph-based Markov decision process approach for managing forests under risk of wind damage. MODSIM07—Land Water Environ. Manag. Integr. Syst. Sustain. Proc. 2007, 2168–2174. Available online: https://www.researchgate.net/publication/253423688_A_Graph-based_Markov_Decision_Process_approach_for_managing_forests_under_risk_of_wind_damage (accessed on 22 May 2022).
- Hewson, T.D.; Neu, U. Cyclones, windstorms and the IMILAST project. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2015, 6, 27218. [Google Scholar] [CrossRef] [Green Version]
- Hanewinkel, M.; Hummel, S.; Albrecht, A. Assessing natural hazards in forestry for risk management: A review. Eur. J. For. Res. 2011, 130, 329–351. [Google Scholar] [CrossRef]
- Melnykovych, M.; Nijnik, M.; Soloviy, I.; Nijnik, A.; Sarkki, S.; Bihun, Y. Social-ecological innovation in remote mountain areas: Adaptive responses of forest-dependent communities to the challenges of a changing world. Sci. Total Environ. 2018, 613–614, 894–906. [Google Scholar] [CrossRef]
- Thonicke, K.; Bahn, M.; Lavorel, S.; Bardgett, R.D.; Erb, K.; Giamberini, M.; Reichstein, M.; Vollan, B.; Rammig, A. Advancing the Understanding of Adaptive Capacity of Social-Ecological Systems to Absorb Climate Extremes. Earth’s Future 2020, 8, e2019EF001221. [Google Scholar] [CrossRef] [Green Version]
- Thom, D.; Seidl, R.; Steyrer, G.; Krehan, H.; Formayer, H. Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For. Ecol. Manag. 2013, 307, 293–302. [Google Scholar] [CrossRef]
- Sarkki, S.; Ficko, A.; Wielgolaski, F.E.; Abraham, E.M.; Bratanova-Doncheva, S.; Grunewald, K.; Hofgaard, A.; Holtmeier, F.-K.; Kyriazopoulos, A.P.; Broll, G.; et al. Climate Research Clim Res Assessing the resilient provision of ecosystem services by social-ecological systems: Introduction and theory. Clim. Res. 2017, 73, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Özesmi, U.; Özesmi, S.L. Ecological models based on people’s knowledge: A multi-step fuzzy cognitive mapping approach. Ecol. Modell. 2004, 176, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Scavarda, A.J.; Bouzdine-Chameeva, T.; Goldstein, S.M.; Hays, J.M.; Hill, A.V. A methodology for constructing collective causal maps. Decis. Sci. 2006, 37, 263–283. [Google Scholar] [CrossRef]
- Öllinger, M.; Hammon, S.; von Grundherr, M.; Funke, J. Does visualization enhance complex problem solving? The effect of causal mapping on performance in the computer-based microworld Tailorshop. Educ. Technol. Res. Dev. 2015, 63, 621–637. [Google Scholar] [CrossRef]
- Sanginés de Cárcer, P.; Mederski, P.S.; Magagnotti, N.; Spinelli, R.; Engler, B.; Seidl, R.; Eriksson, A.; Eggers, J.; Bont, L.G.; Schweier, J. The Management Response to Wind Disturbances in European Forests. Curr. For. Rep. 2021, 7, 167–180. [Google Scholar] [CrossRef]
- Feser, F.; Barcikowska, M.; Krueger, O.; Schenk, F.; Weisse, R.; Xia, L. Storminess over the North Atlantic and northwestern Europe-A review. Q. J. R. Meteorol. Soc. 2015, 141, 350–382. [Google Scholar] [CrossRef]
- Sauter, P.A.; Möllmann, T.B.; Anastassiadis, F.; Mußhoff, O.; Möhring, B. To insure or not to insure? Analysis of foresters’ willingness-to-pay for fire and storm insurance. For. Policy Econ. 2016, 73, 78–89. [Google Scholar] [CrossRef]
- Fouqueray, T.; Charpentier, A.; Trommetter, M.; Frascaria-Lacoste, N. The calm before the storm: How climate change drives forestry evolutions. For. Ecol. Manag. 2020, 460, 117800. [Google Scholar] [CrossRef] [Green Version]
- Régolini, M.; Meredieu, C.; Jactel, H.; Arias-González, A.; Branco, M.; Cantero, A.; Castro, A.; Fraysse, J.Y.; Gardiner, B.; Hevia, A.; et al. Multi-criteria analysis to compare multiple risks associated with management alternatives in planted forests. For. Syst. 2020, 29, 1–17. [Google Scholar] [CrossRef]
- Angst, C.; Volz, R. A decision-support tool for managing storm-damaged forests. For. Snow Landsc. Res. 2002, 77, 217–224. [Google Scholar]
- Brunette, M.; Couture, S. Public compensation for windstorm damage reduces incentives for risk management investments. For. Policy Econ. 2008, 10, 491–499. [Google Scholar] [CrossRef]
- Zubizarreta-Gerendiain, A.; Pukkala, T.; Peltola, H. Effects of wind damage on the optimal management of boreal forests under current and changing climatic conditions. Can. J. For. Res. 2017, 47, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, K.; Schuetz, T.; Weimar, H. Analysis and modeling of timber storage accumulation after severe storm events in Germany. Eur. J. For. Res. 2018, 137, 463–475. [Google Scholar] [CrossRef]
- Dubrovskis, E.; Donis, J.; Racenis, E.; Kitenberga, M.; Jansons, A. Wind-induced stem breakage height effect on potentially recovered timber value: Case study of the Scots pine (Pinus sylvestris L.) in Latvia. For. Stud. 2018, 69, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Couture, S.; Cros, M.-J.; Sabbadin, R. Risk aversion and optimal management of an uneven-aged forest under risk of windthrow: A Markov decision process approach. J. For. Econ. 2016, 25, 94–114. [Google Scholar] [CrossRef]
- Petr, M.; Boerboom, L.; Ray, D.; Veen, A. Van Der Forest Policy and Economics An uncertainty assessment framework for forest planning adaptation to climate change. For. Policy Econ. 2014, 41, 1–11. [Google Scholar] [CrossRef]
- Andersson, M.; Kellomäki, S.; Gardiner, B.; Blennow, K. Life-style services and yield from south-Swedish forests adaptively managed against the risk of wind damage: A simulation study. Reg. Environ. Chang. 2015, 15, 1489–1500. [Google Scholar] [CrossRef]
- Yousefpour, R.; Bredahl Jacobsen, J.; Thorsen, B.J.; Meilby, H.; Hanewinkel, M.; Oehler, K. A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Ann. For. Sci. 2012, 69, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pacey, G.P.; Schultz, D.M.; Garcia-Carreras, L. Severe Convective Windstorms in Europe: Climatology, Preconvective Environments, and Convective Mode. Weather. Forecast. 2021, 36, 237–252. [Google Scholar] [CrossRef]
- Blennow, K.; Persson, J.; Persson, E.; Hanewinkel, M. Forest Owners’ Response to Climate Change: University Education Trumps Value Profile. PLoS ONE 2016, 11, e0155137. [Google Scholar] [CrossRef] [Green Version]
- Lidskog, R.; Sjödin, D. Risk governance through professional expertise. Forestry consultants’ handling of uncertainties after a storm disaster. J. Risk Res. 2015, 19, 1275–1290. [Google Scholar] [CrossRef] [Green Version]
- Zell, J.; Hanewinkel, M. How treatment, storm events and changed climate affect productivity of temperate forests in SW Germany. Reg. Environ. Chang. 2015, 15, 1531–1542. [Google Scholar] [CrossRef]
- Forsell, N.; Wikström, P.; Garcia, F.; Sabbadin, R.; Blennow, K.; Ola Eriksson, L.; Forsell, N.; Wikström, P.; Eriksson, L.; Garcia, F.; et al. Management of the risk of wind damage in forestry: A graph-based Markov decision process approach. Ann. Oper. Res. 2011, 190, 57–74. [Google Scholar] [CrossRef]
- Petucco, C.; Andrés-Domenech, P.; Duband, L. Cut or keep: What should a forest owner do after a windthrow? For. Ecol. Manag. 2020, 461, 117866. [Google Scholar] [CrossRef]
- Loisel, P.; Brunette, M.; Couture, S. Insurance and Forest Rotation Decisions Under Storm Risk. Environ. Resour. Econ. 2020, 76, 347–367. [Google Scholar] [CrossRef]
- Lidskog, R.; Sjödin, D. Why do forest owners fail to heed warnings ? Conflicting risk evaluations made by the Swedish forest agency and forest owners. Scand. J. For. Res. 2014, 29, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K. Risk management in Swedish forestry-Policy formation and fulfilment of goals. J. Risk Res. 2008, 11, 237–254. [Google Scholar] [CrossRef]
- Samariks, V.; Krisans, O.; Donis, J.; Silamikele, I.; Katrevics, J.; Jansons, A. Cost-benefit analysis of measures to reduce windstorm impact in pure Norway Spruce (Picea abies L. Karst.) stands in Latvia. Forests 2020, 11, 576. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Peyron, J.L. The Economic Impact of Storms. In Living with Storm Damage to Forests; EFI European Forest Institute: Joensuu, Finland, 2013; pp. 55–63. ISBN 9789525980080. [Google Scholar]
- Nieuwenhuis, M.; O’Connor, E. Financial impact evaluation of catastrophic storm damage in Irish forestry: A case study. I. Stumpage losses. Forestry 2001, 74, 369–381. [Google Scholar] [CrossRef]
- Schwarzbauer, P.; Rauch, P. Impact on Industry and Markets—Roundwood Prices and Procurement Risks. In Living with Storm Damage to Forests: What Science Can Tell Us; EFI European Forest Institute: Joensuu, Finland, 2013; pp. 66–71. ISBN 978-952-5980-08-0. [Google Scholar]
- Müller, F.; Augustynczik, A.L.D.; Hanewinkel, M. Quantifying the risk mitigation efficiency of changing silvicultural systems under storm risk throughout history. Ann. For. Sci. 2019, 76, 116. [Google Scholar] [CrossRef]
- Blennow, K.; Persson, E. Societal Impacts of storm damages. In Living with Storm Damage to Forests; EFI European Forest Institute: Joensuu, Finland, 2013; pp. 70–78. ISBN 1588831442. [Google Scholar]
- Couture, S.; Reynaud, A. Multi-stand forest management under a climatic risk: Do time and risk preferences matter? Environ. Model. Assess. 2008, 13, 181–193. [Google Scholar] [CrossRef]
- Forsell, N.; Eriksson, O.L. Influence of temporal aggregation on strategic forest management under risk of wind damage. Ann. Oper. Res. 2014, 219, 397–414. [Google Scholar] [CrossRef]
- Hartebrodt, C. The impact of storm damage on small-scale forest enterprises in the south-west of Germany. Small-Scale For. Econ. Manag. Policy 2004, 3, 203–222. [Google Scholar] [CrossRef]
- Müller, J.; Noss, R.F.; Thorn, S.; Bässler, C.; Leverkus, A.B.; Lindenmayer, D. Increasing disturbance demands new policies to conserve intact forest. Conserv. Lett. 2019, 12, e12499. [Google Scholar] [CrossRef] [Green Version]
- Sotirov, M.; Arts, B. Integrated Forest Governance in Europe: An introduction to the special issue on forest policy integration and integrated forest management. Land Use Policy 2018, 79, 960–967. [Google Scholar] [CrossRef]
- Augustynczik, A.L.D.; Asbeck, T.; Basile, M.; Jonker, M.; Knuff, A.; Yousefpour, R.; Hanewinkel, M. Reconciling forest profitability and biodiversity conservation under disturbance risk: The role of forest management and salvage logging. Environ. Res. Lett. 2020, 15, 940–943. [Google Scholar] [CrossRef]
- Caurla, S.; Garcia, S.; Niedzwiedz, A. Store or export? An economic evaluation of financial compensation to forest sector after windstorm. The case of Hurricane Klaus. For. Policy Econ. 2015, 61, 30–38. [Google Scholar] [CrossRef]
- Schou, E.; Thorsen, B.J.; Jacobsen, J.B. Regeneration decisions in forestry under climate change related uncertainties and risks: Effects of three different aspects of uncertainty. For. Policy Econ. 2015, 50, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Segura, M.; Ray, D.; Maroto, C. Decision support systems for forest management: A comparative analysis and assessment. Comput. Electron. Agric. 2014, 101, 55–67. [Google Scholar] [CrossRef]
- Lundholm, A.; Black, K.; Corrigan, E.; Nieuwenhuis, M. Evaluating the Impact of Future Global Climate Change and Bioeconomy Scenarios on Ecosystem Services Using a Strategic Forest Management Decision Support System. Front. Ecol. Evol. 2020, 8, 200. [Google Scholar] [CrossRef]
- Blanco, J.; Sourdril, A.; Deconchat, M.; Barnaud, C.; San Cristobal, M.; Andrieu, E. How farmers feel about trees: Perceptions of ecosystem services and disservices associated with rural forests in southwestern France. Ecosyst. Serv. 2020, 42, 101066. [Google Scholar] [CrossRef]
- Donis, J.; Saleniece, R.; Krisans, O.; Dubrovskis, E.; Kitenberga, M.; Jansons, A. A financial assessment of windstorm risks for scots pine stands in hemiboreal forests. Forests 2020, 11, 566. [Google Scholar] [CrossRef]
- Brönnimann, S.; Appenzeller, C.; Croci-Maspoli, M.; Fuhrer, J.; Grosjean, M.; Hohmann, R.; Ingold, K.; Knutti, R.; Liniger, M.A.; Raible, C.C.; et al. Climate change in Switzerland: A review of physical, institutional, and political aspects. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 461–481. [Google Scholar] [CrossRef] [Green Version]
- Notaro, S.; Paletto, A.; Raffaelli, R. Economic Impact of Forest Damage in an Alpine Environment. Acta Silv. Lign. Hung 2009, 5, 131–143. [Google Scholar]
- Blennow, K.; Persson, J. Climate change: Motivation for taking measure to adapt. Glob. Environ. Chang. 2009, 19, 100–104. [Google Scholar] [CrossRef]
- Keskitalo, E.C.H. How can forest management adapt to climate change? Possibilities in different forestry systems. Forests 2011, 2, 415–430. [Google Scholar] [CrossRef] [Green Version]
- Sousa-Silva, R.; Verbist, B.; Lomba, Â.; Valent, P.; Suškevičs, M.; Picard, O.; Hoogstra-Klein, M.A.; Cosofret, V.C.; Bouriaud, L.; Ponette, Q.; et al. Adapting forest management to climate change in Europe: Linking perceptions to adaptive responses. For. Policy Econ. 2018, 90, 22–30. [Google Scholar] [CrossRef]
- Deuffic, P.; Sotirov, M.; Arts, B. “Your policy, my rationale”. How individual and structural drivers influence European forest owners’ decisions. Land Use Policy 2018, 79, 1024–1038. [Google Scholar] [CrossRef]
- Blennow, K. Adaptation of forest management to climate change among private individual forest owners in Sweden. For. Policy Econ. 2012, 24, 41–47. [Google Scholar] [CrossRef]
- Subramanian, N.; Bergh, J.; Johansson, U.; Nilsson, U.; Sallnäs, O. Adaptation of forest management regimes in southern Sweden to increased risks associated with climate change. Forests 2015, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Bianchi, A.; Silva, F.B.e.; Marin Herrera, M.A.; Leblois, A.; Lavalle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Chang. 2018, 48, 97–107. [Google Scholar] [CrossRef]
- Holecy, J.; Hanewinkel, M. A forest management risk insurance model and its application to coniferous stands in southwest Germany. For. Policy Econ. 2006, 8, 161–174. [Google Scholar] [CrossRef]
- Kleinschmit, D.; Pülzl, H.; Secco, L.; Sergent, A.; Wallin, I. Orchestration in political processes: Involvement of experts, citizens, and participatory professionals in forest policy making. For. Policy Econ. 2018, 89, 4–15. [Google Scholar] [CrossRef]
- Rasmusen, E. Moral Hazard in Risk-Averse Teams Author. Rand J. Econ. 1987, 18, 428–435. [Google Scholar] [CrossRef]
- Holmstrom, B. Moral Hazard in Teams. Source Bell J. Econ. 1982, 13, 324–340. [Google Scholar] [CrossRef]
- Seidl, R. The Shape of Ecosystem Management to Come: Anticipating Risks and Fostering Resilience. Bioscience 2014, 64, 1159. [Google Scholar] [CrossRef] [Green Version]
- Masiero, M.; Pettenella, D.; Secco, L.; Romagnoli, F. Dealing with extreme events and forest management: Can Universities have a role? The case of the Vaia storm in Italy. In Twenty Years after the Bologna Declaration—Challenges for Higher Forestry Education; SILVA Publications: Dresden, Germany, 2021. [Google Scholar]
- Hsu, A.; Höhne, N.; Kuramochi, T.; Roelfsema, M.; Weinfurter, A.; Xie, Y.; Lütkehermöller, K.; Chan, S.; Corfee-Morlot, J.; Drost, P.; et al. A research roadmap for quantifying non-state and subnational climate mitigation action. Nat. Clim. Chang. 2019, 9, 11–17. [Google Scholar] [CrossRef]
- Jones, L.; Tanner, T. ‘Subjective resilience’: Using perceptions to quantify household resilience to climate extremes and disasters. Reg. Environ. Chang. 2017, 17, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Sotirov, M.; Blum, M.; Storch, S.; Selter, A.; Schraml, U. Do forest policy actors learn through forward-thinking? Conflict and cooperation relating to the past, present and futures of sustainable forest management in Germany. For. Policy Econ. 2017, 85, 256–268. [Google Scholar] [CrossRef]
- Fazey, I.; Carmen, E.; Ross, H.; Rao-Williams, J.; Hodgson, A.; Searle, B.A.; Alwaer, H.; Kenter, J.O.; Knox, K.; Butler, J.R.A.; et al. Social dynamics of community resilience building in the face of climate change: The case of three Scottish communities. Sustain. Sci. 2021, 16, 1731–1747. [Google Scholar] [CrossRef]
- DP Aldrich, M.M. Social Capital and Community Resilience. Am. Behav. Sci. 2015, 59, 254–269. [Google Scholar] [CrossRef]
- Rocha, J.; Lanyon, C.; Peterson, G. Upscaling the resilience assessment through comparative analysis. Glob. Environ. Chang. 2022, 72, 102419. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romagnoli, F.; Masiero, M.; Secco, L. Windstorm Impacts on Forest-Related Socio-Ecological Systems: An Analysis from a Socio-Economic and Institutional Perspective. Forests 2022, 13, 939. https://doi.org/10.3390/f13060939
Romagnoli F, Masiero M, Secco L. Windstorm Impacts on Forest-Related Socio-Ecological Systems: An Analysis from a Socio-Economic and Institutional Perspective. Forests. 2022; 13(6):939. https://doi.org/10.3390/f13060939
Chicago/Turabian StyleRomagnoli, Federica, Mauro Masiero, and Laura Secco. 2022. "Windstorm Impacts on Forest-Related Socio-Ecological Systems: An Analysis from a Socio-Economic and Institutional Perspective" Forests 13, no. 6: 939. https://doi.org/10.3390/f13060939