Shrubs Should Be Valued: The Functional Traits of Lonicera fragrantissima var. lancifolia in a Qinling Huangguan Forest Dynamics Plot, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Habitat Classification
2.3. Measurements of Soil Factors
2.4. Plant Sampling and Trait Measurements
2.5. Statistical Analysis
3. Results
3.1. Variations of 11 Functional Traits with Shrub Sizes and Habitats
3.2. Variability of Functional Traits in Different Diameter Classes
3.3. Correlations among Functional Traits
3.4. CCA Analysis between Functional Traits and Influencing Factors
4. Discussion
4.1. Reasons for Variations of Functional Traits of L. fragrantissima var. lancifolia
4.2. Low Variation in Functional Traits in L. fragrantissima var. lancifolia
4.3. Leaf Economic Spectrum of L. fragrantissima var. lancifolia
4.4. The Response of L. fragrantissima var. lancifolia to Various Influencing Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Reich, P.B.; Ellsworth, D.S.; Walters, M.B.; Vose, J.M.; Gresham, C.; Volin, J.C.; Bowman, W.D. Generality of leaf trait relationships: A test across six biomes. Ecology 1999, 80, 1955–1969. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Both, S.; Riutta, T.; Paine, C.T.; Elias, D.M.; Cruz, R.S.; Jain, A.; Johnson, D.; Kritzler, U.H.; Kuntz, M.; Majalap-Lee, N.; et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytol. 2019, 221, 1853–1865. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Albert, C.H.; Thuiller, W.; Yoccoz, N.G.; Soudant, A.; Boucher, F.; Saccone, P.; Lavorel, S. Intraspecific functional variability: Extent, structure and sources of variation. J. Ecol. 2010, 98, 604–613. [Google Scholar] [CrossRef]
- Fajardo, A.; Siefert, A. Phenological variation of leaf functional traits within species. Oecologia 2016, 180, 951–959. [Google Scholar] [CrossRef]
- Niinemets, U. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
- Koch, G.W.; Sillett, S.C.; Jennings, G.M.; Davis, S.D. The limits to tree height. Nature 2004, 428, 851–854. [Google Scholar] [CrossRef]
- Ryan, M.G.; Phillips, N.; Bond, B.J. The hydraulic limitation hypothesis revisited. Plant Cell Environ. 2006, 29, 367–381. [Google Scholar] [CrossRef]
- Kenzo, T.; Inoue, Y.; Yoshimura, M.; Yamashita, M.; Tanaka-Oda, A.; Ichie, T. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia 2015, 177, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.C.; Winner, W.E. Photosynthetic differences between saplings and adult trees: An integration of field results by meta-analysis. Tree Physiol. 2002, 22, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Cho, S.; Park, J.; Lee, H.; Song, W.; Park, I.K.; Kim, H.S. Size-dependent variation in leaf functional traits and nitrogen allocation trade-offs in Robinia pseudoacacia and Cornus controversa. Tree Physiol. 2019, 39, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Dayrell, R.L.C.; Arruda, A.J.; Pierce, S.; Negreiros, D.; Meyer, P.B.; Lambers, H.; Silveira, F.A. Ontogenetic shifts in plant ecological strategies. Funct. Ecol. 2018, 32, 2730–2741. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Yan, E.R. Size-dependent variations in individual traits and trait scaling relationships within a shade-tolerant evergreen treespecies. Am. J. Bot. 2018, 105, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.C.; Ickes, K. Ontogenetic changes in leaf size in Malaysian rain forest trees. Biotropica 1995, 27, 427–434. [Google Scholar] [CrossRef]
- Shi, Y.; Wen, Z.M.; Gong, S.H.; Song, G.; Zheng, Y.; Ding, M. Trait variations along a climatic gradient in hilly area of Loess plateau. Res. Soil Water Conserv. 2012, 19, 107–111, 116. [Google Scholar]
- Gong, S.; Wen, Z.; Shi, Y. The response of community-weighted mean plant functional traits to environmental gradients in Yanhe river catchment. Acta Ecol. Sin. 2011, 31, 6088–6097. [Google Scholar]
- Venn, S.E.; Green, K.; Pickering, C.M.; Morgan, J.W. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol. 2011, 212, 1491–1499. [Google Scholar] [CrossRef]
- Jager, M.M.; Richardson, S.J.; Bellingham, P.J.; Clearwater, M.J.; Laughlin, D.C. Soil fertility induces coordinated responses of multiple independent functional traits. J. Ecol. 2015, 103, 374–385. [Google Scholar] [CrossRef]
- Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004, 163, 192–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 183, 1222. [Google Scholar] [CrossRef] [PubMed]
- Kühn, P.; Ratier Backes, A.; Römermann, C.; Bruelheide, H.; Haider, S. Contrasting patterns of intraspecific trait variability in native and non-native plant species along an elevational gradient on Tenerife, Canary Islands. Ann. Bot. 2021, 127, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Royer, D.L.; McElwain, J.C.; Adams, J.M.; Wilf, P. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytol. 2008, 179, 808–817. [Google Scholar] [CrossRef]
- Wu, Y. Study on the application of Lonicera fragrantissima var. lancifolia in Gansu Province: A case study of Longnan. Bei Jing Nong Ye Beijing Agric. 2014, 30, 3–4. [Google Scholar]
- Xue, X.Q.; Yan, T.F. Breeding technology and application value development of Lonicera fragrantissima var. lancifolia. Xin Yang Nong Lin Xue Yuan Xue Bao J. Xinyang Coll. Agric. For. 2015, 25, 106–108. [Google Scholar]
- Han, A.X.; Qiu, J.; He, C.M.; Yin, Q.L.; Jia, S.H.; Luo, Y.; Li, C.L.; Hao, Z.Q. Spatial distribution patterns and intraspecific and interspecific associations of the dominant shrub species Lonicera fragrantissima var. lancifolia in Huangguan of Qinling Mountains, China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2022, 8, 1–9. [Google Scholar]
- He, C.M.; Liu, R.Q.; Yang, Z.C.; Yin, Q.L.; Jia, S.H.; Luo, Y.; Hao, Z.Q. Species composition and community structure of warm temperate deciduous broadleaved forests in Huangguan of Qinling Mountains, China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2021, 32, 2737–2744. [Google Scholar]
- Altman, N.; Krzywinski, M. Clustering. Nat. Methods 2017, 14, 545–546. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, Y.; Qian, H.; Mao, Y.; Zhang, C.; Tang, X.; Jin, Y.; Yi, Y. Size-dependent and environment-mediated shifts in leaf traits of a deciduous tree species in a subtropical forest. Ecol. Evol. 2022, 12, e8516. [Google Scholar] [CrossRef]
- Terashima, I.; Hanba, Y.T.; Tazoe, Y.; Vyas, P.; Yano, S. Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 2006, 57, 343–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitao, M.; Lei, T.T.; Koike, T.; Tobita, H.; Maruyama, Y. Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant Cell Environ. 2000, 23, 81–89. [Google Scholar] [CrossRef]
- Garnier, E.; Cordonnier, P.; Guillerm, J.L.; Sonié, L. Specific leaf area and leaf nitrogen concentration in annual and perennial grass species growing in Mediterranean old-fields. Oecologia 1997, 111, 490–498. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S.; Vose, J.M.; Volin, J.C.; Gresham, C.; Bowman, W.D. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups. Oecologia 1998, 114, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, E.T.F.; Lamont, B.B. Leaf specific mass confounds leaf density and thickness. Oecologia 1991, 88, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Paleo, L.; Ravetta, D.A. Relationship between photosynthetic rate, water use and leaf structure in desert annual and perennial forbs differing in their growth. Photosynthetica 2018, 56, 1177–1187. [Google Scholar] [CrossRef]
- Lusk, C.H. Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest. Oecologia 2003, 135, 665. [Google Scholar] [CrossRef]
- Valladares, F.; Laanisto, L.; Niinemets, Ü.; Zavala, M.A. Shedding light on shade: Ecological perspectives of understorey plant life. Plant Ecol. Divers. 2016, 9, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.J.; Thompson, K.; Hodgson, J.G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol. 1999, 143, 155–162. [Google Scholar] [CrossRef]
- Long, W.X.; Zang, R.; Schamp, B.S.; Ding, Y. Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest. Oecologia 2011, 167, 1103–1113. [Google Scholar] [CrossRef]
- Roche, P.; Diaz-Burlinson, N.; Gachet, S. Congruency analysis of species ranking based on leaf traits: Which traits are the more reliable? Plant Ecol. 2004, 174, 37–48. [Google Scholar] [CrossRef]
- Wright, I.J.; Ackerly, D.D.; Bongers, F.; Harms, K.E.; Ibarra-Manriquez, G.; Martinez-Ramos, M.; Mazer, S.J.; Muller-Landau, H.C.; Paz, H.; Pitman, N.C.; et al. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann. Bot. 2007, 99, 1003–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, M.B.; Gerlach, J.P. Intraspecific growth and functional leaf trait responses to natural soil resource gradients for conifer species with contrasting leaf habit. Tree Physiol. 2013, 33, 297–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, Q.F.; Li, Z.A.; Sayer, E.J.; Lambers, H.; Li, Y.; Zou, B.I.; Tang, J.; Heskel, M.; Ding, Y.; Wang, F. Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability. Funct. Ecol. 2019, 33, 503–513. [Google Scholar] [CrossRef] [Green Version]
- Han, W.X.; Fang, J.; Guo, D.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Garnier, E.; Laurent, G.; Bellmann, A.; Debain, S.; Berthelier, P.; Ducout, B.; Roumet, C.; Navas, M.L. Consistency of species ranking based on functional leaf traits. New Phytol. 2001, 152, 69–83. [Google Scholar] [CrossRef]
- Wright, I.J.; Falster, D.S.; Pickup, M.; Westoby, M. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol. Plant. 2006, 127, 445–456. [Google Scholar] [CrossRef]
- Richardson, S.J.; Allen, R.B.; Buxton, R.P.; Easdale, T.A.; Hurst, J.M.; Morse, C.W.; Smissen, R.D.; Peltzer, D.A. Intraspecific relationships among wood density, leaf structural traits and environment in four co-occurring species of Nothofagus in New Zealand. PLoS ONE 2013, 8, e58878. [Google Scholar] [CrossRef] [Green Version]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.; Falster, D.S.; Garnier, E.; Hikosaka, K.; Lamont, B.B.; Lee, W.; Oleksyn, J.; Osada, N.; et al. Assessing the generality of global leaf trait relationships. New Phytol. 2005, 166, 485–496. [Google Scholar] [CrossRef]
- Van Wijk, M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R. Luxury consumption of soil nutrients: A possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? J. Ecol. 2003, 91, 664–676. [Google Scholar] [CrossRef] [Green Version]
- Kichenin, E.; Wardle, D.A.; Peltzer, D.A.; Morse, C.W.; Freschet, G.T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 2013, 27, 1254–1261. [Google Scholar] [CrossRef]
- Chapin, F.S. The mineral-nutrition of wild plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. [Google Scholar] [CrossRef]
- Mediavilla, S.; Escudero, A.; Heilmeier, H. Internal leaf anatomy and photosynthetic resource-use efficiency: Interspecific and intraspecific comparisons. Tree Physiol. 2001, 21, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, S.; Howe, M.T.; Goulding, K.W.T.; Mugglestone, M.A.; Dendooven, L. Carbon and nitrogen dynamics in a grassland soil with varying pH: Effect of pH on the denitrification potential and dynamics of the reduction enzymes. Soil Biol. Biochem. 1998, 30, 359–367. [Google Scholar] [CrossRef]
- Hall, J.M.; Paterson, E.; Killham, K. The effect of elevated CO2 concentration and soil pH on the relationship between plant growth and rhizosphere denitrification potential. Glob. Chang. Biol. 1998, 4, 209–216. [Google Scholar] [CrossRef]
- Reth, S.; Reichstein, M.; Falge, E. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux-A modified model. Plant Soil 2005, 268, 21–33. [Google Scholar] [CrossRef]
Habitat Abbreviations | Name | Quadrat Number | Total Area (ha) | Mean Elevation (m) | Mean Slope (°) | Mean Convexity (m) | Mean Aspect (°) |
---|---|---|---|---|---|---|---|
VA | valley | 39 | 1.56 | 1322.35 ± 2.40 | 10.93 ± 0.51 | −2.08 ± 0.44 | 317.70 ± 6.77 |
LR | low-ridge | 136 | 5.44 | 1360.76 ± 2.43 | 24.78 ± 0.55 | 1.00 ± 0.28 | 45.29 ± 6.51 |
SL | slope | 154 | 6.16 | 1374.92 ± 4.12 | 27.13 ± 0.45 | −1.01 ± 0.17 | 327.39 ± 3.53 |
GU | gully | 145 | 5.80 | 1442.06 ± 3.63 | 36.20 ± 0.40 | −0.89 ± 0.19 | 20.11 ± 1.19 |
HR | high-ridge | 59 | 2.36 | 1503.84 ± 4.38 | 31.69 ± 0.57 | 1.15 ± 0.24 | 344.73 ± 1.94 |
TE | terrace | 92 | 3.68 | 1526.10 ± 2.87 | 26.00 ± 0.56 | 2.40 ± 0.37 | 40.34 ± 8.37 |
Relationship (y–x) | Regression Equation | p | R2 |
---|---|---|---|
LT–DBH | y = −0.0046x + 0.13 | 0.028 | 0.050 |
LDMC–DBH | y = 0.0030x + 0.36 | 0.57 | 0.0035 |
LA–DBH | y = 0.71x + 19 | 0.24 | 0.015 |
LMA–DBH | y = −8.4 × 10−5x + 0.0051 | 0.44 | 0.0062 |
TD–DBH | y = 0.00096x + 0.040 | 0.34 | 0.0095 |
WD–DBH | y = 0.030x + 0.63 | 0.22 | 0.016 |
LNC–DBH | y = 0.36x + 18 | 0.16 | 0.021 |
LCC–DBH | y = 1.8x + 458 | 0.23 | 0.015 |
LPC–DBH | y = 0.026x + 2.7 | 0.74 | 0.0011 |
C:N–DBH | y = −0.31x + 25 | 0.35 | 0.0094 |
N:P–DBH | y = 0.085x + 7.1 | 0.73 | 0.0013 |
Diameter Class | Coefficient of Variation of Functional Traits/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LT | LDMC | LA | LMA | TD | WD | LNC | LCC | LPC | C:N | N:P | |
S | 9.8 | 10.1 | 20.46 | 18.22 | 16.49 | 20.39 | 7.32 | 1.91 | 19.51 | 7.12 | 20.62 |
M | 13.53 | 7.01 | 23.64 | 11.96 | 11.71 | 19.41 | 10.15 | 2.87 | 21.03 | 9.77 | 27.46 |
L | 13.66 | 11.73 | 17.52 | 16.8 | 19.81 | 32.9 | 11.46 | 1.99 | 21.91 | 11.36 | 22.64 |
LT | LDMC | LA | LMA | TD | WD | LNC | LCC | LPC | C:N | |
---|---|---|---|---|---|---|---|---|---|---|
LDMC | −0.12 | |||||||||
LA | 0.14 | −0.17 | ||||||||
LMA | 0.31 ** | 0.76 ** | −0.02 | |||||||
TD | −0.44 ** | 0.82 ** | −0.14 | 0.70 ** | ||||||
WD | 0.05 | 0.26 * | −0.08 | 0.24 * | 0.18 | |||||
LNC | −0.04 | −0.16 | 0.28 ** | −0.18 | −0.16 | −0.33 ** | ||||
LCC | −0.17 | 0.42 ** | 0.03 | 0.32 ** | 0.38 ** | 0.06 | 0.26 * | |||
LPC | −0.16 | −0.05 | 0.12 | −0.18 | −0.07 | −0.07 | 0.05 | 0.04 | ||
C:N | −0.01 | 0.28 ** | −0.28 ** | 0.28 ** | 0.29 ** | 0.39 ** | −0.95 ** | 0.03 | −0.05 | |
N:P | 0.09 | −0.02 | 0.03 | 0.06 | 0.00 | −0.10 | 0.41 ** | 0.09 | −0.87 ** | 0.38 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.; Qiu, J.; Cao, R.; Jia, S.; Hao, Z.; Yin, Q. Shrubs Should Be Valued: The Functional Traits of Lonicera fragrantissima var. lancifolia in a Qinling Huangguan Forest Dynamics Plot, China. Forests 2022, 13, 1147. https://doi.org/10.3390/f13071147
Han A, Qiu J, Cao R, Jia S, Hao Z, Yin Q. Shrubs Should Be Valued: The Functional Traits of Lonicera fragrantissima var. lancifolia in a Qinling Huangguan Forest Dynamics Plot, China. Forests. 2022; 13(7):1147. https://doi.org/10.3390/f13071147
Chicago/Turabian StyleHan, Anxia, Jing Qiu, Ruoming Cao, Shihong Jia, Zhanqing Hao, and Qiulong Yin. 2022. "Shrubs Should Be Valued: The Functional Traits of Lonicera fragrantissima var. lancifolia in a Qinling Huangguan Forest Dynamics Plot, China" Forests 13, no. 7: 1147. https://doi.org/10.3390/f13071147