Development of Variable-Density Yield Models with Site Index Estimation for Korean Pines and Japanese Larch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Modeling Approach and Statistical Analysis
3. Results
3.1. Parameters Estimates for Site Index Models
3.2. Parameters Estimates for the Variable-Density Yield Models
3.3. Predictions and Simulation
4. Discussion
4.1. Assessment of the Site Index Models
4.2. Practicability and Applicability of the Variable-Density Yield Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Son, Y.M.; Kim, S.W.; Lee, S.J.; Kim, J.S. Estimation of stand yield and carbon stock for Robinia pseudoacacia stands in Korea. J. Korean For. Soc. 2014, 103, 264–269, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Son, Y.M.; Kang, J.T.; Hwang, J.S.; Park, H.; Lee, K.S. Assessment and prediction of stand yield in Cryptomeria japonica Stands. J. Korean For. Soc. 2015, 104, 421–426, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Hamilton, G.J. Forest Mensuration Handbook; Forestry Commission Booklet No 39; HMSO: London, UK, 1988; p. 274. [Google Scholar]
- Reineke, L.H. A modification of Bruce’s method of preparing timber yield tables. J. Agric. Res. 1927, 35, 843–856. [Google Scholar]
- Jeon, J.H.; Son, Y.M.; Kang, J.T. Characteristics of growth and development of empirical stand yield model on Pinus densiflora in Central Korea. J. Korean For. Soc. 2017, 106, 267–273, (In Korean with English abstract). [Google Scholar]
- Leary, R.A. Near-normal, empirical, and identity yield tables for estimating stand growth. Can. J. For. Res. 1991, 21, 353–362. [Google Scholar] [CrossRef]
- Vuokila, Y. Functions for variable density yield tables of pine based on temporary sample plots. Commun. Inst. for Fenn. 1965, 60, 1–86. [Google Scholar]
- Bruce, D.; Schumacher, F.X. Forest Mensuration, 1st ed.; McGraw-Hill Co.: New York, NY, USA, 1935; p. 376. [Google Scholar]
- Buckman, R.E.; Bishaw, B.; Hanson, T.J.; Benford, F.A. Growth and Yield of Red Pine in the Lake States; General Technical Reports NC-271; US Department of Agriculture, Forest Service, North Central Research Station: Saint Paul, MN, USA, 2006; p. 114. [Google Scholar]
- Buckman, R.E. Growth and Yield of Red Pine in Minnesota; US Department of Agriculture, Technical Bulletin 1272; US Department of Agriculture: Washington, DC, USA, 1962; pp. 217–227. [Google Scholar]
- Erickson, G. Growth and Yield of a 59-Year-Old Red Pine Plantation (Plot 99) in Northern Minnesota; Research Note NC-369; US Department of Agriculture, Forest Service, North Central Forest Experiment Station: Saint Paul, MN, USA, 1996; p. 369. [Google Scholar]
- Edwards, P.N.; Christie, J.M. Yield Models for Forest Management; Forestry Commission Booklet 48; Forestry Commission: Edinburgh, UK, 1981; p. 32. [Google Scholar]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: New York, NY, USA, 2012; p. 457. [Google Scholar]
- Sullivan, A.D.; Clutter, J.L. A simultaneous growth and yield model for loblolly pine. For. Sci. 1972, 18, 76–86. [Google Scholar]
- Knoebel, B.R.; Burkhart, H.E.; Beck, D.E. A growth and yield model for thinned stands of yellow-poplar. For. Sci. 1986, 32 (Suppl. 2), a0001–z0002. [Google Scholar]
- Clutter, J.L. Compatible growth and yield models for loblolly pine. For. Sci. 1963, 9, 354–371. [Google Scholar]
- Bennett, F.A. Variable-Density Yield Tables for Managed Stands of Natural Slash Pine; US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1970; Volume 141. [Google Scholar]
- Bennett, F.A.; McGee, C.E.; Clutter, J.L. Yield of Old-Field Slash Pine Plantation; US Department of Agriculture, Forest Service, Station Paper No. 107; US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1959; pp. 1–19. [Google Scholar]
- Graney, D.L.; Murphy, P.A. Growth and Yield Comparisons for Upland Oak Stands in the Boston Mountains of Arkansas; USDA Forest Service, General Technical Report SE-70; USDA Forest Service: Washington, DC, USA, 1990; Volume 1, pp. 229–239. [Google Scholar]
- Fowler, W.P. Variable-Density Yield Tables for Emory Oak of Southeastern Arizona. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 1990; p. 197. [Google Scholar]
- Fowler, W.P.; Ffolliott, P.F. A Growth and Yield Model of Emory Oak: Applications on Watersheds in Southwestern United States; US Department of Agriculture, Forest Service, General Technical Report, RM; US Department of Agriculture, Forest Service: Washington, DC, USA, 1994; pp. 347–350. [Google Scholar]
- Shortt, J.S.; Burkhart, H.E. A comparison of loblolly pine plantation growth and yield models for inventory updating. South. J. Appl. For. 1996, 20, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Coble, D.W. A new whole-stand model for unmanaged loblolly and slash pine plantations in east Texas. South. J. Appl. For. 2009, 33, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Lauer, D.K.; Kush, J.S. Variable Density Stand Level Growth and Yield Model for Even-Aged Natural Longleaf Pine; Special Report No. 10; Auburn University: Auburn, AL, USA, 2011. [Google Scholar]
- Gallagher, D.A. Growth and Yield Modeling of Loblolly Pine in the Western Gulf Region of the US through Age 15. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2016; p. 198. [Google Scholar]
- Kim, D.H.; Kim, E.G.; Park, S.B.; Kim, H.G.; Kim, H.H. Analysis of the effect of climate change on the site index of Larix leptolepis. J. Korean Soc. For. Sci. 2012, 1, 53–61, (In Korean with English abstract). [Google Scholar]
- Kim, D.H.; Kim, H.H.; Kim, E.G.; Seok, H.D. Analysis of the effect of climate change on site index of Korean white pine. For. Sci. Technol. 2014, 10, 73–79. [Google Scholar] [CrossRef]
- Lee, Y.S.; Sung, J.H.; Chun, J.H.; Shin, M.Y. Development of site index equations and assessment of productive areas based on environmental factors for major coniferous tree species. J. Korean For. Soc. 2012, 101, 395–404, (In Korean with English abstract). [Google Scholar]
- Park, N.C.; Lee, K.S.; Park, M.S.; Shin, H.C.; Jun, K.S.; Jung, S.Y. Relation of the physico-chemical properties of forest soil to site indices of Larix leptolepis stands. J. Korean For. Soc. 2008, 97, 589–596, (In Korean with English abstract). [Google Scholar]
- Sin, M.Y.; Jung, I.B.; Koo, K.S.; Won, H.G. Development of a site index equation for Pinus koraiensis based on environmental factors and estimation of productive areas for reforestation. Korean J. Agric. For. Meteorol. 2006, 8, 97–106, (In Korean with English abstract). [Google Scholar]
- Kim, H.J.; Kim, H.S.; Park, S.I.; Park, H.J.; Lee, S.H. Development of site index curves and height-DBH growth model of Larix kaempferi for Deogyu mountain in South Korea. For. Sci. Technol. 2018, 14, 145–150, (In Korean with English abstract). [Google Scholar]
- Lee, D.; Seo, Y.; Park, G.; Choi, J. Estimation of site index for Larix kaempferi and Pinus koraiensis in Gangwon and North Gyeongsang Provinces. J. For. Environ. Sci. 2015, 31, 202–206, (In Korean with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Beuker, E.; Viherä-Aarnio, A.; Hynynen, J. Site index models with density effect for hybrid aspen (Populus tremula L.× P. tremuloides Michx.) plantations in southern Finland. For. Ecol. Manag. 2021, 480, 118669. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, S.H. Developing dominant tree height growth curve and site index curves for Pinus densiflora and Chamaecyparis obtusa grown in Jeolla-do. J. Korean Soc. For. Sci. 2019, 108, 364–371, (In Korean with English abstract). [Google Scholar]
- Kim, D.C.; Yoo, J.W. A study on the growth and yield of Cryptomeria, Japanese Cypress stand. Res. Rep. For. Inst. Seoul, Korea 1977, 24, 5–30. (In Korean) [Google Scholar]
- Kim, D.C. A study on the stand growth and yield of Korean red pine forest in Kwanwon district. Agric. Res. 1963, 6, 71–90. [Google Scholar]
- Korea Forest Research Institute. Volume, Weight Table, Yield Table; Korea Forest Service: Seoul, Korea, 2012; p. 261. (In Korean) [Google Scholar]
- National Institute of Forest Science. Empirical Stand Yield Table; National Institute of Forest Science: Seoul, Korea, 2016; p. 64. (In Korean) [Google Scholar]
- Yoon, J.H.; Bae, E.J.; Jeon, H.G.; Son, Y.M.; Lee, J.H. Site index estimation of Pinus densiflora stands in Mt. Yeonhwa, Gyeongnam-do. J. Agri. Life Sci. 2021, 55, 55–59, (In Korean with English abstract). [Google Scholar] [CrossRef]
- MacKinney, A.L.; Schumacher, F.X.; Chaiken, L.F. Construction of yield tables for nonnormal loblolly pine stands. J. Agric. Res. 1937, 54, 531–545. [Google Scholar]
- MacKinney, A.L.; Chaiken, L.E. Volume, Yield, and Growth of Loblolly Pine in the Mid-Atlantic Coastal Region; Technical Note 33; Appalachian Forest Experiment Station: Asheville, NC, USA, 1939; p. 30. [Google Scholar]
- Burkhart, H.E.; Avery, T.E.; Bullock, B.P. Forest Measurements, 6th ed.; Waveland Press: Long Grove, IL, USA, 2018; p. 434. [Google Scholar]
- Lee, D.; Choi, J. Evaluating maximum stand density and size–density relationships based on the Competition Density Rule in Korean pines and Japanese larch. For. Ecol. Manag. 2019, 446, 204–213. [Google Scholar] [CrossRef]
- Lee, D.; Choi, J. Stocking diagrams for silvicultural guideline in Korean Pines and Japanese Larch. Forests 2020, 11, 833. [Google Scholar] [CrossRef]
- Lee, D.; Choi, J. Stand structure and sapling growth characteristics of Korean red pine stands regenerated by the seed tree method. J. Korean Soc. For. Sci. 2021, 110, 678–688, (In Korean with English abstract). [Google Scholar]
- Kim, Y.H.; Kim, T.W.; Won, H.K.; Lee, K.H.; Shin, M.Y. Estimation of timber production by thinning scenarios using a forest stand yield model. J. Korean Soc. For. Sci. 2012, 101, 592–598, (In Korean with English abstract). [Google Scholar]
- Seo, J.H.; Lee, W.K.; Son, Y.W.; Ham, B.Y. Dynamic growth model for Pinus densiflora stands in Anmyun-Island. J. Korean For. Soc. 2001, 90, 725–733, (In Korean with English abstract). [Google Scholar]
- Seo, J.H.; Son, Y.M.; Lee, K.H.; Lee, W.K.; Son, Y.H. The estimation of stand biomass and net carbon removals using dynamic stand growth model. J. Kor. For. Energy 2005, 24, 37–45, (In Korean with English abstract). [Google Scholar]
- Yoon, J.H.; Bae, E.J.; Son, Y.M. Growth curve estimation of stand volume by major species and forest type on actual forest in Korea. J. Korean Soc. For. Sci. 2021, 110, 648–657, (In Korean with English abstract). [Google Scholar]
- Korea Forest Research Institute. Commercial Tree Species 1 Korean Red Pine (Pinus densiflora Siebold & Zucc.); Korea Forest Research Institute: Seoul, Korea, 2012; p. 250. (In Korean) [Google Scholar]
- Korea Forest Research Institute. Commercial Tree Species 3 Korean white Pine (Pinus koraiensis Siebold & Zucc.); Korea Forest Research Institute: Seoul, Korea, 2012; p. 168. (In Korean) [Google Scholar]
- Korea Forest Research Institute. Commercial Tree Species 4 Japanese Larch (Larix kaempferi (Lamb.) Carriere); Korea Forest Research Institute: Seoul, Korea, 2012; p. 180. (In Korean) [Google Scholar]
- Korea Forest Service. The Statistical Yearbook of Forestry 2021; Korea Forest Service: Daejeon, Korea, 2021; p. 463. (In Korean) [Google Scholar]
- Lee, D.S. Studies on Growth Models for Larix kaempferi, Pinus koraiensis, and Pinus densiflora in Korea. Master’s Thesis, Kangwon National University, Chuncheon, Korea, 2015; p. 160. [Google Scholar]
- Lee, D.S. Integrated Growth and Yield Models of Pinus densiflora, Pinus koraiensis, and Larix kaempferi Stands in Korea. Ph.D. Thesis, Kangwon National University, Chuncheon, Korea, 2018; p. 155. [Google Scholar]
- Lee, D.; Seo, Y.; Choi, J. Estimation and validation of stem volume equations for Pinus densiflora, Pinus koraiensis, and Larix kaempferi in South Korea. For. Sci. Technol. 2017, 13, 77–82. [Google Scholar]
- Lee, D.S.; Choi, J.K.; Seo, Y.W.; Kim, E.G. Nonlinear height-DBH growth models for Larix kaempferi in Gangwon and North Gyeongsang province. J. For. Environ. Sci. 2014, 30, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Jeon, B.H.; Lee, S.H.; Lee, Y.J.; Kim, H.; Kang, H.M. Estimation of site index and stem volume equations for Larix leptolepis stand in Jinan, Chonbuk. J. Korean Soc. For. Sci. 2007, 96, 40–47, (In Korean with English abstract). [Google Scholar]
- Lee, S.T.; Park, J.H.; Chung, S.H.; Kim, H.H. The estimation of the potential yield by site index for Pinus densiflora forests. J. Agric. Life Sci. 2021, 55, 31–38. [Google Scholar] [CrossRef]
- Pyo, J. Developing the site index equation using a generalized algebraic difference approach for Pinus densiflora in central region, Korea. For. Sci. Technol. 2017, 13, 87–91, (In Korean with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Huuskonen, S.; Miina, J. Stand-level growth models for young Scots pine stands in Finland. For. Ecol. Manag. 2007, 241, 49–61. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Mehtätalo, L.; Lappi, J. Biometry for Forestry and Environmental Data: With Examples in R, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Ministry of Government Legislation. Enforcement Rules of the Act on Creation and Management of Forest Resources (publisher: Korean Ministry of Government Legislation. Location: Sejong, Republic of Korea), Appendix Table 3. 2019. Available online: http://www.law.go.kr (accessed on 28 April 2022).
- Korea Forest Research Institute. Sustainable Forest Resources Management Standard Manuals; Korea Forest Research Institute: Seoul, Korea, 2005; p. 289. (In Korean) [Google Scholar]
- Pyo, J.K.; Lee, Y.J.; Son, Y.M.; Lee, K.H.; Moon, H.S. Estimation of site index equation for Pinus densiflora at Mt. Osu region using Schnute growth function. J. Agric. Life Sci. 2009, 43, 9–14, (In Korean with English abstract). [Google Scholar]
- Korea Forestry Promotion Institute. Forest Resources of Korea in 2011–2015; Korea Forestry Promotion Institute: Seoul, Korea, 2017; p. 221. (In Korean) [Google Scholar]
- National Institute of Forest Science. Forest Resources of Korea in 2020; National Institute of Forest Science: Seoul, Korea, 2021; p. 244. (In Korean) [Google Scholar]
- Lee, D.; Siipilehto, J.; Hynynen, J. Models for diameter distribution and tree height in hybrid aspen plantations in southern Finland. Silva Fenn. 2021, 55, 10612. [Google Scholar] [CrossRef]
Species | Variables | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|
Korean red pine (n = 288) | Stand age (year) | 50.1 | 19.1 | 9 | 108 |
Dominant height (m) | 17.5 | 4.4 | 3.9 | 26.8 | |
Korean white pine (n = 376) | Stand age (year) | 44.4 | 16.5 | 15 | 86 |
Dominant height (m) | 19.1 | 4.7 | 6.2 | 29.2 | |
Japanese larch (n = 394) | Stand age (year) | 41.5 | 12.4 | 20 | 66 |
Dominant height (m) | 24.8 | 4.6 | 10.6 | 34.4 |
Species | Variables | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|
Korean red pine (n = 449) | Age (year) | 49.6 | 17.8 | 15 | 108 |
Basal area (m2 ha–1) | 33.3 | 12.8 | 3.0 | 74.2 | |
Stem number (trees ha–1) | 678 | 354 | 156 | 1750 | |
Relative density | 0.62 | 0.23 | 0.28 | 1.24 | |
Volume (m3 ha–1) | 253.1 | 114.8 | 20.9 | 622.5 | |
Site index (m) | 16.6 | 2.4 | 10.7 | 22.6 | |
Korean white pine (n = 603) | Age (year) | 43.2 | 16.2 | 15 | 86 |
Basal area (m2 ha–1) | 34.3 | 11.5 | 7.9 | 69.4 | |
Stem number (trees ha–1) | 660 | 349 | 164 | 1793 | |
Relative density | 0.60 | 0.19 | 0.23 | 1.23 | |
Volume (m3 ha–1) | 303.9 | 135.9 | 40.5 | 804.8 | |
Site index (m) | 19.0 | 2.0 | 14.1 | 25.6 | |
Japanese larch (n = 539) | Age (year) | 40.2 | 12.7 | 19 | 66 |
Basal area (m2 ha–1) | 28.7 | 9.4 | 8.6 | 61.9 | |
Stem number (trees ha–1) | 659 | 326 | 170 | 1714 | |
Relative density | 0.59 | 0.18 | 0.23 | 1.23 | |
Volume (m3 ha–1) | 313.5 | 122.6 | 78.1 | 717.8 | |
Site index (m) | 25.2 | 2.9 | 13.4 | 31.3 |
Species | Fixed Effects | Random Effect | Residual | Fit Statistics | |||||
---|---|---|---|---|---|---|---|---|---|
a | b | c | std(u) | R2 | RMSE | MAE | AIC | ||
Korean red pine (n = 288) | 21.4977 (1.0871) | 0.0547 (0.0109) | 1.9108 (0.4194) | 2.9209 | 1.3985 | 0.8991 | 1.2856 | 0.9989 | 1153.1 |
Korean white pine (n = 376) | 28.2941 (1.2944) | 0.0370 (0.0050) | 1.5956 (0.1909) | 2.2389 | 0.9129 | 0.9651 | 0.8485 | 0.6464 | 1170.0 |
Japanese larch (n = 394) | 30.6312 (1.5562) | 0.0510 (0.0127) | 1.3682 (0.3781) | 2.9058 | 1.6269 | 0.8718 | 1.5309 | 1.2257 | 1649.7 |
Species | Model Type | Independent Variables | Fixed Effects | Random Effect | Residual | Fit Statistics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Std(u) | R2 | RMSE | MAE | AIC | ||||||||||
Korean red pine (n = 449) | Type 1 | f(AGE,SI,BA) | 1.4116 (0.0516) | −3.3288 (0.8863) | 0.0468 (0.0013) | 0.9620 (0.0085) | 0.1307 | 0.0420 | 0.9948 | 8.1700 | 6.1072 | −1335.9 | ||
Type 2 | f(AGE,SI,TPH) | 1.3380 (0.1515) | −51.0375 (1.7093) | 0.0954 (0.0041) | 0.5781 (0.0183) | 0.1808 | 0.1303 | 0.9186 | 32.0483 | 22.9832 | −398.3 | |||
Type 3 | f(AGE,SI,RD) | 5.3402 (0.0543) | −32.5777 (1.0612) | 0.0762 (0.0025) | 0.7961 (0.0142) | 0.1135 | 0.0828 | 0.9666 | 20.8532 | 14.6961 | −803.5 | |||
Korean white pine (n = 603) | Type 1 | f(AGE,SI,BA) | 1.7964 (0.0295) | −18.6848 (0.4199) | 0.0465 (0.0008) | 0.9818 (0.0053) | 0.0493 | 0.0275 | 0.9975 | 6.7676 | 5.0265 | −2401.7 | ||
Type 2 | f(AGE,SI,TPH) | 2.2201 (0.1088) | −69.1038 (1.5178) | 0.0602 (0.0030) | 0.6395 (0.0139) | 0.2015 | 0.0989 | 0.9584 | 27.1438 | 21.0192 | −853.7 | |||
Type 3 | f(AGE,SI,RD) | 6.1897 (0.0352) | −43.4119 (0.7973) | 0.0545 (0.0016) | 0.8592 (0.0094) | 0.1109 | 0.0543 | 0.9878 | 14.9156 | 11.3041 | −1572.5 | |||
Japanese larch (n = 539) | Type 1 | f(AGE,SI,BA) | 1.9553 (0.0337) | −6.8463 (0.4054) | 0.0250 (0.0009) | 0.9925 (0.0063) | 0.0345 | 0.0344 | 0.9949 | 8.6723 | 6.5573 | −1950.9 | ||
Type 2 | f(AGE,SI,TPH) | 0.2382 (0.1304) | −40.5754 (1.3842) | 0.0832 (0.0027) | 0.7020 (0.0140) | 0.1547 | 0.0972 | 0.9194 | 33.1711 | 23.0995 | −800.1 | |||
Type 3 | f(AGE,SI,RD) | 5.5368 (0.0370) | −19.8010 (0.6119) | 0.0484 (0.0012) | 0.9174 (0.0082) | 0.0628 | 0.0475 | 0.9839 | 15.2642 | 10.5484 | −1582.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Choi, J. Development of Variable-Density Yield Models with Site Index Estimation for Korean Pines and Japanese Larch. Forests 2022, 13, 1150. https://doi.org/10.3390/f13071150
Lee D, Choi J. Development of Variable-Density Yield Models with Site Index Estimation for Korean Pines and Japanese Larch. Forests. 2022; 13(7):1150. https://doi.org/10.3390/f13071150
Chicago/Turabian StyleLee, Daesung, and Jungkee Choi. 2022. "Development of Variable-Density Yield Models with Site Index Estimation for Korean Pines and Japanese Larch" Forests 13, no. 7: 1150. https://doi.org/10.3390/f13071150
APA StyleLee, D., & Choi, J. (2022). Development of Variable-Density Yield Models with Site Index Estimation for Korean Pines and Japanese Larch. Forests, 13(7), 1150. https://doi.org/10.3390/f13071150