Electrical Responses of Pinus halepensis Mill. as an Indicator of Wildfire Risk in Mediterranean Forests by Complementing Live Fuel Moisture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
- In a first stage, the measurements were carried out during the main wildfire season (24 weeks in the hottest and driest months, from end of spring to beginning of autumn) in a representative area of the Mediterranean basin.
- The results of this first phase were complemented with a second survey, in which the values of the electrical signals collected in previous three years were retrospectively analysed.
2.2. Selection of Sample Stand
2.3. Selection of Sample Trees
2.4. Measurement Procedures
2.4.1. Measurement of Electrical Signal
- (a)
- The electrode used in the tree, made of stainless steel, was inserted directly into the trunk at 1.5 m above the ground at a depth sufficient to ensure contact with the phloem tissue. A screw shape was chosen due to its greater ease of insertion and removal from the trees, causing only a minor wound. In addition, thanks to the screw spiral, these electrodes have a larger contact surface with the vegetative tissue compared to smooth cylindrical electrodes. So, these electrodes were inserted into the trunk ensuring contact with the phloem tissue, by inserting them with a torque wrench, which allowed us to detect the change in tissue hardness. This last action we consider fundamental, since electrical signals are more easily transmitted throughout this tissue, given its lower resistance to electrical flow, compared to other plant tissues [82].
- (b)
- The second type was a non-polarized platinum electrode [105], which was used as ground reference. These electrodes were buried in the mineral soil at a depth of between 20–25 cm once the top layer of topsoil had been removed. It should be noted that given the natural conditions in which the experiments were carried out, we could not install the reference electrode in a greater depth due to the soil hardness and the presence of rocks.
2.4.2. Measurement of Moisture Content
- Field work:The following samples were taken from the first live and healthy branch from the bottom of the tree-crown:Fraction 1 (BB): samples were taken from the base of the branch on a weekly frequency, with diameters of 20–30 mm and 5–10 cm length, without needles, in order to compare it with the non-destructive moisture content methodology.Fraction 2 (BM): samples were taken from the middle of the branch on a monthly frequency, with diameters of 10–20 mm and 5–10 cm length, without needles.Fraction 3 (LF): samples were taken from end part of the branch on a monthly frequency, with diameters <10 mm, with twigs and needles, without cones.Samples were taken always on Saturdays between 12:05 and 2:00 pm CEST. Each sample was placed in a hermetically sealed plastic container, identified with the reference data and transported immediately to the laboratory.
- Laboratory work:The samples were weighed on a precision balance in the green state. After being dried in an oven at 105 °C for 24 h until constant weight was obtained, they were weighed in anhydrous state. The moisture content (MC%) is calculated with the formula:
2.5. Meteorological Time-Series
2.6. Wildfire Risk Assessment
3. Results and Discussions
3.1. Comparison between Moisture Content in Different Live Branch Fractions
3.2. Seasonal Variability of Live Fuel Moisture Content
3.3. Seasonal Variability of Electrical Signals in the Trees
3.4. Relationship between Life Fuel Moisture and Electrical Signals
3.5. Relationship between Electric Signals and Wildfire Risk
- (a)
- Assessment for the 24 weeks study in year 2021
- (b)
- Assessment for three years survey (2018–2021)
4. Conclusions
- No significant differences have been observed between the moisture content of the different fractions of the branches of Pinus halepensis (base of the branch, half of the branch and twigs and needles as live fuel), even in times of drought with hydric stress and very high temperatures.
- Live fuel moisture content has not shown significant variations under the influence of extreme fire risk factors in the summer time. For this reason, it should be complemented by other reliable variables for fire risk assessment and monitoring in MTEs dominated by Pinus halepensis. Thus, other plant physiological traits have to be integrated in the assessment and modelling of the high risk of wildfires in Pinus halepensis stands in times of water stress and high temperatures, related both to hydraulic dynamics (osmotic potential, sap flow) and dead fuel (wilting and needle senescence, dead fuel presence and evolution). However, as LFMC% responds better to fire risk conditions in some shrub species in MTEs, we propose to analyse in-depth the relationship between LFMC% and electrical responses in these shrubs.
- The variations registered in the electrical signal generated in Pinus halepensis show oscillations with significant variations, which are strongly correlated with the periods of extremely favourable meteorological conditions for wildfires (Spearman rho of 0.78).
- The voltages measured show ranges that correspond with great accuracy to the official fire risk levels based on the FWI system.
- The electrical signals, specifically voltage, are a result of the physiological response of the Mediterranean pine trees to the abiotic stress of drought in summer. It is an easy-to-measure electrical parameter as well as a very reliable indicator with a high correlation with wildfire risk.
- Electrical responses could add more knowledge about the phenological state of the trees in dependence on stress climatic conditions, allowing for the integration of these variables in the preventive wildfire management. Although for this we also consider that a more in-depth investigation is necessary.
- Finally, the results obtained and the knowledge gained allows for the exploration of new possibilities for the development of wireless terrestrial sensors based on voltage measurement, which allow online monitoring of the risk of wildfire ignition and propagation with potentially maximum spatial and temporal resolution.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naveh, Z. The evolutionary significance of fire in the Mediterranean region. Vegetatio 1975, 29, 199–208. [Google Scholar] [CrossRef]
- Bodí, M.B.; Muñoz-Santa, I.; Armero, C.; Doerr, S.H.; Mataix-Solera, J.; Cerdà, A. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena 2013, 108, 14–25. [Google Scholar] [CrossRef]
- Pausas, G.J.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A.; et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the increased frequency of Mediterranean drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
- Rundel, P.W. Landscape disturbance in Mediterranean-type ecosystems: An overview. In Landscape Disturbance and Biodiversity in Mediterranean-Type Ecosystems; Springer: Berlin/Heidelberg, Germany, 1998; pp. 3–22. [Google Scholar] [CrossRef]
- Kelly, A.E.; Goulden, M.L. A montane Mediterranean climate supports year-round photosynthesis and high forest biomass. Tree Physiol. 2016, 36, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gómez, M. Regímenes de incendios y respuestas de la vegetación en dos regiones de clima mediterráneo. Rev. Chil. De Hist. Nat. 2004, 77, 455–464. [Google Scholar]
- Ramírez-Valiente, J.A.; del Blanco, L.S.; Alía, R.; Robledo-Arnuncio, J.J.; Climent, J. Adaptation of Mediterranean forest species to climate: Lessons from common garden experiments. J. Ecol. 2022, 110, 1022–1042. [Google Scholar] [CrossRef]
- Vasilakos, C.; Kalabokidis, K.; Hatzopoulos, J.; Kallos, G.; Matsinos, Y. Integrating new methods and tools in fire danger rating. Int. J. Wildland Fire 2007, 16, 306–316. [Google Scholar]
- Boer, M.M.; Nolan, R.H.; De Dios, V.R.; Clarke, H.; Price, O.F.; Bradstock, R.A. Changing weather extremes call for early warning of potential for catastrophic fire. Earth’s Future 2017, 5, 1196–1202. [Google Scholar] [CrossRef]
- Dahanayake, K.C.; Chow, C.L. Moisture content, ignitability, and fire risk of vegetation in vertical greenery systems. Fire Ecol. 2018, 14, 125–142. [Google Scholar] [CrossRef]
- Capps, S.B.; Zhuang, W.; Liu, R.; Rolinski, T.; Qu, X. Modelling chamise fuel moisture content across California: A machine learning approach. Int. J. Wildland Fire 2021, 31, 136–148. [Google Scholar] [CrossRef]
- Castro, F.; Tudela, A.; Sebastià, M.T. Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agric. For. Meteorol. 2003, 116, 49–59. [Google Scholar] [CrossRef]
- Dennison, P.E.; Moritz, M.A. Critical live fuel moisture in chaparral ecosystems: A threshold for fire activity and its relationship to antecedent precipitation. Int. J. Wildland Fire 2009, 18, 1021–1027. [Google Scholar] [CrossRef]
- Dimitrakopoulos, P.A.; Bemmerzouk, A.M. Predicting live herbaceous moisture content from a seasonal drought index. Int. J. Biometeorol. 2003, 47, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Holden, A.Z.; Jolly, W.M. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. For. Ecol. Manag. 2011, 262, 2133–2141. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; de Dios, V.R.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef] [Green Version]
- Pellizzaro, G.; Duce, P.; Ventura, A.; Zara, P. Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin. Int. J. Wildland Fire 2007, 16, 633–641. [Google Scholar] [CrossRef]
- Pivovaroff, A.L.; Emery, N.; Sharifi, M.R.; Witter, M.; Keeley, J.E.; Rundel, P.W. The effect of ecophysiological traits on live fuel moisture content. Fire 2019, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Ruffault, J.; Martin-StPaul, N.; Pimont, F.; Dupuy, J.-L. How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric. For. Meteorol. 2018, 262, 391–401. [Google Scholar]
- Chou, D.M.; Suarez, M.J. A Solar Radiation Parameterization (CLIRAD-SW) Developed at Goddard Climate and Radiation Branch for Atmospheric Studies. NASA Technical Memorandum. U.S. Patent NASA/TM-1999-104606 15, 1 June 1999. [Google Scholar]
- Chuvieco, E.; Aguado, I.; Dimitrakopoulos, A.P. Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment. Can. J. For. Res. 2004, 34, 2284–2293. [Google Scholar] [CrossRef]
- Danson, F.; Bowyer, P. Estimating live fuel moisture content from remotely sensed reflectance. Remote Sensing of Environment 2004, 92, 309–321. [Google Scholar] [CrossRef]
- Jurdao, S.; Chuvieco, E.; Arevalillo, J.M. Modelling fire ignition probability from satellite estimates of live fuel moisture content. Fire Ecol. 2012, 8, 77–97. [Google Scholar] [CrossRef]
- Myoung, B.; Kim, S.H.; Nghiem, S.V.; Jia, S.; Whitney, K.; Kafatos, M.C. Estimating live fuel moisture from MODIS satellite data for wildfire danger assessment in Southern California USA. Remote Sens. 2018, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Peterson, S.H.; Roberts, D.A.; Dennison, P.E. Mapping live fuel moisture with MODIS data: A multiple regression approach. Remote Sens. Environ. 2008, 112, 4272–4284. [Google Scholar] [CrossRef]
- Qi, Y.; Dennison, P.E.; Spencer, J.; Riaño, D. Monitoring live fuel moisture using soil moisture and remote sensing proxies. Fire Ecol. 2012, 8, 71–87. [Google Scholar] [CrossRef]
- Rao, K.; Williams, A.P.; Flefil, J.F.; Konings, A.G. SAR-enhanced mapping of live fuel moisture content. Remote Sens. Environ. 2020, 245, 111797. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R., Jr.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Yebra, M.; Quan, X.; Riaño, D.; Larraondo, P.R.; van Dijk, A.I.; Cary, G.J. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 2018, 212, 260–272. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.W.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- McCandless, T.C.; Kosovic, B.; Petzke, W. Enhancing wildfire spread modelling by building a gridded fuel moisture content product with machine learning. Mach. Learn. Sci. Technol. 2020, 1, 035010. [Google Scholar] [CrossRef]
- Michael, Y.; Helman, D.; Glickman, O.; Gabay, D.; Brenner, S.; Lensky, I.M. Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Sci. Total Environ. 2021, 764, 142844. [Google Scholar] [CrossRef] [PubMed]
- Corona, P.; Ascoli, D.; Barbati, A.; Bovio, G.; Colangelo, G.; Elia, M.; Garfi, V.; Iovino, F.; Lafortezza, R.; Leone, V.; et al. Integrated forest management to prevent wildfires under Mediterranean environments. Ann. Silvic. Res. 2015, 39, 1–22. [Google Scholar] [CrossRef]
- Schultz, C.A.; Thompson, M.P.; McCaffrey, S.M. Forest Service fire management and the elusiveness of change. Fire Ecol. 2019, 15, 13. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Bemmerzouk, A.M.; Mitsopoulos, I.D. Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorol. Appl. 2011, 18, 83–93. [Google Scholar] [CrossRef]
- Wang, X.; Wotton, B.M.; Cantin, A.S.; Parisien, M.-A.; Anderson, K.; Moore, B.; Flannigan, M.D. cffdrs: An R package for the Canadian forest fire danger rating system. Ecol. Processes 2017, 6, 5. [Google Scholar] [CrossRef]
- Ye, T.; Wang, Y.; Guo, Z.; Li, Y. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China. PLoS ONE 2017, 12, e0172110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chas-Amil, M.L.; Touza, J.M.; Prestemon, J.P.; McClean, C.J. Natural and social factors influencing forest fire occurrence at a local spatial scale. In Modelling Fire Behavior and Risk; Donatella, S., Valentina, B., Michele, S., Costatino, S., Eds.; Global Fire Monitoring Center: Freiburg, Germany, 2012; pp. 181–186. [Google Scholar]
- Romps, D.M.; Seeley, J.T.; Vollaro, D.; Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 2014, 346, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Krause, A.; Kloster, S.; Wilkenskjeld, S.; Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosciences 2014, 119, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Quilez, R.; Merida, E. Manual de Seguridad en Operaciones de Extinción de Incendios Forestales; Pau Costa Foundation: Barcelona, Spain, 2015; 333p, ISBN 978-84-617-1323-3. [Google Scholar]
- Karavani, A.; Boer, M.M.; Baudena, M.; Colinas, C.; Díaz-Sierra, R.; Pemán, J.; de Luis, M.; Enríquez-de-Salamanca, Á.; Resco de Dios, V. Fire-induced deforestation in drought-prone Mediterranean forests: Drivers and unknowns from leaves to communities. Ecol. Monogr. 2018, 88, 141–169. [Google Scholar] [CrossRef] [Green Version]
- Nolan, R.H.; Blackman, C.J.; de Dios, V.R.; Choat, B.; Medlyn, B.E.; Li, X.; Bradstock, R.A.; Boer, M.M. Linking forest flammability and plant vulnerability to drought. Forests 2020, 11, 779. [Google Scholar] [CrossRef]
- Pellizzaro, G.; Cesaraccio, C.; Duce, P.; Ventura, A.; Zara, P. Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int. J. Wildland Fire 2007, 16, 232–241. [Google Scholar] [CrossRef]
- Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 2017, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Boer, M.M.; De Dios, V.R.; Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Reddy, P.J.; Sharples, J.J.; Lewis, S.C.; Perkins-Kirkpatrick, S.E. Modulating influence of drought on the synergy between heatwaves and dead fine fuel moisture content of bushfire fuels in the Southeast Australian region. Weather Clim. Extrem. 2021, 31, 100300. [Google Scholar] [CrossRef]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C. A review of the relationships between drought and forest fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef]
- Monroe, D.C.; Blumenfeld, R.S.; Keator, D.B.; Solodkin, A.; Small, S.L. Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. For. Ecol. Manag. 2004, 203, 251–259. [Google Scholar] [CrossRef]
- Varol, T.; Ertuğrul, M.; Özel, H.B. Drought-Forest Fire Relationship. In Mediterranean Identities—Environment, Society, Culture; IntechOpen: London, UK, 2017; pp. 283–303. [Google Scholar] [CrossRef] [Green Version]
- Quílez, R.; Valbuena, L.; Vendrell, J.; Uytewaal, K.; Ramirez, J. Establishing Propagation Nodes as a Basis for Preventing Large Wildfires: The Proposed Methodology. Front. For. Glob. Chang. 2020, 3, 137. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Nesterov, V. Forest Fires and Methods of Fire Risk Determination; Goslesbumizdat: Moscow, Russian, 1949. [Google Scholar]
- Käse, H. Ein Vorschlag für eine Methode zur Bestimmung und Vorhersage der Waldbrandgefährdung mit Hilfe komplexer Kennziffern; Akademie-Verlag: Berlin, Germany, 1969. [Google Scholar]
- Reinhard, M.; Rebetez, M.; Schlaepfer, R. Recent climate change: Rethinking drought in the context of forest fire research in Ticino, South of Switzerland. Theor. Appl. Climatol. 2005, 82, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Sancho, J.L.; Moraga, R.Q. Análisis de la humedad del combustible vivo en la Comunitat Valenciana. In Actas del 7° Congreso Forestal Español; Sociedad Española de Ciencias Forestales: Plasencia, Spain, 2017. [Google Scholar]
- Sardans, J.; Peñuelas, J. Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climatic change. Plant Soil 2013, 365, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.; Bradstock, R.; Bedward, M. Detecting the effects of logging and wildfire on forest fuel structure using terrestrial laser scanning (TLS). For. Ecol. Manag. 2021, 488, 119037. [Google Scholar] [CrossRef]
- Zapata, R.; Oliver-Villanueva, J.-V.; Lemus-Zúñiga, L.-G.; Fuente, D.; Pla, M.A.M.; Luzuriaga, J.E.; Esteve, J.C.M. Seasonal variations of electrical signals of Pinus halepensis Mill. in Mediterranean forests in dependence on climatic conditions. Plant Signal. Behav. 2021, 16, 1948744. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.G.; Cary, G.J.; Van Dijk, A.I.; Yebra, M. Forest fire fuel through the lens of remote sensing: Review of approaches, challenges and future directions in the remote sensing of biotic determinants of fire behaviour. Remote Sens. Environ. 2021, 255, 112282. [Google Scholar] [CrossRef]
- Rothermel, R.C. How to Predict the Spread and Intensity of Forest and Range Fires; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Minneapolis, MN, USA, 1983; Volume 143.
- Castro, F.X.; Tudela, A.; Gabriel, E.; Montserrat, D.; Canyameres, E.; Segarra, M. Evolution of live fuel moisture in Mediterranean forest. For. Ecol. Manag. 2006, 234, S34. [Google Scholar] [CrossRef]
- Viegas, D.X.; Soares, J.; Almeida, M. Combustibility of a mixture of live and dead fuel components. Int. J. Wildland Fire 2013, 22, 992–1002. [Google Scholar] [CrossRef]
- Schroeder, M.J.; Buck, C.C. Fire Weather, Agricultural Handbook 360; USDA Forest Service: Washington, DC, USA, 1970.
- Countryman, C.M. Measuring Moisture Content in Living Chaparral: A Field User’s Manual (Vol. 36); U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Prather, CA, USA, 1979.
- de Luis, M.; Čufar, K.; Di Filippo, A.; Novak, K.; Papadopoulos, A.; Piovesan, G.; Rathgeber, C.B.; Raventos, J.; Saz, M.A.; Smith, K.T. Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis). PLoS ONE 2013, 8, e83550. [Google Scholar] [CrossRef] [Green Version]
- AAVV. Distribution Map of Aleppo Pine. EUFORGEN 2009. 2008. Available online: www.euforgen.org (accessed on 16 July 2020).
- Fady, B.; Semerci, H.; Vendramin, G.G. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Aleppo Pine (Pinus halepensis) and Brutia Pine (Pinus brutia); Bioversity International: Rome, Italy, 2003; p. 6. ISBN 92-9043-571-2. [Google Scholar]
- Mauri, A.; Di Leo, M.; De Rigo, D.; Caudullo, G. Pinus halepensis and Pinus brutia in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; Publications Office of the EU: Luxembourg, 2016. [Google Scholar]
- IFN3. Tercer Inventario Forestal Nacional (3rd National Forest Inventory of Spain); Ministerio para la Transformación Ecológica y el Reto Demográfico: Madrid, Spain, 2007.
- Smith, D.; Allen, S. Measurement of sap flow in plant stems. J. Exp. Bot. 1996, 47, 1833–1844. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Park, J.H.; Park, K.S.; Ahn, T.I.; Son, J.E. Nondestructive measurement of paprika (Capsicum annuum L.) internal electrical conductivity and its relation to environmental factors. Hortic. Sci. Technol. 2018, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Scarff, F.R.; Lenz, T.; Richards, A.E.; Zanne, A.E.; Wright, I.J.; Westoby, M. Effects of plant hydraulic traits on the flammability of live fine canopy fuels. Funct. Ecol. 2021, 35, 835–846. [Google Scholar] [CrossRef]
- Hao, Z.; Li, W.; Hao, X. Variations of electric potential in the xylem of tree trunks associated with water content rhythms. J. Exp. Bot. 2021, 72, 1321–1335. [Google Scholar] [CrossRef] [PubMed]
- Love, C.; Zhang, S.; Mershin, A. Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil. PLoS ONE 2008, 3, e2963. [Google Scholar] [CrossRef] [PubMed]
- Burdon-Sanderson, J.S.I. Note on the electrical phenomena which accompany irritation of the leaf of Dionæa muscipula. Proc. R. Soc. Lond. 1873, 21, 495–496. [Google Scholar]
- Darwin, C. Insectivorous Plants; D Appleton & Company: New York, NY, USA, 1875. [Google Scholar] [CrossRef]
- Wright, J.P.; Fisher, D.B. Measurement of the sieve tube membrane potential. Plant Physiol. 1981, 67, 845–848. [Google Scholar] [CrossRef] [Green Version]
- Gibert, D.; Le Mouël, J.-L.; Lambs, L.; Nicollin, F.; Perrier, F. Sap flow and daily electric potential variations in a tree trunk. Plant Sci. 2006, 171, 572–584. [Google Scholar] [CrossRef]
- Oyarce, P.; Gurovich, L. Electrical signals in avocado trees: Responses to light and water availability conditions. Plant Signal. Behav. 2010, 5, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Gil, P.M.; Gurovich, L.; Schaffer, B. The electrical response of fruit trees to soil water availability and diurnal light-dark cycles. Plant Signal. Behav. 2008, 3, 1026–1029. [Google Scholar] [CrossRef] [Green Version]
- Gil, P.M.; Gurovich, L.; Schaffer, B.; García, N.; Iturriaga, R. Electrical signaling, stomatal conductance, ABA and ethylene content in avocado trees in response to root hypoxia. Plant Signal. Behav. 2009, 4, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rios-Rojas, L.; Morales-Moraga, D.; Alcalde, J.A.; A Gurovich, L. Use of plant woody species electrical potential for irrigation scheduling. Plant Signal. Behav. 2015, 10, e976487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromm, J.; Lautner, S. Electrical signals and their physiological significance in plants. Plant Cell Environ. 2007, 30, 249–257. [Google Scholar] [CrossRef]
- The Editors of Encyclopaedia Britannica. Electric Power; Encyclopædia Britannica; Encyclopædia Britannica, Inc.: Chicago, IL, USA; Available online: https://www.britannica.com/technology/electric-power (accessed on 31 August 2020).
- Korol, L.; Madmony, A.; Riov, Y.; Schiller, G. Pinus halepensis× Pinus brutia subsp. brutia hybrids? Identification using morphological and biochemical traits. Silvae Genet. 1995, 44, 186–190. [Google Scholar]
- Allard, G.; Berrahmouni, N.; Besacier, C.; Boglio, D.; Briens, M.; Brizay, A.; Camia, A.; Colletti, L.; Conigliaro, M.; D’Annunzio, R.; et al. State of Mediterranean Forests 2013; FAO: Rome, Italy, 2013. [Google Scholar]
- Buhk, C.; Meyn, A.; Jentsch, A. The challenge of plant regeneration after fire in the Mediterranean Basin: Scientific gaps in our knowledge on plant strategies and evolution of traits. Plant Ecol. 2007, 192, 1–19. [Google Scholar] [CrossRef]
- Heras, J.D.; Moya, D.; Vega, J.A.; Daskalakou, E.; Vallejo, V.R.; Grigoriadis, N.; Tsitsoni, T.; Baeza, J.; Valdecantos, A.; Fernández, C.; et al. Post-fire management of serotinous pine forests. In Post-Fire Management and Restoration of Southern European Forests; Springer: Dordrecht, The Netherlands, 2012; pp. 121–150. [Google Scholar]
- Vallejo, M.; Arianoutsou, F.M. Post-Fire Management and Restoration of Southern European Forests; Moreira, F., Arianoutsou, M., Corona, P., De las Heras, J., Eds.; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2012; Volume 24, pp. 93–119. [Google Scholar]
- Farjon, A. A Handbook of the World’s Conifers; Brill: Leiden, The Netherlands, 2010. [Google Scholar]
- Rathgeber, C.; Nicault, A.; Guiot, J.; Keller, T.; Guibal, F.; Roche, P. Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Glob. Planet. Chang. 2000, 26, 405–421. [Google Scholar] [CrossRef]
- Thuiller, W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Chang. Biol. 2003, 9, 1353–1362. [Google Scholar] [CrossRef]
- Urli, M.; Delzon, S.; Eyermann, A.; Couallier, V.; García-Valdés, R.; Zavala, M.A.; Porté, A.J. Inferring shifts in tree species distribution using asymmetric distribution curves: A case study in the Iberian mountains. J. Veg. Sci. 2014, 25, 147–159. [Google Scholar] [CrossRef]
- Osem, Y.; Lavi, A.; Rosenfeld, A. Colonization of Pinus halepensis in Mediterranean habitats: Consequences of afforestation, grazing and fire. Biol. Invasions 2011, 13, 485–498. [Google Scholar] [CrossRef]
- Zapata, R.; Oliver-Villanueva, J.-V.; Lemus-Zúñiga, L.-G.; Luzuriaga, J.E.; Pla, M.A.M.; Urchueguía, J.F. Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem. Plant Signal. Behav. 2020, 15, 1795580. [Google Scholar] [CrossRef] [PubMed]
- Hapla, F.; Saborowski, J. Planning of sample size for wood anatomical investigations. Holz Als Roh-Und Werkst. 1987, 45, 141–144. [Google Scholar] [CrossRef]
- Oliver-Villanueva, J.V.; Becker, G. Verwendungsrelevante Holzeigenschaften der Esche (Fraxinus excelsior L.) und ihre Variabilität im Hinblick auf Alter und Standraum. Forst Und Holz 1993, 48, 387–391. [Google Scholar]
- Hapla, F.; Oliver-Villanueva, J.V.; González-Molina, J.M. Effect of silvicultural management on wood quality and timber utilisation of Cedrus atlantica in the European Mediterranean area. Holz Als Roh-Und Werkst. 2000, 58, 1–8. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología (Niveles de Riesgo de Incendio del Sistema FWI AEMET) España. Available online: https://prevencionincendiosgva.es/Meteorologia/InformesPrevisiones (accessed on 15 December 2021).
- Volkov, A.G.; Ranatunga, D.R.A. Plants as environmental biosensors. Plant Signal Behav. 2006, 1, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, S.S.L.B.; Carrondo, J.M.; Marques, P.N.; Narciso, M.J.; Rocha, I.N.; Soares, R.A. Monitorization of the electrical signal generated by a tree. In Proceedings of the 4th Luso-Spanish Assembly on Geodesy and Geophysics, Figueira da Foz, Portugal, 3–7 February 2004. [Google Scholar]
- Directive 1999/5/EC of the European Parliament and of the Council of 9 March 1999. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31999L0005 (accessed on 24 June 2022).
- Madrigal, J.; Hernando, C.; Guijarro, M. A new bench-scale methodology for evaluating the flammability of live forest fuels. J. Fire Sci. 2013, 31, 131–142. [Google Scholar] [CrossRef]
- SALTUS. Spot Fires: Mechanisms, Análisis and Modeling; Technical Annex; Commission of the European Communities Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Laboratorio del Fuego, Ministerio de Agricultura, Gobierno de España: Madrid, Spain, 1997; 20p.
- Asociación Valenciana de Meteorología ‘Josep Peinado’ (AVAMET). Available online: https://www.avamet.org/mx-mxo.php?id=c11m902e01 (accessed on 20 December 2021).
- Costa-Saura, J.M.; Balaguer-Beser, Á.; Ruiz, L.A.; Pardo-Pascual, J.E.; Soriano-Sancho, J.L. Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data. Remote Sens. 2021, 13, 3726. [Google Scholar] [CrossRef]
- Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Allometric equations for crown fuel biomass of Aleppo pine (Pinus halepensis Mill.) in Greece. Int. J. Wildland Fire 2007, 16, 642–647. [Google Scholar] [CrossRef]
- Matamoros, M.R.; Merino, E.G.; Ibáñez, N.I.; Bernal, E.M. Sensibilidad y grado de adaptación de “Pinus halepensis” mill. a la variabilidad climática en la provincia de Zaragoza. Cuad. Soc. Española Cienc. For. 2008, 26, 137–142. [Google Scholar]
- Puertolas, J.; Sierra, R.; Pardos, J.A. Comportamiento fisiológico de una plantación de Pinus halepensis y Pinus pinea en un antiguo terreno agrícola. In Proceedings of the IV Congreso Forestal Español, Zaragoza, Spain, 26–30 September 2005. [Google Scholar]
- Fotelli, M.N.; Korakaki, E.; Paparrizos, S.A.; Radoglou, K.; Awada, T.; Matzarakis, A. Environmental controls on the seasonal variation in gas exchange and water balance in a near-coastal Mediterranean Pinus halepensis forest. Forests 2019, 10, 313. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Costa, E.; Poyatos, R.; Sabaté, S. Contrasting growth and water use strategies in four co-occurring Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter variations. Agric. For. Meteorol. 2015, 207, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Keane, R.E. Wildland Fuel Fundamentals and Applications; Springer International Publishing: New York, NY, USA, 2015; ISBN 9783319090153. [Google Scholar]
- de Dios Rinaudo, R. Plant-Fire Interactions, 1st ed.; Applying Ecophysiology to Wildfire Management (Managing Forest Ecosystems, 36); Springer: Cham, Switzerland, 2020; ISBN 9783030411916. [Google Scholar]
- Alexander, M.E.; Cruz, M.G. Corrigendum to: Assessing the effect of foliar moisture on the spread rate of crown fires. Int. J. Wildland Fire 2013, 22, 869–870. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, M.J.; Page, W.G.; Hebertson, E.G.; Alexander, M.E. Fuels and fire behavior dynamics in bark beetle-attacked forests in Western North America and implications for fire management. For. Ecol. Manag. 2012, 275, 23–34. [Google Scholar] [CrossRef]
- Talucci, A.C.; Krawchuk, M.A. Dead forests burning: The influence of beetle outbreaks on fire severity and legacy structure in sub-boreal forests. Ecosphere 2019, 10, e02744. [Google Scholar] [CrossRef] [Green Version]
- Reiner, A.L. Fire Behavior in Beetle-Killed Stands: A Brief Review of Literature Focusing on Early Stages after Beetle Attack; U.S. Forest Service Pacific Southwest Region: Vallejo, CA, USA, 2017; Volume 5, pp. 1–5.
- Martin, M.S.; Bonet, J.A.; De Aragón, J.M.; Voltas, J.; Coll, L.; De Dios, V.R. Crown bulk density and fuel moisture dynamics in Pinus pinaster stands are neither modified by thinning nor captured by the Forest Fire Weather Index. Ann. For. Sci. 2017, 74, 51. [Google Scholar] [CrossRef]
- Nolan, R.H.; Hedo, J.; Arteaga, C.; Sugai, T.; de Dios, V.R. Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agric. For. Meteorol. 2018, 263, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Klein, T.; Cohen, S.; Yakir, D. Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol. 2011, 31, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Klein, T.; Cohen, S.; Paudel, I.; Preisler, Y.; Rotenberg, E.; Yakir, D. Diurnal dynamics of water transport, storage and hydraulic conductivity in pine trees under seasonal drought. Iforest-Biogeosci. For. 2016, 9, 710. [Google Scholar] [CrossRef] [Green Version]
- Oliveras, I.; Martínez-Vilalta, J.; Jimenez-Ortiz, T.; Lledó, M.J.; Escarré, A.; Pinol, J. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecol. 2003, 169, 131–141. [Google Scholar] [CrossRef]
- Pacheco, A.; Camarero, J.J.; Ribas, M.; Gazol, A.; Gutierrez, E.; Carrer, M. Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands. Sci. Total Environ. 2018, 615, 1518–1526. [Google Scholar] [CrossRef]
- Prislan, P.; Gričar, J.; de Luis, M.; Novak, K.; del Castillo, E.M.; Schmitt, U.; Koch, G.; Štrus, J.; Mrak, P.; Žnidarič, M.T.; et al. Annual cambial rhythm in Pinus halepensis and Pinus sylvestris as indicator for climate adaptation. Front. Plant Sci. 2016, 7, 1923. [Google Scholar] [CrossRef] [Green Version]
- Schiller, G.; Cohen, Y. Water regime of a pine forest under a Mediterranean climate. Agric. For. Meteorol. 1995, 74, 181–193. [Google Scholar] [CrossRef]
- Rossa, C.G. A generic fuel moisture content attenuation factor for fire spread rate empirical models. For. Syst. 2018, 27, e009. [Google Scholar] [CrossRef] [Green Version]
- Moraga, R.Q.; Cisneros, J.R.; Relea, M.L. Prevención de Megaincendios Forestales Mediante el Diseño de Planes de Operaciones de Extinción Basados en Nodos de Propagación. Ph.D. Dissertation, Universidad de León, León, Spain, 2016. [Google Scholar]
- Qi, Y.; Dennison, P.E.; Jolly, W.M.; Kropp, R.C.; Brewer, S.C. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass. Remote Sens. Environ. 2014, 150, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Balaguer-Romano, R.; Díaz-Sierra, R.; Madrigal, J.; Voltas, J.; Resco de Dios, V. Needle senescence affects fire behavior in Aleppo pine (Pinus halepensis Mill.) stands: A simulation study. Forests 2020, 11, 1054. [Google Scholar] [CrossRef]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
Texture (%) | ||||||
---|---|---|---|---|---|---|
Sand | Silt | Clay | USDA Classification | |||
20.1 | 43.6 | 12.3 | Loam | |||
Moisture Factor | Ph | Electric Conductivity [ds/cm] | Wp [%] | Field Capacity [%] | Pore Space [%] | Depth [cm] |
0.92 | 8.2 | 1.869 | 3.7 | 11.8 | 45.66 | 30 |
Sample | F | Pr > F | p-Value | α | Result |
---|---|---|---|---|---|
May | 0.714 | 0.499 | 0.381 | 0.05 | non-significant differences |
June | 1.278 | 0.295 | 0.837 | 0.05 | non-significant differences |
July | 1.211 | 0.314 | 0.863 | 0.05 | non-significant differences |
August | 1.461 | 0.250 | 0.295 | 0.05 | non-significant differences |
September | 3.793 | 0.035 | 0.646 | 0.05 | non-significant differences |
October | 2.516 | 0.100 | 0.389 | 0.05 | non-significant differences |
Total Period | 7.367 | 0.001 | 0.208 | 0.05 | non-significant differences |
Electrical Signals | ||
---|---|---|
Voltage (V) [V] | Short-Circuit Current (ISC) [µA] | |
Mean | 0.808 | 1.998 |
Median | 0.990 | 1.100 |
Minimum | 0.032 | 0.000 |
Maximum | 1.124 | 15.690 |
Standard deviation (n − 1) | 0.381 | 2.531 |
1st Quartile | 0.569 | 0.238 |
3rd Quartile | 1.081 | 2.735 |
Variance (n − 1) | 0.145 | 6.408 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata, R.; Oliver-Villanueva, J.-V.; Lemus-Zúñiga, L.-G.; Mateo Pla, M.A.; Luzuriaga, J.E. Electrical Responses of Pinus halepensis Mill. as an Indicator of Wildfire Risk in Mediterranean Forests by Complementing Live Fuel Moisture. Forests 2022, 13, 1189. https://doi.org/10.3390/f13081189
Zapata R, Oliver-Villanueva J-V, Lemus-Zúñiga L-G, Mateo Pla MA, Luzuriaga JE. Electrical Responses of Pinus halepensis Mill. as an Indicator of Wildfire Risk in Mediterranean Forests by Complementing Live Fuel Moisture. Forests. 2022; 13(8):1189. https://doi.org/10.3390/f13081189
Chicago/Turabian StyleZapata, Rodolfo, Jose-Vicente Oliver-Villanueva, Lenin-Guillermo Lemus-Zúñiga, Miguel A. Mateo Pla, and Jorge E. Luzuriaga. 2022. "Electrical Responses of Pinus halepensis Mill. as an Indicator of Wildfire Risk in Mediterranean Forests by Complementing Live Fuel Moisture" Forests 13, no. 8: 1189. https://doi.org/10.3390/f13081189
APA StyleZapata, R., Oliver-Villanueva, J. -V., Lemus-Zúñiga, L. -G., Mateo Pla, M. A., & Luzuriaga, J. E. (2022). Electrical Responses of Pinus halepensis Mill. as an Indicator of Wildfire Risk in Mediterranean Forests by Complementing Live Fuel Moisture. Forests, 13(8), 1189. https://doi.org/10.3390/f13081189