Response of Moso Bamboo Growth and Soil Nutrient Content to Strip Cutting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Measurement
2.3. Soil Sampling and Soil Physicochemical Analysis
2.4. Aboveground Biomass
2.5. Statistical Analyses
3. Results
3.1. Effects of Strip Cutting on the Growth of Moso Bamboo Forest
3.2. Effects of Strip Cutting on Soil Elements of Moso Bamboo
3.3. Relationships between Stand Characteristics and Soil Nutrients
3.4. Effects of Strip Cutting on Stand Characteristics of Moso Bamboo
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Z.H. Bamboo and Rattan in the World; China Forest Publishing House: Beijing, China, 2007. [Google Scholar]
- National Forestry and Grassland Administration. China Forest Resources Report; China Forest Publishing House: Beijng, China, 2019.
- Tang, X.; Qi, L.; Fan, S.; Guan, F.; Zhang, H. Soil respiration and net ecosystem production in relation to intensive management in Moso bamboo forests. Catena 2016, 137, 219–228. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, Y.; Guan, F.; Xiao, X.; Zhang, X.; Li, C. Compatible Biomass Model of Moso Bamboo with Measurement Error. Forests 2022, 13, 774. [Google Scholar] [CrossRef]
- Fekadu, G.; Teshome, G.; Teshome, S.; Kelbessa, E. Allometric Equations to Estimate the Biomass of Oxytenanthera Abyssinica (A Rich) Munro (Ethiopian Lowland Bamboo) in Dicho Forest, Oromia Region, Western Ethiopia. Int. J. Res. Stud. Biosci. 2016, 4, 34–48. [Google Scholar]
- Yang, X.H. A Study on Per Plant Aboveground Biomass Compatible Models for Phyllostachy Edulis. Master’s Thesis, Beijing Forestry University, Beijing, China, 2016. (In Chinese). [Google Scholar]
- Wu, W.; Liu, Q.; Zhu, Z. Managing Bamboo for Carbon Sequestration, Bamboo Stem and Bamboo Shoots. Small Scale For. 2015, 14, 223–243. [Google Scholar] [CrossRef]
- Katumbi, N.M.; Kinyanjui, M.J.; Kimondo, J.M. Biomass Energy Resource of the Highland Bamboo (Yushania alpina) and Its Potential for Sustainable Exploitation in Southern Aberdares Forest. J. Sustain. Bioenergy Syst. 2017, 7, 85–97. [Google Scholar] [CrossRef]
- Yen, T.M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot. Stud. 2016, 57, 10. [Google Scholar] [CrossRef]
- Lin, M.Y.; Hsieh, I.F.; Lin, P.H. Moso bamboo (Phyllostachys pubescens) forests as a significant carbon sink? A case study based on 4-year measurements in central Taiwan. Ecol. Res. 2017, 32, 845–857. [Google Scholar] [CrossRef]
- Shi, C.; Zhou, Y.J.; Zhou, G.M. Effects of different management approaches on soil carbon dynamics in moso bamboo forest ecosystems. Catena 2018, 169, 59–68. [Google Scholar]
- Jun, B.; Zhang, J.H. Effects of nitrogen deposition and management practices on leaf litterfall and N and P return in a Moso bamboo forest. Biogeochemistry 2017, 134, 115–124. [Google Scholar]
- Bai, S.B.; Conant, R.T. Effects of moso bamboo encroachment into native, broad-leaved forests on soil carbon and nitrogen pools. Sci. Rep. 2016, 6, 31480. [Google Scholar] [CrossRef]
- Wang, H.C.; Tian, G.; Chiu, C.Y. Invasion of moso bamboo into a Japanese cedar plantation affects the chemical composition and humification of soil organic matter. Sci. Rep. 2016, 6, 32211. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Guan, F.; Fan, S.; Zhou, Y.; Jing, X. Functional Trait Responses to Strip Clearcutting in a Moso Bamboo Forest. Forests 2021, 12, 793. [Google Scholar] [CrossRef]
- Qin, H.; Chen, J.H.; Wu, Q.F.; Niu, L.M.; Li, Y.C.; Liang, C.F.; Shen, Y.; Xu, Q.F. Intensive management decreases soil aggregation and changes the abundance and community compositions of arbuscular mycorrhizal fungi in Moso bamboo (Phyllostachys pubescens) forests. For. Ecol. Manag. 2017, 400, 246–255. [Google Scholar] [CrossRef]
- Shinohara, Y.; Otsuki, K. Comparisons of soil-water content between a Moso bamboo (Phyllostachys pubescens) forest and an evergreen broadleaved forest in western Japan. Plant Species Biol. 2015, 30, 96–103. [Google Scholar] [CrossRef]
- Zheng, Y.; Guan, F.; Fan, S.; Yan, X.; Huang, L. Biomass Estimation, Nutrient Content, and Decomposition Rate of Shoot Sheath in Moso Bamboo Forest of Yixing Forest Farm, China. Forests 2021, 12, 1555. [Google Scholar] [CrossRef]
- Fan, S.H.; Liu, G.L.; Su, W.H. Advances in research of bamboo forest cultivation. For. Res. 2018, 31, 137–144. (In Chinese) [Google Scholar]
- Su, W.H.; Zeng, X.L.; Fan, S.H. Effects of strip clear-cutting on the allocation of non-structural carbohydrates and aboveground biomass of Phyllostachys edulis. Chin. J. Ecol. 2019, 38, 2934–2940. (In Chinese) [Google Scholar]
- Zeng, X.L.; Su, W.H.; Fan, S.H. Qualitative recovery characteristics of Moso bamboo forests under strip clearcutting. Acta Bot. Boreali Occident. Sin. 2019, 39, 917–924. (In Chinese) [Google Scholar]
- Zeng, X.L.; Su, W.H.; Fan, S.H. Assessment of soil quality in Moso bamboo forests under different strip clearcuttings. Chin. J. Ecol 2019, 38, 3015–3023. (In Chinese) [Google Scholar]
- Wang, S.M.; Pang, Y.X.; Song, A.Y. Soil physiochemical properties and diversity of herbaceous plants dynamic on the different ages mixed forests of Populus × Euramercana ‘Neva ’ and Robinia pseucdoacacia in coastal saline-alkali area. Acta Ecol. Sin. 2018, 38, 6539–6548. (In Chinese) [Google Scholar]
- Lu, R.K. Soil Agrochemical Analysis Method; China Agricultural Science and Technology Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Zhou, G.M. Carbon Storage, Fixation and Distribution in Mao Bamboo (Phyllostachys pubescens) Stands Ecosystem. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2006. [Google Scholar]
- Grand, S.; Lavkulich, L.M. Effects of forest harvest on soil carbon and related variables in Canadian spodosols. Soil Sci. Soc. Am. J. 2012, 76, 1816–1827. [Google Scholar] [CrossRef]
- Duan, M.C.; Wang, G.L.; Shi, J.Y. Effects of thinning on structure and spatial pattern of dominant populations in Pinus tabulifomis plantations. Chin. J. Ecol. 2019, 38, 1–10. (In Chinese) [Google Scholar]
- Li, M.L.; Wu, Z.F.; Qiu, H. Short-term effects of tending felling on ecological services of mixed broadleaved-Korean pine forests at Jiaohe in Jilin Province, northeastern China. J. Beijing For. Univ. 2019, 41, 40–49. (In Chinese) [Google Scholar]
- Zhang, Y.; Tian, G.; Lu, H.P. Transcriptome characterization of Phyllostachys edulis “pachyloen” shoots in different solar term. Acta Agric. Univ. Jiangxiensis 2015, 3, 466–474. (In Chinese) [Google Scholar]
- Zhao, J.C.; Su, W.H.; Fan, S.H. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests after different fertilization practices. Can. J. For. Res. 2019, 49, 213–220. [Google Scholar] [CrossRef]
- Zhao, J.C.; Su, W.H.; Fan, S.H. Effects of various fertilization depths on ammonia volatilization in Moso bamboo (Phyllostachys edulis) forests. Plant Soil Environ. 2016, 62, 128–134. [Google Scholar]
- Ren, C.; Zhao, F.; Kang, D. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. For. Ecol. Manag. 2016, 376, 59–66. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Wang, M.; He, H.S.; Liang, Y. Long-term effects of harvest intensity on forest above-ground biomass and landscape pattern of Changbai Mountain. Chin. J. Ecol. 2014, 33, 2581–2587. [Google Scholar]
- Song, X.Z.; Peng, C.; Zhou, G.M. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla). Sci. Rep. 2016, 6, 25908. [Google Scholar] [CrossRef]
Treatment | DBH | DBS | NB | DBS: NB |
---|---|---|---|---|
M3 | 9.40 ± 0.67 a | 300 ± 124.72 c | 1433 ± 543.65 b | 0.23 ± 0.12 b |
M5 | 8.22 ± 0.67 ab | 316.67 ± 195.08 c | 2366.67 ± 815.82 ab | 0.13 ± 0.07 b |
M8 | 8.28 ± 1.79 ab | 265.63 ± 102.46 c | 2234.38 ± 628.70 ab | 0.11 ± 0.02 b |
M12 | 7.79 ± 0.11 b | 861.11 ± 109.36 b | 2402.78 ± 437.44 a | 0.37 ± 0.10 b |
M15 | 7.77 ± 0.22 b | 1700 ± 288.03 a | 2788.89 ± 245.45 a | 0.61 ± 0.11 b |
CK | 9.71 ± 0.22 a | 693.75 ± 81.73 b | 393.75 ± 139.61 c | 2.02 ± 0.80 a |
Nutrient Element | Soil Depth/cm | PH | SOC (g/kg) | TN(g/kg) | TP(g/kg) | TK (g/kg) | HN (mg/kg) | AP (mg/kg) | AK (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
M3 | 0–10 | 5.33 ± 0.05 Aab | 35.98 ± 2.58 Aa | 1.84 ± 0.15 Aab | 0.27 ± 0.01 Ac | 10.12 ± 0.82 Aa | 164.15 ± 16.03 Aab | 1.38 ± 0.42 Aab | 66.77 ± 7.60 Aa |
10–20 | 5.25 ± 0.12 ABc | 24.43 ± 2.50 Bbc | 1.30 ± 0.13 Bbc | 0.24 ± 0.01 Bbc | 10.04 ± 0.51 Aa | 106.22 ± 14.18 Bbc | 0.73 ± 0.18 Bab | 49.00 ± 5.57 Bca | |
20–30 | 5.15 ± 0.20 Bb | 18.75 ± 3.71 Ca | 1.03 ± 0.18 Ca | 0.23 ± 0.01 BCcd | 10.08 ± 0.53 Aa | 91.65 ± 22.77 Ba | 0.59 ± 0.31 Bcab | 51.32 ± 10.21 Ba | |
30–50 | 4.99 ± 0.11 Cb | 11.84 ± 1.56 Da | 0.78 ± 0.09 Dab | 0.23 ± 0.01 Cbc | 10.65 ± 0.62 Abc | 55.47 ± 8.38 Cab | 0.38 ± 0.14 Cb | 42.05 ± 5.46 Ca | |
M5 | 0–10 | 5.32 ± 0.11 Ab | 29.03 ± 7.29 Ab | 1.54 ± 0.33 Ab | 0.24 ± 0.01 Ad | 9.85 ± 0.44 Ba | 140.13 ± 20.02 Ab | 1.02 ± 0.36 Ab | 62.60 ± 7.12 Aa |
10–20 | 5.35 ± 0.11 Abc | 20.52 ± 1.32 Bc | 1.14 ± 0.07 Bc | 0.22 ± 0.02 Abc | 9.96 ± 0.64 Bab | 101.41 ± 12.11 Bc | 0.59 ± 0.09 Bb | 45.55 ± 5.51 Ba | |
20–30 | 5.13 ± 0.10 Bb | 12.69 ± 1.85 Cb | 0.82 ± 0.12 Ca | 0.20 ± 0.01 Be | 10.40 ± 0.52 Aba | 67.96 ± 14.24 Ca | 0.42 ± 0.14 Bb | 43.59 ± 5.04 Bab | |
30–50 | 4.97 ± 0.10 Cb | 8.85 ± 1.09 Cb | 0.66 ± 0.06 Cb | 0.21 ± 0.01 Bc | 10.89 ± 0.68 Aab | 45.63 ± 6.27 Db | 0.32 ± 0.12 Bb | 44.03 ± 4.40 Ba | |
M8 | 0–10 | 5.39 ± 0.07 Aab | 37.31 ± 2.48 Aa | 1.88 ± 0.03 Aa | 0.28 ± 0.01 Abc | 9.52 ± 0.94 Aa | 177.19 ± 9.53 Aa | 1.24 ± 0.21 Aab | 66.11 ± 3.85 Aa |
10–20 | 5.39 ± 0.15 Abc | 26.92 ± 2.73 Bab | 1.39 ± 0.09 Bab | 0.24 ± 0.01 Abc | 9.80 ± 0.45 Aab | 126.06 ± 14.24 Bab | 0.73 ± 0.13 Bab | 47.65 ± 5.30 Ba | |
20–30 | 5.19 ± 0.11 Abb | 17.85 ± 2.88 Ca | 1.01 ± 0.18 Ca | 0.23 ± 0.01 Ad | 10.37 ± 0.43 Aa | 94.50 ± 21.01 Ca | 0.44 ± 0.32 BCb | 52.45 ± 11.51 Ba | |
30–50 | 5.09 ± 0.11 Bb | 12.63 ± 2.06 Da | 0.94 ± 0.21 Ca | 0.27 ± 0.06 Aab | 10.06 ± 0.98 Abc | 70.07 ± 18.27 Ca | 0.31 ± 0.11 Cb | 44.79 ± 6.14 Ba | |
M12 | 0–10 | 5.49 ± 0.10 Aa | 38.97 ± 3.10 Aa | 2.08 ± 0.20 Aa | 0.29 ± 0.01 Ab | 8.10 ± 0.19 Bb | 189.86 ± 29.29 Aa | 1.82 ± 0.38 Aa | 58.93 ± 2.91 Aa |
10–20 | 5.62 ± 0.12 Aa | 29.88 ± 3.17 Ba | 1.53 ± 0.15 Ba | 0.26 ± 0.01 Bb | 10.21 ± 0.47 Aa | 144.99 ± 5.72 Ba | 1.27 ± 0.31 Aba | 48.61 ± 4.16 Ba | |
20–30 | 5.56 ± 0.06 Aa | 15.34 ± 0.96 Cab | 0.93 ± 0.05 Ca | 0.26 ± 0.01 Bb | 10.73 ± 0.93 Aa | 72.49 ± 5.59 Ca | 0.78 ± 0.16 Bcab | 39.54 ± 2.33 Cab | |
30–50 | 5.30 ± 0.04 Ba | 10.14 ± 0.61 Ca | 0.74 ± 0.03 Cab | 0.25 ± 0.02 Babc | 11.06 ± 1.01 Aa | 50.27 ± 4.40 Cb | 0.42 ± 0.16 Cab | 37.65 ± 3.14 Ca | |
M15 | 0–10 | 5.33 ± 0.13 Abab | 40.97 ± 1.36 Aa | 2.14 ± 0.03 Aa | 0.36 ± 0.02 Aa | 9.35 ± 0.66 Aa | 193.53 ± 12.69 Aa | 1.70 ± 0.15 Aa | 55.83 ± 4.95 Aa |
10–20 | 5.51 ± 0.05 Aab | 28.34 ± 3.38 Bab | 1.48 ± 0.16 Bab | 0.32 ± 0.03 Aba | 9.41 ± 0.72 Aab | 132.69 ± 9.17 Ba | 1.05 ± 0.04 Bab | 43.16 ± 0.87 Ba | |
20–30 | 5.44 ± 0.04 Aba | 20.12 ± 2.50 Ca | 1.15 ± 0.16 Ca | 0.29 ± 0.02 Ba | 9.68 ± 0.66 Aa | 101.19 ± 16.63 Bca | 0.97 ± 0.13 Ba | 36.50 ± 2.93 Bb | |
30–50 | 5.27 ± 0.07 Ba | 13.58 ± 1.76 Da | 0.85 ± 0.15 Cab | 0.29 ± 0.02 Ba | 9.59 ± 0.54 Ac | 72.71 ± 15.72 Ca | 0.62 ± 0.02 Ca | 28.80 ± 0.78 Cb | |
CK | 0–10 | 5.46 ± 0.06 Aab | 38.52 ± 2.35 Aa | 2.06 ± 0.11 Aa | 0.28 ± 0.01 Abc | 9.42 ± 0.86 Aa | 186.41 ± 20.07 Aa | 1.30 ± 0.40 Aab | 63.35 ± 8.53 Aa |
10–20 | 5.45 ± 0.04 Aabc | 26.01 ± 0.63 Bab | 1.43 ± 0.06 Bab | 0.25 ± 0.01 Bb | 8.99 ± 0.78 Ab | 133.98 ± 20.71 Ba | 0.65 ± 0.01 Bab | 45.70 ± 5.04 Ba | |
20–30 | 5.09 ± 0.01 Bb | 17.21 ± 2.25 Cab | 0.95 ± 0.14 Ca | 0.25 ± 0.02 Bbc | 10.21 ± 0.66 Aa | 80.26 ± 17.48 Ca | 0.70 ± 0.05 Bab | 39.40 ± 5.39 Bab | |
30–50 | 4.95 ± 0.02 Bb | 12.63 ± 0.63 Da | 0.77 ± 0.05 Dab | 0.25 ± 0.01 Babc | 9.68 ± 0.16 Abc | 57.61 ± 5.83 Cab | 0.45 ± 0.10 Bab | 37.31 ± 6.93 Ba |
Soil Layers | DBH | DBS | NB | DBS: NB | |
---|---|---|---|---|---|
PH | 0–10 | −0.298 | 0.163 | 0.001 | 0.287 |
10–20 | −0.542 ** | 0.484 ** | 0.143 | 0.223 | |
20–30 | −0.409 * | 0.545 ** | 0.42 * | −0.053 | |
30–50 | −0.248 | 0.523 ** | 0.258 | −0.055 | |
SOC | 0–10 | −0.063 | 0.366 | −0.041 | 0.183 |
10–20 | −0.088 | 0.436 | −0.065 | 0.178 | |
20–30 | 0.089 | 0.211 | −0.116 | 0.128 | |
30–50 | 0.083 | 0.234 | −0.229 | 0.245 | |
TN | 0–10 | −0.051 | 0.441 * | −0.054 | 0.274 |
10–20 | −0.036 | 0.441 * | −0.101 | 0.243 | |
20–30 | 0.087 | 0.259 | −0.069 | 0.099 | |
30–50 | 0.316 | 0.053 | −0.032 | 0.021 | |
TP | 0–10 | −0.236 | 0.843 ** | 0.148 | 0.264 |
10–20 | −0.143 | 0.801 ** | 0.12 | 0.187 | |
20–30 | −0.094 | 0.796 ** | 0.006 | 0.297 | |
30–50 | −0.224 | 0.505 ** | 0.043 | 0.148 | |
TK | 0–10 | 0.448 * | −0.355 | −0.223 | −0.203 |
10–20 | 0.17 | −0.189 | 0.071 | −0.443 * | |
20–30 | 0.018 | −0.204 | −0.06 | −0.154 | |
30–50 | 0.456 * | −0.296 | −0.149 | −0.287 | |
HN | 0–10 | −0.081 | 0.444 * | −0.103 | 0.362 |
10–20 | −0.336 | 0.514 * | 0.089 | 0.417 * | |
20–30 | 0.125 | 0.199 | −0.026 | 0.07 | |
30–50 | −0.135 | 0.284 | 0.033 | 0.114 | |
AP | 0–10 | −0.093 | 0.334 | −0.05 | 0.155 |
10–20 | −0.152 | 0.531 ** | 0.249 | −0.001 | |
20–30 | −0.258 | 0.464 * | 0.186 | 0.192 | |
30–50 | −0.302 | 0.545 ** | 0.167 | 0.277 | |
AK | 0–10 | 0.431 | −0.433 * | −0.37 | 0.011 |
10–20 | 0.396 | −0.171 | −0.169 | 0.001 | |
20–30 | 0.619 ** | −0.412 * | −0.304 | −0.188 | |
30–50 | 0.291 | −0.593 ** | −0.054 | −0.195 |
Measures | Cutting Width | AAG (kg/ha) | NBS (culm/ha) | DBS (culm/ha) |
---|---|---|---|---|
C + R | 3 | 30.89 ± 7.17 a | 1491 ± 473 c | 281 ± 109 b |
5 | 35.78 ± 12.15 a | 2164 ± 869 c | 291 ± 193 ab | |
8 | 39.01 ± 9.59 a | 2161 ± 549 c | 295 ± 109 ab | |
12 | 32.89 ± 7.81 a | 2017 ± 582 b | 867 ± 100 ab | |
15 | 39.59 ± 2.52 a | 2507 ± 418 a | 1660 ± 237 a | |
C | 3 | 29.56 ± 7.93 a | 1433 ± 544 c | 300 ± 125 b |
5 | 37.19 ± 10.29 a | 2367 ± 816 c | 317 ± 195 ab | |
8 | 31.61 ± 11.99 a | 2234 ± 629 c | 266 ± 102 ab | |
12 | 37.02 ± 7.65 a | 2403 ± 437 b | 861 ± 109 ab | |
15 | 41.10 ± 15.48 a | 2789 ± 245 a | 1700 ± 288 a | |
R | 3 | 32.21 ± 6.04 a | 1556 ± 369 c | 259 ± 83 a |
5 | 34.10 ± 13.88 a | 1920 ± 868 c | 260 ± 185 a | |
8 | 40.99 ± 2.86 a | 2063 ± 399 c | 333 ± 106 a | |
12 | 26.70 ± 0.95 a | 1438 ± 21 b | 875 ± 83 a | |
15 | 37.32 ± 1.91 a | 2083 ± 217 a | 1600 ± 100 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Guan, F.; Zhang, X.; Li, C.; Zhou, Y. Response of Moso Bamboo Growth and Soil Nutrient Content to Strip Cutting. Forests 2022, 13, 1293. https://doi.org/10.3390/f13081293
Zhou X, Guan F, Zhang X, Li C, Zhou Y. Response of Moso Bamboo Growth and Soil Nutrient Content to Strip Cutting. Forests. 2022; 13(8):1293. https://doi.org/10.3390/f13081293
Chicago/Turabian StyleZhou, Xiao, Fengying Guan, Xuan Zhang, Chengji Li, and Yang Zhou. 2022. "Response of Moso Bamboo Growth and Soil Nutrient Content to Strip Cutting" Forests 13, no. 8: 1293. https://doi.org/10.3390/f13081293
APA StyleZhou, X., Guan, F., Zhang, X., Li, C., & Zhou, Y. (2022). Response of Moso Bamboo Growth and Soil Nutrient Content to Strip Cutting. Forests, 13(8), 1293. https://doi.org/10.3390/f13081293