The Relationships of Supporting Services and Regulating Services in National Forest City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preparation
2.3. Quantification of Supporting Services
2.3.1. Habitat Quality
2.3.2. NPP
2.4. Quantification of Regulating Services
2.4.1. Carbon Storage
2.4.2. Soil Retention
2.4.3. Phosphorus Export
2.5. Trade-off Analysis
3. Results
3.1. Land Use Change
3.2. Temporal-Spatial Distribution of Supporting Services
3.2.1. Habitat Quality
3.2.2. NPP
3.3. Temporal-Spatial Distribution of Regulating Services
3.3.1. Carbon Storage
3.3.2. Soil Retention
3.3.3. Water Purification
3.4. Trade-Offs among ESs
4. Discussion
4.1. Spatial and Temporal Changes of ESs
4.2. Uncertainties of Trade-Offs and Synergies
4.3. Policy Implications and Limits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, Trade-offs, and Losses of Ecosystem Services in Urban Regions an Integrated Multiscale Framework Applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 2012, 17, 22. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Sang, Å.O. Urban natural environments as nature-based solutions for improved public health—A systematic review of reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.; Scholes, R.; Ash, N. Ecosystems and Human Well-Being: Current State and Trends. J. Bacteriol. 2005, 1, 1387–1404. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- Liang, J.; Li, S.; Li, X.; Li, X.; Liu, Q.; Meng, Q.; Lin, A.; Li, J. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. J. Clean. Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, Y.; Alatalo, J.M.; Yang, Z.; Jiang, B. Scale effects on the relationships between land characteristics and ecosystem services—A case study in Taihu Lake Basin, China. Sci. Total Environ. 2020, 716, 137083. [Google Scholar] [CrossRef]
- Ruijs, A.; Wossink, A.; Kortelainen, M.; Alkemade, R.; Schulp, C. Trade-off analysis of ecosystem services in Eastern Europe. Ecosyst. Serv. 2014, 4, 82–94. [Google Scholar] [CrossRef]
- Karimi, J.D.; Corstanje, R.; Harris, J.A. Bundling ecosystem services at a high resolution in the UK: Trade-offs and synergies in urban landscapes. Landsc. Ecol. 2021, 36, 1817–1835. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Beard, T.D., Jr.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across Space, Time, and Ecosystem Services. Ecol. Soc. 2006, 11, 28. [Google Scholar] [CrossRef]
- Yang, S.; Bai, Y.; Alatalo, J.M.; Wang, H.; Chen, J. Spatio-temporal changes in water-related ecosystem services provision and trade-offs with food production. J. Clean. Prod. 2020, 286, 125316. [Google Scholar] [CrossRef]
- Guo, C.Q.; Xu, X.B.; Shu, Q. A review on the assessment methods of supply and demand of ecosystem services. Chin. J. Ecol. 2020, 39, 2086–2096. [Google Scholar] [CrossRef]
- Filho, W.L.; Barbir, J.; Sima, M.; Kalbus, A.; Nagy, G.J.; Paletta, A.; Villamizar, A.; Martinez, R.; Azeiteiro, U.M.; Pereira, M.J.; et al. Reviewing the role of ecosystems services in the sustainability of the urban environment: A multi-country analysis. J. Clean. Prod. 2020, 262, 121338. [Google Scholar] [CrossRef]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Liao, L.; Zhao, C.; Li, X.; Qin, J. Towards low carbon development: The role of forest city constructions in China. Ecol. Indic. 2021, 131, 108199. [Google Scholar] [CrossRef]
- Xu, C.; Dong, L.; Yu, C.; Zhang, Y.; Cheng, B. Can forest city construction affect urban air quality? The evidence from the Beijing- Tianjin-Hebei urban agglomeration of China. J. Clean. Prod. 2020, 264, 121607. [Google Scholar] [CrossRef]
- Chen, W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities 2015, 44, 112–120. [Google Scholar] [CrossRef]
- Wang, S.; Cui, Z.; Lin, J.; Xie, J.; Su, K. The coupling relationship between urbanization and ecological resilience in the Pearl River Delta. J. Geogr. Sci. 2022, 32, 44–64. [Google Scholar] [CrossRef]
- Poniatowski, D.; Stuhldreher, G.; Löffler, F.; Fartmann, T. Patch occupancy of grassland specialists: Habitat quality matters more than habitat connectivity. Biol. Conserv. 2018, 225, 237–244. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Li, H.; Ding, J.; Zhang, J.; Yang, Z.; Yang, B.; Zhu, Q.; Peng, C.; Millington, A. Effects of Land Cover Changes on Net Primary Productivity in the Terrestrial Ecosystems of China from 2001 to 2012. Land 2020, 9, 480. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of Net Primary Productivity of Chinese Vegetation Based on Remote Sensing. Chin. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Rong, T.; Long, L.H. Quantitative Assessment of NPP Changes in the Yellow River Source Area from 2001 to 2017. IOP Conf. Ser. Earth Environ. Sci. 2021, 687, 012002. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, X.; Zhang, K.; Liao, Z.; Xu, S. Trade-Offs and Synergies of Ecosystem Services in the Pearl River Delta Urban Agglomeration. Sustainability 2021, 13, 9155. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y. Guangdong Statistical Yearbook 2021; Statistics Bureau of Guangdong Province: Beijing, China, 2021. [Google Scholar]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Wu, J.; Cha, X.; Chen, S.; Mao, L.; Huang, B. Variations of Rainfall Erosivity of Different Magnitudes in Shaoguan from 1951 to 2018. J. Soil Water Conserv. 2021, 35, 21–26. [Google Scholar]
- Pan, F.; Ji, C.D. Spatial and Temporal Variation of Service Quality of Habitat Quality Ecosystem in Quanzhou Based on InVEST Model. Geomat. Spat. Inf. Technol. 2019, 42, 151–154. [Google Scholar]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Su, C.; Dong, M.; Fu, B.; Liu, G. Scale effects of sediment retention, water yield, and net primary production: A case-study of the Chinese Loess Plateau. Land Degrad. Dev. 2020, 31, 1408–1421. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, J. Building ecological security patterns based on ecosystem services value reconstruction in an arid inland basin: A case study in Ganzhou District, NW China. J. Clean. Prod. 2019, 241, 118337. [Google Scholar] [CrossRef]
- Zhou, R.; Lin, M.; Gong, J.; Wu, Z. Spatiotemporal heterogeneity and influencing mechanism of ecosystem services in the Pearl River Delta from the perspective of LUCC. J. Geogr. Sci. 2019, 29, 831–845. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, Y.L.; Jiang, W.K. Spatio-Temporal Evolution of Ecosystem Carbon Storage in Guangdong-Hong Kong-Macao Greater Bay Area. Landsc. Archit. 2020, 27, 57–63. [Google Scholar] [CrossRef]
- Wang, X.M.; Liu, X.C.; Long, Y.X. Spatial-Temporal Changes and Influencing Factors of Ecosystem Services in Shaoguan City Based on Improved InVEST. J. Soil Water Conserv. 2020, 27, 381–388. [Google Scholar]
- Wang, S.; Huang, L.; Xu, X.; Xu, S. Spatial and temporal evolution of ecosystem sercices and its trade-offs and synergies in Guangdong-HongKong-Macao Greater Bay Area. Acta Ecol. Sin. 2020, 40, 8403–8416. [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide; The Natural Capital, Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington County, VA, USA; World Wildlife Fund: Gland, Switzerland, 2018. [Google Scholar]
- Han, H.; Luo, X.; You, R.; Luo, X.; Chen, Y. Analysis of water purification function in the Pearl River basin in Guizhou Province using InVEST model. J. Nanjing For. Univ. 2016, 40, 87–92. [Google Scholar]
- Liu, R.; Shen, Z.; Ding, X.; Wu, X.; Liu, F. Application of Export Coefficient Model in Simulating Pollution Load of Non- point Sour ce in Upper Reach of Yangtze River Basin. J. Agro-Environ. Sci. 2008, 27, 677–682. [Google Scholar]
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for spatial-temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1006–1008. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Azhdari, Z.; Sardooi, E.R.; Bazrafshan, O.; Zamani, H.; Ramezani, M. Impact of climate change on net primary production (NPP) in south Iran. Environ. Monit. Assess. 2020, 192, 1–16. [Google Scholar] [CrossRef]
- Hu, S.; Chen, L.; Li, L.; Wang, B.; Yuan, L.; Cheng, L.; Yu, Z.; Zhang, T. Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China. Int. J. Environ. Res. Public Health 2019, 16, 5104. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, T.; Li, Y.; Xie, S.; Han, B.; Zheng, H.; Ouyang, Z. Urbanization Impacts on Natural Habitat and Ecosystem Services in the Guangdong-Hong Kong-Macao “Megacity”. Sustainability 2020, 12, 6675. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, X.M.; Wei, H.; Lin, M.Z. Effect to urbanization on soil organic carbon fractions and carbon pool management index in remnant evergreen broad-leave forests of the Pearl River Delta. J. Soil Water Conserv. 2017, 31, 184–190. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Wu, J. Dynamic monitoring of long time series of ecological quality in urban agglomerations using Google Earth Engine cloud computing: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Acta Ecol. Sin. 2020, 40, 90–102. [Google Scholar]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Gilliam, F.; Liu, L.; Huang, J.; Zhang, T.; Wang, W.; Mo, J. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China. Biogeosciences 2013, 10, 6609–6616. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, F.; Liu, G.; Zhang, X.J.; Wilson, G.V.; Shi, H.; Liu, X. Seasonal changes of soil erosion and its spatial distribution on a long gentle hillslope in the Chinese Mollisol region. Int. Soil Water Conserv. Res. 2021, 9, 394–404. [Google Scholar] [CrossRef]
- Yang, C.; Su, Z.A.; Fan, J.R.; Fang, H.D.; Shi, L.T.; Zhang, J.H.; He, Z.Y.; Zhou, T.; Wang, X.Y. Simulation of the landform change process on a purple soil slope due to tillage erosion and water erosion using UAV technology. J. Mt. Sci. 2020, 17, 1333–1344. [Google Scholar] [CrossRef]
- Yan, L.-B.; Kasanin-Grubin, M. Land degradation and management of red beds in China:Two case studies. J. Mt. Sci. 2019, 16, 2591–2604. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2018, 651, 218–229. [Google Scholar] [CrossRef] [PubMed]
LULC | Hj | Cabove | Cbelow | Csoil | Cdead | Load_p | Eff_p | Crit_len | Usle_c | Usle_p |
---|---|---|---|---|---|---|---|---|---|---|
Cultivated land | 0.5 | 6 | 1.5 | 10.8 | 2.2 | 4.68 | 0.3 | 25 | 0.26 | 0.15 |
Woodland | 0.9 | 21 | 5.2 | 22.57 | 20 | 0.015 | 0.8 | 300 | 0.01 | 0.7 |
Grassland | 0.7 | 2.1 | 9.5 | 9.99 | 2 | 0.1 | 0.48 | 150 | 0.06 | 0.6 |
Waterbody | 0.5 | 0 | 0 | 0 | 0 | 0.001 | 0.05 | 150 | 0 | 0.2 |
Wetland | 0.85 | 3 | 0.75 | 20 | 4 | 0.005 | 0.8 | 150 | 0 | 0.2 |
Construction land | 0.3 | 1 | 0.1 | 5 | 0 | 3 | 0.05 | 10 | 0.2 | 0.16 |
Bare land | 0.2 | 0 | 1 | 5 | 0 | 0.51 | 0.05 | 10 | 1 | 1 |
Year | LULC | 2005 | |||||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Woodland | Grassland | Waterbody | Wetland | Construction | Bare Land | Class Total | ||
2020 | Cultivated land | 10,762.32 | 277.85 | 16.45 | 524.08 | 6.79 | 433.18 | 0.61 | 12,040.92 |
Woodland | 241.87 | 28,334.64 | 51.19 | 62.80 | 5.05 | 235.42 | 1.48 | 29,043.57 | |
Grassland | 31.67 | 82.14 | 839.38 | 14.06 | 1.80 | 47.94 | 0.06 | 1030.35 | |
Waterbody | 567.77 | 131.99 | 15.16 | 2834.64 | 38.14 | 143.73 | 0.55 | 3774.31 | |
Wetland | 6.21 | 5.78 | 0.44 | 22.66 | 34.93 | 0.90 | 1.66 | 79.75 | |
Construction | 1433.59 | 684.61 | 56.41 | 454.97 | 9.85 | 5241.27 | 7.47 | 7948.17 | |
Bare land | 0.15 | 0.21 | 0.03 | 0.03 | 0.00 | 0.03 | 4.73 | 5.77 | |
Class Total | 13,057.18 | 29,543.23 | 980.54 | 3948.12 | 116.89 | 6121.69 | 16.63 | ||
Image Difference | −1016.26 | −499.67 | 49.82 | −173.82 | −37.14 | 1826.48 | −10.86 |
Title | HQ_Mean | NPP_Mean | CS | Soil Retention | P export | |||||
---|---|---|---|---|---|---|---|---|---|---|
2005 | 2020 | 2005 | 2020 | 2005 | 2020 | 2005 | 2020 | 2005 | 2020 | |
Unit | / | / | gC/m2 | gC/m2 | ×105 kg | ×105 kg | ×106 t | ×106 t | t | t |
PRD | 0.64 | 0.62 | 665.96 | 756.70 | 2361.34 | 2319.20 | 1453.62 | 1453.53 | 2236.66 | 2479.80 |
Guangzhou | 0.56 | 0.54 | 578.03 | 675.52 | 269.91 | 260.67 | 166.67 | 166.69 | 443.68 | 476.82 |
Shenzhen | 0.46 | 0.41 | 621.97 | 688.58 | 64.64 | 60.00 | 41.14 | 41.14 | 106.72 | 129.15 |
Foshan | 0.45 | 0.39 | 396.44 | 450.68 | 87.26 | 88.76 | 32.90 | 32.87 | 210.77 | 285.84 |
Dongguan | 0.36 | 0.31 | 426.87 | 480.38 | 58.60 | 51.67 | 26.61 | 26.61 | 155.33 | 176.61 |
Huizhou | 0.71 | 0.70 | 766.45 | 898.52 | 568.34 | 560.54 | 358.26 | 358.24 | 394.38 | 432.16 |
Zhongshan | 0.43 | 0.40 | 435.51 | 490.13 | 39.52 | 38.20 | 18.23 | 18.22 | 115.61 | 124.39 |
Zhuhai | 0.48 | 0.49 | 553.16 | 617.17 | 42.58 | 41.10 | 23.05 | 23.02 | 85.12 | 79.72 |
Jiangmen | 0.65 | 0.64 | 731.21 | 814.91 | 397.86 | 392.52 | 223.54 | 223.54 | 381.36 | 411.42 |
Zhaoqing | 0.78 | 0.77 | 740.48 | 826.36 | 832.64 | 825.74 | 563.22 | 563.21 | 343.68 | 363.71 |
External r | Internal r | ||||
---|---|---|---|---|---|
ES-ES | 2005 | 2020 | ES-ES | 2005 | 2020 |
HQ-CS | 0.934 ** | 0.937 ** | HQ-NPP | 0.696 ** | 0.650 ** |
HQ-SR | 0.564 ** | 0.555 ** | CS-SR | 0.593 ** | 0.583 ** |
HQ-WP | 0.683 ** | 0.681 ** | CS-WP | 0.463 ** | 0.463 ** |
NPP-CS | 0.722 ** | 0.679 ** | SR-WP | 0.193 ** | 0.178 ** |
NPP-SR | 0.570 ** | 0.579 ** | |||
NPP-WP | 0.342 ** | 0.307 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Yang, L.; Xu, S. The Relationships of Supporting Services and Regulating Services in National Forest City. Forests 2022, 13, 1368. https://doi.org/10.3390/f13091368
Zhang Q, Yang L, Xu S. The Relationships of Supporting Services and Regulating Services in National Forest City. Forests. 2022; 13(9):1368. https://doi.org/10.3390/f13091368
Chicago/Turabian StyleZhang, Qiongrui, Linyishu Yang, and Songjun Xu. 2022. "The Relationships of Supporting Services and Regulating Services in National Forest City" Forests 13, no. 9: 1368. https://doi.org/10.3390/f13091368
APA StyleZhang, Q., Yang, L., & Xu, S. (2022). The Relationships of Supporting Services and Regulating Services in National Forest City. Forests, 13(9), 1368. https://doi.org/10.3390/f13091368