Does the Slope Aspect Influence the Soil Organic Matter Concentration in Forest Soils?
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Variation of Soil Organic Matter Quantity of Soil Types and Pedogenetic Horizons Depending on Slope Aspect
3.2. Testing the Significance among Soil Organic Matter Content of Different Slope Aspect Categories
3.3. Correlation between Soil Organic Matter Content and Elevation, Stand Age, Production Class
3.4. Influences of Different Stand and Relief Parameters on the Soil Organic Matter Content Grouped on Slope Aspect Types
4. Discussion
4.1. Variation of Soil Organic Matter Quantity on Soil Types and Pedogenetic Horizons Depending on Slope Aspect
4.2. Testing the Significance among Soil Organic Matter Contents of Different Slope Aspect Categories
4.3. Correlations between Soil Organic Matter Content and Elevation, Stand Age, Production Class
4.4. Influences of Different Stand and Relief Parameters on the Soil Organic Matter Content Grouped on Slope Aspect Types
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eswaran, H.; Berg, E.; van den Reich, P. Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 1993, 57, 192–194. [Google Scholar] [CrossRef]
- Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 2001, 29, 535–562. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Dinca, L.; Spârchez, G.; Dinca, M.; Blujdea, V. Organic Carbon Concentrations and Stocks in Romanian Mineral Forest Soils. Ann. For. Res. 2012, 55, 229–241. [Google Scholar]
- Dey, S.K. A preliminary estimation of carbon stock sequestrated through rubber (Hevea brasiliensis) plantation in North Eastern regional of India. Indian For. 2005, 131, 1429–1435. [Google Scholar]
- Dincă, L.; Dincă, M.; Vasile, D.; Spârchez, G.; Holonec, L. Calculating organic carbon stock from forest soils. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 568–575. [Google Scholar] [CrossRef]
- Buringh, P. Organic Carbon in Soils of the World. In The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing; Woodwell, G.M., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1984. [Google Scholar]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- EC/UN-ECE; de Vries, W.; Reinds, G.J. Intensive Monitoring of Forest Ecosystems in Europe; Posch, M., Sanz, M.J., Krause, G.H.M., Calatayud, V., Renaud, J.P., Dupouey, J.L., Sterba, H., Vel, E.M., Eds.; Technical Report; EC/UN-ECE: Brussels, Geneva, 2003; p. 163. [Google Scholar]
- Liski, J.; Perruchoud, D.; Karjalainen, T. Increasing carbon stocks in the forest soils of western Europe. For. Ecol. Manag. 2002, 169, 159–175. [Google Scholar] [CrossRef]
- Smith, P.; Smith, J.; Wattenbach, M.; Meyer, J.; Lindner, M.; Zaehle, S.; Hiederer, R.; Jones, R.J.A.; Montanarella, L.; Rounsevell, M.; et al. Projected changes in mineral soil carbon of European forests, 1990–2100. Can. J. Soil Sci. 2006, 86, 159–169. [Google Scholar] [CrossRef]
- Bruce, P.J.; Frome, M.; Haites, E.; Janzen, H.; Lal, R.; Pawtian, K. Carbon sequestration in soils. J. Soil Water Conserv. 1999, 54, 382–389. [Google Scholar]
- Jha, M.N.; Gupta, M.K.; Saxena, A.; Kumar, R. Soil Organic Carbon Store in Different Forests in India. Indian For. 2003, 129, 714–724. [Google Scholar]
- Eswaran, H.; Reich, P.F.; Kimble, J.M.; Beinroth, F.H.; Padmanabhan, E.; Moncharoen, P. Global Climate Change and Pedogenic Carbonates; Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1999; pp. 15–25. [Google Scholar]
- Gower, S.T.; Vogel, J.G.; Norman, J.M.; Kucharik, C.J.; Steele, S.J.; Stow, T.K. C distribution and aboveground net primary production inaspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J. Geoph. Res. 1997, 102, 29029–29041. [Google Scholar] [CrossRef]
- Wang, C.K.; Gower, S.T.; Wang, Y.H.; Zhao, H.X.; Yan, P.; Bond-Lamberty, B.P. The influence of fire on C and net primary productionof boreal Larix gmelinii forests in north-eastern China. Glob. Chang. Biol. 2001, 7, 719–730. [Google Scholar] [CrossRef]
- Wang, C.K.; Bond-Lamberty, B.; Gower, S.T. Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Glob. Chang. Biol. 2003, 9, 1066–1079. [Google Scholar] [CrossRef]
- Smithwick, E.A.H.; Harmon, M.E.; Remillard, S.M.; Acker, S.A.; Franklin, J.F. Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecol. Appl. 2002, 12, 1303–1317. [Google Scholar] [CrossRef]
- Law, B.E.; Sun, O.J.; Campbell, J.; Van Tuyl, S.; Thornton, P.E. Changes in carbon storage and fluxes in a chronosequence of Ponderosa pine. Glob. Chang. Biol. 2003, 9, 510–524. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests, biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Martin, J.L.; Gower, S.T.; Plaut, J.; Holmes, B. Carbon pools in a boreal mixed wood logging chronosequence. Glob. Chang. Biol. 2005, 11, 1883–1894. [Google Scholar]
- Vanguelova, E.I.; Bonifacio, E.; De Vos, B.; Hoosbeek, M.R.; Berger, T.W.; Armolaitis, K.; Celi, L.; Dincă, L.; Kjønaas, O.J.; Pavlenda, P.; et al. Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales—Review and recommendations. Environ. Monit. Assess. 2016, 188, 630. [Google Scholar] [CrossRef]
- Crișan, V.; Dincă, L.; Oneț, A.; Bragă, C.I.; Enescu, E.; Teușdea, A.C.; Oneț, C. Impact of windthrows disturbance on chemical and biological properties of the forest soils from Romania. Environ. Eng. Manag. J. 2021, 20, 1163–1172. [Google Scholar]
- Schaefer, D.A.; Feng, W.T.; Zou, X.M. Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biol. Biochem. 2009, 44, 1000–1007. [Google Scholar] [CrossRef]
- Enescu, C.M.; Dincă, L.; Bratu, I.A. Chemical characteristics of the forest soils from Prahova County. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2018, 18, 109–112. [Google Scholar]
- Oneț, A.; Dincă, L.; Teușdea, A.; Crișan, V.; Bragă, C.; Enescu, R.; Oneț, C. The influence of fires on the biological activity of forest soils in Vrancea, Romania. Environ. Eng. Manag. J. 2019, 18, 2643–2654. [Google Scholar]
- Enescu, R.E.; Dinca, L.; Zup, M.; Davidescu, S.; Vasile, D. Assessment of Soil Physical and Chemical Properties among Urban and Peri-Urban Forests: A Case Study from Metropolitan Area of Brasov. Forests 2022, 13, 1070. [Google Scholar] [CrossRef]
- Albaladejo, J.; Ortiz, R.; Garcia-Franco, N.; Ruiz Navarro, A.; Almagro, M.; Garcia Pintado, J.; Martínez-Mena, M. Land use and climatechange impacts on soil organic carbon stocks in semi-arid Spain. J. Soils Sediments 2013, 13, 265–277. [Google Scholar] [CrossRef]
- Shary, P.A.; Sharaya, L.S.; Mitusov, A.V. Fundamental quantitative methods of land surface analysis. Geoderma 2002, 107, 1–32. [Google Scholar] [CrossRef]
- Murariu, G.; Dinca, L.; Tudose, N.; Crisan, V.; Georgescu, L.; Munteanu, D.; Dragu, M.D.; Rosu, B.; Mocanu, G.D. Structural Characteristics of the Main Resinous Stands from Southern Carpathians, Romania. Forests 2021, 12, 1029. [Google Scholar] [CrossRef]
- Michopoulos, P.; Kostakis, M.; Bourletsikas, A.; Kaoukis, K.; Pasias, I.; Grigoratos, T.; Thomaidis, N.; Samara, C. Concentrations of three rare elements in the hydrological cycle and soil of a mountainous fir forest. Ann. For. Res. 2022, 65, 155–164. [Google Scholar]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil carbon pools and world life zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Grigal, D.G.; Ohmann, L.F. Carbon storage in upland forestland of the Lake States. Soil Sci. Soc. Am. J. 1992, 56, 935–943. [Google Scholar] [CrossRef]
- Mueller, T.G.; Pierce, F.J. Soil carbon maps: Enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Sci. Soc. Am. J. 2003, 67, 258–267. [Google Scholar] [CrossRef]
- Nakashizuka, T.; Yusop, Z.; Nik, A.R. Altitudinal zonation of forest communities in Selangor, Peninsular Malaysia. J. Trop. For. Sci. 1992, 4, 233–244. [Google Scholar]
- Garten, C.T.; Hanson, P.J. Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 2006, 136, 342–352. [Google Scholar] [CrossRef]
- Spârchez, G.; Dincă, L.; Marin, G.; Dincă, M.; Enescu, R.E. Variation of eutric cambisols’ chemical properties based on altitudinal and geomorphological zoning. Environ. Eng. Manag. J. 2017, 16, 2911–2918. [Google Scholar]
- Sheikh, M.A.; Kumar, M.; Bussmann, R.W. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Manag. 2009, 4, 6. [Google Scholar] [CrossRef]
- Enescu, R.; Vasile, D.; Dincă, L.; Davidescu, S.; Breabăn, I.G. The favorability of orographic and edaphic factors for the main species that comprise urban forests from Brasov city. Present Environ. Sustain. Dev. 2022, 16, 139–153. [Google Scholar] [CrossRef]
- Siebyła, M.; Hilszczanska, D. Next Generation Sequencing genomic analysis of bacteria from soils of the sites with naturally-occurring summer truffle (Tuber aestivum Vittad.). Ann. For. Res. 2022, 65, 97–110. [Google Scholar]
- Kumar, S.; Kumar, M.; Sheikh, A.M. Carbon Stock Variation of Pinus roxburghii Sarg. Forest Along Altitudes of Garhwal Himalaya, India. Russ. J. Ecol. 2012, 44, 131–136. [Google Scholar] [CrossRef]
- Baritz, R.; Seufert, G.; Montanarella, L.; Van Ranst, E. Carbon concentrations and stocks in forest soils of Europe. For. Ecol. Manag. 2010, 260, 262–277. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, X.; Fang, J.; Piao, S.; Shen, H.; Zhao, S.; Peng, C. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant. Res. 2010, 123, 439–452. [Google Scholar] [CrossRef]
- Sharma, C.M.; Baduni, N.P.; Gairola, S.; Ghildiyal, S.K.; Suyal, S. Effects of slope aspects on forest compositions, community structures and soil properties in natural temperate forests of Garhwal Himalaya. J. For. Res. 2010, 21, 331–337. [Google Scholar] [CrossRef]
- Bayat, A.T. Carbon Stock in an Apennine Beach Forest. Master’s Thesis, Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands, 2011; p. 54. [Google Scholar]
- De Deyn, G.B.; Cornelissen, J.H.C.; Bardgett, R.D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. 2008, 11, 516–531. [Google Scholar] [CrossRef] [PubMed]
- Sigua, G.C.; Coleman, S.W. Spatial distribution of soil carbon in pastures with cow calf operation: Effects of slope aspect and slope position. J. Soils Sediments 2010, 10, 240–247. [Google Scholar] [CrossRef]
- Sharma, C.M.; Gairola, S.; Baduni, N.P.; Ghildiyal, S.K.; Suyal, S. Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya. India J. Biosci. 2011, 36, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Liang, E.; Li, X.; Dulamsuren, C.; Leuschner, C.; Hauck, M. Carbon pools of semi-arid Picea crassifolia forests in the Qilian Mountains (north-eastern Tibetan Plateau). For. Ecol. Manag. 2015, 343, 136–143. [Google Scholar] [CrossRef]
- Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and Soil Microbial Community: A Review. Appl. Sci. 2022, 12, 1198. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 2006, 135, 335–344. [Google Scholar] [CrossRef]
- Dinca, L.; Marin, M.; Vlad, R.; Murariu, G.; Drasovean, R.; Cretu, R.; Georgescu, L.; Timiș-Gânsac, V. Which are the Best Site and Stand Conditions for Silver Fir (Abies alba Mill.) Located in the Carpathian Mountains? Diversity 2022, 14, 547. [Google Scholar] [CrossRef]
- Baduni, N.P.; Sharma, C.M. Community structure and growing stock variation in Quercus floribunda forest on different aspects of Garhwal Himalaya. Bangladesh JFS 1999, 28, 82–93. [Google Scholar]
- Sharma, C.M.; Baduni, N.P. Effect of aspects on the structure of some natural stands of Abies pindrow in Himalayan moist temperate forest. Environmentalist 2000, 20, 309–317. [Google Scholar] [CrossRef]
- Mishra, A.; Sharma, C.M.; Sharma, S.D.; Baduni, N.P. Effect of aspect on the structure of vegetation community of moist Bhavar and Tarai Shorea robusta forest in Central Himalaya. Indian For. 2000, 126, 634–642. [Google Scholar]
- Dincă, L.; Spârchez, G.; Dincă, M. Romanian’s forest soil GIS map and database and their ecological implications. Carpathian J. Earth Environ. Sci. 2014, 9, 133–142. [Google Scholar]
- Stoica, E.; Răuță, C.; Florea, N. Methods of Chemical Analysis of the Soil; Ministerul Agriculturii: București, Romania, 1986. [Google Scholar]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2003; p. 1184. [Google Scholar]
- Rezaei, H.; Alijanpour, A.; Jafarzadeh, A.A.; Shahbazi, F. Effect of Slope Position on Soil Properties and Types Along an Elevation Gradient of Arasbaran Forest, Iran. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 449–456. [Google Scholar] [CrossRef]
- Tsui, C.C.; Chen, Z.S.; Hsieh, C.F. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 2004, 123, 131–142. [Google Scholar] [CrossRef]
- Pierson, F.B.; Mulla, D.J. Aggregate stability in the Palouse region of Washington: Effect of landscape position. Soil Sci. Soc. Am. J. 1990, 54, 1407–1412. [Google Scholar] [CrossRef]
- Plaster, E.J. Soil Science and Management, 6th ed.; Delmar Cengage Learning: Clifton Park, NY, USA, 2013. [Google Scholar]
- Manojlović, M.; Čabilovski, R.; Sitaula, B. Soil Organic Carbon in Serbian Mountain Soils: Effects of Land Use and Altitude. Pol. J. Environ. Stud. 2011, 20, 977–986. [Google Scholar]
- Sims, Z.R.; Nielsen, G.A. Organic carbon in Montana soils as related to clay content and climate. Soil Sci. Soc. Am. J. 1986, 50, 1269. [Google Scholar] [CrossRef]
- Chen, L.; He, Z.; Du, J.; Yang, J.; Zhu, X. Patterns and Controls of Soil Organic Carbon and Nitrogen in Alpine Forests of Northwestern China. Forest Sci. 2015, 61, 1033–1040. [Google Scholar] [CrossRef]
- Saby, N.P.A.; Arrouays, D.; Antoni, V.; Lemercier, B.; Follain, S.; Walter, C.; Schvartz, C. Changes in soil organic carbon in a mountainous French region, 1990–2004. Soil Use Manag. 2008, 24, 254–262. [Google Scholar] [CrossRef]
- Djukic, I.; Zehetne, F.; Tatzber, M.; Gerzabek, M.H. Soil organic-matter stocks and characteristics along an Alpine elevation gradient. J. Plant. Nutr. Soil Sci. 2010, 173, 30–38. [Google Scholar] [CrossRef]
- Tian, G.; Justicia, R.; Coleman, D.C.; Carroll, C.R. Assessment of soil and plant carbon levels in two ecosystems (woody bamboo and pasture) in Montane Ecuador. Soil Sci. 1986, 172, 459–468. [Google Scholar] [CrossRef]
- Podwojewski, P.; Poulenard, J.; Nguyet, M.L.; de Rouw, A.; Nguyen, V.T.; Pham, Q.H.; Tran, D.T. Climate and vegetation determine soil organic matter status in an alpine inner-tropical soil catena in the Fan Si Pan Mountain, Vietnam. Catena 2011, 87, 226–239. [Google Scholar] [CrossRef]
Soil Type | Horizon Ao | Horizon Bv | ||||
---|---|---|---|---|---|---|
No. of Samples | p Value | Significance Level (α) | No. of Samples | p Value | Significance Level (α) | |
Dystric cambisol | 2468 | 0.4195 | - | 3272 | 0.9598 | - |
Eutric cambisol | 2765 | 0.8665 | - | 3675 | 0.6897 | - |
*-α < 5%; **-α < 1%; ***-α < 0.1% |
Soil Type | Horizon Ao | Horizon Bv | ||||
---|---|---|---|---|---|---|
No. of Samples | p Value | Significance Level (α) | No. of Samples | p Value | Significance Level (α) | |
Dystric cambisol | 2468 | 0.32101 | - | 3272 | 0.9533 | - |
Eutric cambisol | 2765 | 0.2612 | - | 3675 | 0.5732 | - |
*-α < 5%; **-α < 1%; ***-α < 0.1% |
Soil Organic Matter Content | |||||||||
---|---|---|---|---|---|---|---|---|---|
E | N | NE | NW | S | SE | SW | W | All Slope Aspect | |
1982–1989 | |||||||||
Altitude | −0.006 | 0.028 | 0.242 | −0.163 | 0.771 | 0.284 | 0.590 | −0.133 | 0.23 |
Productivity class | −0.076 | 0.401 | −0.166 | −0.586 | 0.401 | −0.106 | 0.673 | −0.456 | 0.05 |
Stand age | 0.188 | 0.424 | −0.342 | −0.488 | 0.542 | 0.208 | 0.094 | −0.523 | −0.05 |
1982–1989 + 1990–1999 | |||||||||
Altitude | 0.076 | 0.105 | 0.277 | 0.112 | 0.309 | 0.151 | 0.029 | 0.079 | 0.14 |
Productivity class | 0.080 | 0.057 | −0.055 | −0.033 | −0.163 | 0.079 | 0.044 | −0.128 | 0.06 |
Stand age | −0.089 | 0.001 | 0.017 | 0.058 | −0.002 | 0.015 | −0.016 | −0.049 | −0.06 |
1982–1989 + 1990–1999 + 2000–2009 | |||||||||
Altitude | 0.146 | 0.177 | 0.209 | 0.214 | 0.235 | 0.227 | 0.189 | 0.148 | 0.19 |
Productivity class | 0.103 | −0.044 | −0.069 | −0.023 | −0.182 | −0.040 | −0.032 | −0.085 | −0.04 |
Stand age | −0.105 | 0.041 | 0.036 | 0.051 | 0.062 | −0.002 | −0.034 | −0.068 | 0.002 |
1982–1989 + 1990–1999 + 2000–2009 + 2010–2014 | |||||||||
Altitude | 0.170 | 0.216 | 0.177 | 0.234 | 0.234 | 0.205 | 0.209 | 0.143 | 0.197 |
Productivity class | 0.065 | −0.029 | −0.086 | −0.015 | −0.185 | −0.064 | −0.020 | −0.084 | −0.05 |
Stand age | −0.122 | 0.040 | 0.047 | 0.050 | 0.081 | 0.002 | −0.024 | −0.052 | 0.007 |
Soil Organic Matter Content | |||||||||
---|---|---|---|---|---|---|---|---|---|
E | N | NE | NW | S | SE | SW | V | All Slope Aspect | |
1982–1989 | |||||||||
Altitude | 0.707 | −0.549 | 0.805 | 0.540 | −0.059 | 0.686 | −0.15 | 0.34 | 0.433 |
Productivity class | 0.161 | −0.043 | −0.200 | −0.189 | −0.343 | 0.150 | 0.105 | −0.10 | −0.027 |
Stand age | 0.278 | −0.005 | 0.283 | 0.349 | −0.002 | 0.227 | 0.175 | 0.19 | 0.159 |
1982–1989 + 1990–1999 | |||||||||
Altitude | 0.343 | 0.238 | 0.225 | 0.328 | 0.177 | 0.299 | 0.169 | 0.22 | 0.251 |
Productivity class | 0.043 | −0.019 | −0.110 | −0.183 | 0.055 | 0.032 | −0.04 | −0.00 | −0.037 |
Stand age | 0.227 | 0.049 | 0.056 | 0.184 | −0.094 | 0.172 | 0.099 | 0.12 | 0.106 |
1982–1989 + 1990–1999 + 2000–2009 | |||||||||
Altitude | 0.323 | 0.247 | 0.271 | 0.337 | 0.287 | 0.265 | 0.208 | 0.28 | 0.275 |
Productivity class | −0.056 | −0.030 | −0.097 | −0.118 | 0.020 | −0.01 | −0.01 | −0.02 | −0.043 |
Stand age | 0.142 | 0.067 | 0.061 | 0.172 | −0.003 | 0.094 | 0.064 | 0.133 | 0.090 |
1982–1989 + 1990–1999 + 2000–2009 + 2010–2014 | |||||||||
Altitude | 0.319 | 0.250 | 0.277 | 0.329 | 0.302 | 0.267 | 0.203 | 0.282 | 0.277 |
Productivity class | −0.058 | −0.049 | −0.090 | −0.109 | 0.027 | 0.002 | −0.00 | −0.01 | −0.037 |
Stand age | 0.144 | 0.065 | 0.077 | 0.159 | −0.002 | 0.092 | 0.049 | 0.111 | 0.086 |
Independent Variables | Multiple Correlation Coefficient R | Coefficient of Determination R2 | p Value | Fexp | Degrees of Freedom |
---|---|---|---|---|---|
East | |||||
Altitude, stand age | 0.224802 | 0.050536 | 0.000865 | 7.238728 | F (2.272) |
North | |||||
Altitude, stand age | 0.214889 | 0.046177 | 0.000872 | 7.213528 | F (2.298) |
North-east | |||||
Altitude, stand age | 0.194525 | 0.037840 | 0.001240 | 6.823431 | F (2.347) |
North-west | |||||
Altitude, stand age | 0.26780 | 0.07172 | 0.00000 | 13.48162 | F (2.349) |
South | |||||
Altitude, stand age | 0.229425 | 0.052636 | 0.001225 | 6.889506 | F (2.248) |
South-east | |||||
Altitude, stand age | 0.23012 | 0.05295 | 0.00005 | 10.17667 | F (2.364) |
South-west | |||||
Altitude, stand age | 0.213546 | 0.045602 | 0.000738 | 7.382113 | F (2.309) |
West | |||||
Altitude, stand age | 0.157461 | 0.024794 | 0.042814 | 3.190775 | F (2.251) |
All slope aspects types | |||||
Altitude, stand age | 0.20971 | 0.04398 | 0.00000 | 56.55746 | F(2.246) |
Independent Variables | Multiple Correlation Coefficient R | Coefficient of Determination R2 | p Value | Fexp | Degrees of Freedom |
---|---|---|---|---|---|
East | |||||
Altitude, stand age | 0.32299 | 0.10432 | 0.00000 | 16.53927 | F (2.284) |
North | |||||
Altitude, stand age | 0.26772 | 0.07168 | 0.00000 | 13.12571 | F (2.340) |
North-east | |||||
Altitude, stand age | 0.27625 | 0.07631 | 0.00000 | 16.89535 | F (2.409) |
North-west | |||||
Altitude, stand age | 0.35099 | 0.12319 | 0.00000 | 26.90560 | F (2.383) |
South | |||||
Altitude, stand age | 0.31673 | 0.10032 | 0.00000 | 14.77447 | F (2.265) |
South-east | |||||
Altitude, stand age | 0.27319 | 0.07463 | 0.00000 | 15.20309 | F (2.377) |
South-west | |||||
Altitude, stand age | 0.205196 | 0.042105 | 0.000276 | 8.373648 | F (2.381) |
West | |||||
Altitude, stand age | 0.27016 | 0.07299 | 0.00001 | 11.73147 | F (2.298) |
All slope aspects types | |||||
Altitude, stand age | 0.2792 | 0.0780 | 0.0000 | 116.5990 | F(2.276) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enescu, R.; Dincă, L.; Vasile, D.; Vlad, R. Does the Slope Aspect Influence the Soil Organic Matter Concentration in Forest Soils? Forests 2022, 13, 1472. https://doi.org/10.3390/f13091472
Enescu R, Dincă L, Vasile D, Vlad R. Does the Slope Aspect Influence the Soil Organic Matter Concentration in Forest Soils? Forests. 2022; 13(9):1472. https://doi.org/10.3390/f13091472
Chicago/Turabian StyleEnescu, Raluca, Lucian Dincă, Diana Vasile, and Radu Vlad. 2022. "Does the Slope Aspect Influence the Soil Organic Matter Concentration in Forest Soils?" Forests 13, no. 9: 1472. https://doi.org/10.3390/f13091472
APA StyleEnescu, R., Dincă, L., Vasile, D., & Vlad, R. (2022). Does the Slope Aspect Influence the Soil Organic Matter Concentration in Forest Soils? Forests, 13(9), 1472. https://doi.org/10.3390/f13091472