Comparison of Morphological and Physiological Traits between Pinus brutia, Pinus halepensis, and Their Vigorous F1 Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Vegetative Propagation
2.2. Morphological Traits and Anatomy
2.3. Drought Experiment
2.4. Physiological Measurements
2.5. Statistical Analysis
3. Results
3.1. Hybrids Exhibit Different Morphological and Growth Parameters from P. halepensis and P. brutia
3.2. Physiological Parameters in Response to Drought
4. Discussion
4.1. Morphological Traits and Growth Parameters
4.2. Physiological Response to Drought Stress and Recovery
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barredo, J.I.; Mauri, A.; Caudullo, G.; Dosio, A. Assessing shifts of Mediterranean and arid climates under RCP4.5 and RCP8.5 climate projections in Europe. Pure Appl. Geophys. 2018, 175, 3955–3971. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.; Iglesias, A.; Lange, M.; Lionello, P.; Llasat, C.; Paz, S. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; Mcdowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.T.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Hicke, J.A.; Fisher, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macalady, K.; Mcdowell, N.; et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015, 208, 674–683. [Google Scholar] [CrossRef]
- Sánchez-Salguero, R.; Navarro-Cerrillo, R.M.; Camarero, J.J.; Fernández-Cancio, A. Drought-induced growth decline of Aleppo and Maritime pine forests in south-eastern Spain. For. Syst. 2010, 19, 458–469. [Google Scholar] [CrossRef]
- Dobbertin, M.; Eilmann, B.; Bleuler, P.; Giuggiola, A.; Pannatier, E.G.; Landolt, W.; Schleppi, P.; Rigling, A. Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol. 2010, 30, 346–360. [Google Scholar] [CrossRef]
- Grill, D. Effects of drought on needle anatomy of Pinus canariensis. Flora-Morphol. Distrib. Funct. Ecol. Plants 2004, 199, 85–89. [Google Scholar] [CrossRef]
- John, G.P.; Scoffoni, C.; Buckley, T.N.; Villar, R.; Poorter, H.; Sack, L. The anatomical and compositional basis of leaf mass per area. Ecol. Lett. 2017, 20, 412–425. [Google Scholar] [CrossRef]
- Temesgen, H.; Weiskittel, A.R. Leaf mass per area relationships across light gradients in hybrid spruce crowns. Trees-Struct. Funct. 2006, 20, 522–530. [Google Scholar] [CrossRef]
- Qi, Y.; Wei, W.; Chen, C.; Chen, L. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob. Ecol. Conserv. 2019, 18, e00606. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 2001, 82, 453–469. [Google Scholar] [CrossRef]
- Villar, R.; Merino, J. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol. 2001, 151, 213–226. [Google Scholar] [CrossRef] [PubMed]
- De Riva, E.G.; Olmo, M.; Poorter, H.; Ubera, J.L.; Villar, R. Leaf mass per Area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS ONE 2016, 11, e0148788. [Google Scholar] [CrossRef]
- Niinemets, Ü. Components of leaf dry mass per area—Thickness and density—Alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 1999, 144, 35–47. [Google Scholar] [CrossRef]
- Agathokleous, E.; Belz, R.G.; Kitao, M.; Koike, T.; Calabrese, E.J. Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. J. For. Res. 2019, 30, 1569–1580. [Google Scholar] [CrossRef]
- Ledo, A.; Paul, K.I.; Burslem, D.F.R.P.; Ewel, J.J.; Barton, C.; Battaglia, M.; Brooksbank, K.; Carter, J.; Eid, T.H.; Jacqueline, R.; et al. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytol. 2018, 217, 8–11. [Google Scholar] [CrossRef]
- Liu, M.; Li, D.; Hu, J.; Liu, D.; Ma, Z.; Cheng, X.; Zhao, C.; Liu, Q. Altitudinal pattern of shrub biomass allocation in Southwest China. PLoS ONE 2020, 15, e0240861. [Google Scholar] [CrossRef]
- Cortina, J.; Green, J.J.; Baddeley, J.A.; Watson, C.A. Root morphology and water transport of Pistacia lentiscus seedlings under contrasting water supply: A test of the pipe stem theory. Environ. Exp. Bot. 2008, 62, 343–350. [Google Scholar] [CrossRef]
- Granda, E.; Gazol, A.; Julio, J. Functional diversity differently shapes growth resilience to drought for co-existing pine species. J. Veg. Sci. 2018, 29, 265–275. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Cantero, A.; Sánchez-Salguero, R.; Sánchez-Miranda, A.; Granda, E. Forest growth responses to drought at short- and long-term scales in Spain: Squeezing the stress memory from tree rings. Front. Ecol. Evol. 2018, 6, 9. [Google Scholar] [CrossRef]
- Hilbert, D.W.; Canadell, J. Biomass partioning and resource allocation of plants from Mediterranean-type ecosystems: Possible responses to elevated atmospheric CO2. In Global Change and Meditettanean Type Ecosystems; Moreno, J.M., Oechel, W.C., Eds.; Springer US: New York, NY, USA, 1995; pp. 76–101. ISBN 9788578110796. [Google Scholar]
- Grotkopp, E.; Rejmánek, M.; Rost, T.L. Toward a causal explanation of plant invasiveness: Seedling growth and life-history strategies of 29 pine (Pinus) species. Am. Nat. 2002, 159, 396–419. [Google Scholar] [CrossRef] [PubMed]
- Galmés, J.; Cifre, J.; Medrano, H.; Flexas, J. Modulation of relative growth rate and its components by water stress in Mediterranean species with different growth forms. Ecophysiology 2005, 145, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Bussotti, F. Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: A critical overview. Glob. Chang. Biol. 2008, 14, 2727–2739. [Google Scholar] [CrossRef]
- Csilléry, K.; Buchmann, N.; Fady, B. Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir (Abies alba Mill.) populations. Evol. Appl. 2020, 13, 2357–2376. [Google Scholar] [CrossRef]
- Ouédraogo, D.; Mortier, F.; Gourlet-fleury, S.; Freycon, V.; Picard, N. Slow-growing species cope best with drought: Evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. J. Ecol. 2013, 101, 1459–1470. [Google Scholar] [CrossRef]
- Tumber-Dávila, S.J.; Schenk, H.J.; Du, E.; Jackson, R.B. Plant sizes and shapes above and belowground and their interactions with climate. New Phytol. 2022, 235, 1032–1056. [Google Scholar] [CrossRef]
- Baquedano, F.J.; Castillo, F.J. Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees 2006, 20, 689–700. [Google Scholar] [CrossRef]
- De La Mata, R.; Merlo, E.; Zas, R. Among-population variation and plasticity to drought of Atlantic, Mediterranean, and interprovenance hybrid populations of Maritime pine. Tree Genet. Genomes 2014, 10, 1191–1203. [Google Scholar] [CrossRef]
- Corcuera, L.; Gil-Pelegrín, E.; Notivol, E. Differences in hydraulic architecture between mesic and xeric Pinus pinaster populations at the seedling stage. Tree Physiol. 2012, 32, 1442–1457. [Google Scholar] [CrossRef] [Green Version]
- Mcdowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Codd, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Breda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Klein, T.; Shpringer, I.; Fikler, B.; Elbaz, G.; Cohen, S.; Yakir, D. Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species. For. Ecol. Manag. 2013, 302, 34–42. [Google Scholar] [CrossRef]
- Sperlich, D.; Chang, C.T.; Peñuelas, J.; Sabaté, S. Responses of photosynthesis and component processes to drought and temperature stress: Are Mediterranean trees fit for climate change? Tree Genet. Genomes 2019, 39, 1783–1805. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E. Water and Plant Cell. In Plant Physiology; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010; pp. 80–81. [Google Scholar]
- Halperin, O.; Gebremedhin, A.; Wallach, R.; Moshelion, M. High-throughput physiological phenotyping and screening system for the characterization of plant—Environment interactions. Plant J. 2017, 89, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Moshelion, M.; Halperin, O.; Wallach, R.; Oren, R.; Way, D.A. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: Crop water-use efficiency, growth and yield. Plant Cell Environ. 2015, 38, 1785–1793. [Google Scholar] [CrossRef]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Reum, A.; Han, A.; Seok, H. Science of the total environment evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci. Total Environ. 2021, 779, 146466. [Google Scholar] [CrossRef] [PubMed]
- Hummard, R.M.; Ryan, M.G.; Stiller, V.; Sperry, J.S. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in Ponderosa pine. Plant Syst. Evol. 2001, 24, 113–121. [Google Scholar] [CrossRef]
- Sade, N.; Gebremedhin, A.; Moshelion, M. Risk-taking plants anisohydric behavior as a stress-resistance trait. Plant Signal. Behav. 2012, 7, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, U.; Rockwell, F.E.; Holbrook, N.M.; Cochard, H. Iso/Anisohydry: A plant—Environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 2018, 23, 112–120. [Google Scholar] [CrossRef]
- Attia, Z.; Domec, J.C.; Oren, R.; Way, D.A.; Moshelion, M. Growth and physiological responses of isohydric and anisohydric poplars to drought. J. Exp. Bot. 2015, 66, 4373–4381. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Sgro, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Dungey, H.S. Pine hybrids—A review of their use performance and genetics. For. Ecol. Manag. 2001, 148, 243–258. [Google Scholar] [CrossRef]
- Bush, D. Long-term research reveals potential role of hybrids in climate-change adaptation. A commentary on ‘Expansion of the rare Eucalyptus risdonii under climate change through hybridisation with a closely related species despite hybrid inferiority’. Ann. Bot. 2022, 129, i–iii. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.; Potts, B.M.; Delzon, S. Genetic divergence in forest trees: Understanding the consequences of climate change. Funct. Ecol. 2014, 28, 22–36. [Google Scholar] [CrossRef]
- Chambel, M.R.; Climent, J.; Pichot, C.; Ducci, F. Mediterranean pines (Pinus halepensis Mill. and brutia Ten.). In Forest Tree Breeding in Europe. Managing Forest Ecosystems; Pâques, L., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 229–265. ISBN 978-94-007-6146-9. [Google Scholar]
- Korol, L.; Shklar, G.; Schiller, G. Diversity among circum-Mediterranean populations of Aleppo pine and differentiation from Brutia pine in their isoenzymes: Additional results. Silvae Genet. 2001, 51, 35–41. [Google Scholar]
- Korol, L.; Madmony, A.; Riov, J.; Schiller, G. Pinus halepensis × Pinus brutia subsp. brutia hybrids? Identification using morphological and biochemical traits. Silvae Genet. 1995, 44, 186–190. [Google Scholar]
- Madmony, A.; Schiller, G.; Moshe, Y.; Tsabary, G.; Mendel, Z.; Riov, J. Controlled and open pollination between Pinus brutia (Ten.) and Pinus halepensis (Mill.) in Israel and hybrid performance. Isr. J. Plant Sci. 2003, 51, 213–222. [Google Scholar] [CrossRef]
- Houminer, N.; Doron-faigenboim, A.; Shklar, G.; La Torre, A.R.D.; Neale, D.; Korol, L.; Ashkenazi, M.; Moshe, Y.; Riov, J.; Osem, Y.; et al. Transcriptome-based single-nucleotide polymorphism markers between Pinus brutia and Pinus halepensis and the analysis of their hybrids. Tree Genet. Genomes 2021, 17, 14. [Google Scholar] [CrossRef]
- Riov, J.; Fox, H.; Attias, R.; Shklar, G.; Farkash-Haim, L.; Sitbon, R.; Moshe, Y.; Abu-Abied, M.; Sadot, E.; David-Schwartz, R. Improved method for vegetative propagation of mature Pinus halepensis and its hybrids by cuttings. Isr. J. Plant Sci. 2020, 67, 5–15. [Google Scholar] [CrossRef]
- Andivia, E.; Madrigal-Gonzalez, J.; Villar-Salvador, P.; Zavala, M.A. Do adult trees increase conspecific juvenile resilience to recurrent droughts? Implications for forest regeneration. Ecosphere 2018, 9, e02282. [Google Scholar] [CrossRef]
- Kitikidou, K.; Milios, E.; Radoglou, K. Single-entry volume table for Pinus brutia in a planted peri-urban. Ann. Silvic. Res. 2017, 41, 78–83. [Google Scholar] [CrossRef]
- Johansen, D.A. Plant Microtechnique; McGraw-Hill Book: New York, NY, USA, 1940. [Google Scholar]
- Dalal, A.; Shenhar, I.; Bourstein, R.; Mayo, A.; Grunwald, Y.; Averbuch, N.; Attia, Z.; Wallach, R.; Moshelion, M. A High-Throughput gravimetric phenotyping platform for real-time physiological screening of plant–environment dynamic responses. BioRxiv 2020, 31, 927517. [Google Scholar] [CrossRef]
- Fox, H.; Doron-Faigenboim, A.; Kelly, G.; Bourstein, R.; Attia, Z.; Zhou, J.; Moshe, Y.; Moshelion, M.; David-Schwartz, R. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiol. 2018, 38, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Gosa, S.C.; Gebeyo, B.A.; Patil, R.; Mencia, R.; Moshelion, M. Diurnal stomatal apertures and density ratios affect whole-canopy stomatal conductance, water-use efficiency and yield. BioRxiv 2022. [Google Scholar] [CrossRef]
- Negin, B.; Moshelion, M. The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Funct. Plant Biol. 2017, 44, 107–118. [Google Scholar] [CrossRef]
- Dalal, A.; Shenhar, I.; Bourstein, R.; Mayo, A.; Grunwald, Y.; Averbuch, N.; Attia, Z.; Wallach, R.; Moshelion, M. A telemetric, gravimetric platform for real-time physiological phenotyping of plant–environment interactions. J. Vis. Exp. 2020, 162, e61280. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Dangasuk, O.G.; Panetsos, K.P. Altitudinal and longitudinal variations in Pinus brutia (Ten.) of Crete Island, Greece: Some needle, cone and seed traits under natural habitats. New For. 2004, 27, 269–284. [Google Scholar] [CrossRef]
- Panetsos, K.P. Natural hybridization between Pinus halapensis and Pinus brutia in Greece. Silvae Genet. 1975, 24, 163–168. [Google Scholar]
- Climent, J.; Costa e Silva, F.; Chambel, M.R.; Pardos, M.; Almeida, M.H. Freezing injury in primary and secondary needles of Mediterranean pine species of contrasting ecological niches. Ann. For. Sci. 2009, 66, 407. [Google Scholar] [CrossRef]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef]
- Collet, C.; Guehl, J.; Frochot, H.; Ferhi, A. Effect of two forest grasses differing in their growth dynamics on the water relations and the growth of Quercus petraea seedlings. Can. J. Bot. 1996, 74, 1562–1571. [Google Scholar] [CrossRef]
- Newton, M.; Preest, D.S. Growth and water relations of Douglas Fir (Pseudotsuga menziesii) seedlings under different weed control regimes. Weed Sci. 1988, 36, 653–662. [Google Scholar] [CrossRef]
- Sands, R.; Nambiar, E.K.S. Water relations of Pinus radiata in competition with weeds. Can. J. For. Res. 1984, 14, 233–237. [Google Scholar] [CrossRef]
- Lloret, F.; Casanovas, C.; Peñuelas, J. Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. Funct. Ecol. 1999, 13, 210–216. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Wang, T.; Aitken, S.N.; Kavanagh, K.L. Selection for improved growth and wood quality in lodgepole pine: Effects on phenology, hydraulic architecture and growth of seedlings. Trees-Struct. Funct. 2003, 17, 269–277. [Google Scholar] [CrossRef]
- Frampton, J.; Li, B.; Goldfarb, B. Early field growth of Loblolly pine rooted cuttings and seedlings. South. J. App. For. 2000, 24, 98–105. [Google Scholar] [CrossRef]
- Pallardy, S.G.; Cermak, J.; Ewers, F.W.; Kaufmann, M.R.; Parker, W.C.; Sperry, J.S. Water transport dynamics in trees and stands. In Resource Physiology of Conifers: Acquisition, Allocation, and Utilization; Smith, W.K., Hinckley, T.M., Eds.; Academic Press: San Diego, CA, USA, 1995; pp. 301–396. ISBN 0126528705. [Google Scholar]
- Klein, T.; Cohen, S.; Yakir, D. Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol. 2011, 31, 637–648. [Google Scholar] [CrossRef]
- Quezel, P. Taxonomy and biogeography of Mediterranean pines (Pinus halepensis and P. bruita). In Ecology, Biogeography and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean Basin; Ne’eman, G., Trabaud, L., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2000; pp. 1–12. ISBN 9057820552. [Google Scholar]
- Gu, L.; Pallardy, S.G.; Hosman, K.P.; Sun, Y. Drought-influenced mortality of tree species with different predawn leaf water dynamics in a decade-long study of a central US forest. Biogeosiences 2015, 12, 2831–2845. [Google Scholar] [CrossRef]
- Grunwald, C.; Schiller, G. Needle xylem water potential and water saturation deficit in provenances of Pinus halepensis Mill. and P. brutia Ten. For. Méditerr. 1988, 10, 407–414. [Google Scholar]
- Vilagrosa, A.; Chirino, E.; Peguero-Pina, J.-J.; Barigah, S.T.; Cochard, H.; Gil-Pelegrín, E. Xylem cavitation and embolism in plants living in water-limited ecosystems. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Springer: Hidelberg/Berlin, Germany, 2012; pp. 63–109. ISBN 9783642326530. [Google Scholar]
- Wagner, Y.; Feng, F.; Yakir, D.; Klein, T.; Hochberg, U. In situ, direct observation of seasonal embolism dynamics in Aleppo pine trees growing on the dry edge of their distribution. New Phytol. 2022, 235, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 2009, 149, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodribb, T.J.; Bowman, D.J.M.S.; Nichols, S.; Delzon, S.; Burlett, R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 2010, 188, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Lamy, J.; Loya-rebollar, E.; Lobit, P.; Delzon, S. Genetic variation of drought-induced cavitation resistance among Pinus hartwegii populations from an altitudinal gradient. Acta Physiol. Plant. 2013, 35, 2905–2913. [Google Scholar] [CrossRef]
- Lamy, J.; Delzon, S.; Bouche, P.S.; Alia, R.; Vendramin, G.G. Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytol. 2014, 201, 874–886. [Google Scholar] [CrossRef]
- David-Schwartz, R.; Paudel, I.; Mizrachi, M.; Delzon, S.; Cochard, H.; Lukyanov, V.; Badel, E.; Capdeville, G.; Shklar, G.; Cohen, S. Indirect evidence for genetic differentiation in vulnerability to embolism in Pinus halepensis. Front. Plant Sci. 2016, 7, 768. [Google Scholar] [CrossRef]
R2 | p Value | P. halepensis | P. brutia | Hybrid | |
---|---|---|---|---|---|
RGR (cm3/day) | 0.37 | 0.0186 | 0.014 a ± 0.001 | 0.014 a ± 0.001 | 0.011 b ± 0.001 |
Total plant DW (gr) | 0.58 | 0.0033 | 203 a ± 19 | 236 a ± 19 | 107 b ± 24 |
Total branch DW (gr) | 0.57 | 0.0038 | 73 a ± 8.2 | 74 a ± 8.2 | 24.6 b ± 10 |
Root/Shoot ratio | 0.38 | 0.0464 | 0.28 b ± 0.034 | 0.3 ab ± 0.03 | 0.4 a ± 0.034 |
Total needles DW (gr) | 0.50 | 0.0112 | 87 ab ± 10 | 110 a ± 10 | 52 b ± 12 |
Needle length (cm) | 0.92 | 0.0002 | 16 c ± 0.97 | 20 b ± 0.97 | 27 a ± 0.84 |
Needle average area (cm2) | 0.58 | 0.0462 | 2 b ± 0.43 | 3.22 ab ± 0.43 | 3.76 a ± 0.37 |
Needle cross section (mm2) | 0.63 | 0.0300 | 0.38 b ± 0.11 | 0.57 ab ± 0.11 | 0.86 a ± 0.09 |
Average needle volume (mm3) | 0.84 | 0.0016 | 55 b ± 24 | 89 b ± 24 | 233 a ± 21 |
Needle LMA (gr/m2) | 0.84 | 0.0014 | 145 c ± 11 | 183 b ± 11 | 235 a ± 9.6 |
Tracheid lumen area (μm2) | 0.32 | 0.2548 | 180 a ± 20 | 220 a ± 20 | 177 a ± 17 |
Tracheid lumen area CV | 0.12 | 0.6200 | 26.3 a ± 3 | 28.5 a ± 3 | 30.4 a ± 2.6 |
% Mesophyll area in needle cross section | 0.05 | 0.8247 | 0.72 a ± 0.02 | 0.73 a ± 0.02 | 0.71 a ± 0.01 |
WUE | 0.42 | 0.0371 | 0.030 a ± 0.003 | 0.032 a ± 0.001 | 0.019 b ± 0.002 |
P. halepensis | P. brutia | Hybrid | |
---|---|---|---|
R2 | 0.963 | 0.825 | 0.77 |
p value | 0.0005 | 0.0123 | <0.0001 |
Slope | 1.2 a ± 0.12 | 0.66 b ± 0.15 | 0.94 a ± 0.12 |
Intercept | −5.05 b ± 0.43 | −2.77 a ± 0.53 | −4.07 c ± 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houminer, N.; Riov, J.; Moshelion, M.; Osem, Y.; David-Schwartz, R. Comparison of Morphological and Physiological Traits between Pinus brutia, Pinus halepensis, and Their Vigorous F1 Hybrids. Forests 2022, 13, 1477. https://doi.org/10.3390/f13091477
Houminer N, Riov J, Moshelion M, Osem Y, David-Schwartz R. Comparison of Morphological and Physiological Traits between Pinus brutia, Pinus halepensis, and Their Vigorous F1 Hybrids. Forests. 2022; 13(9):1477. https://doi.org/10.3390/f13091477
Chicago/Turabian StyleHouminer, Naomi, Joseph Riov, Menachem Moshelion, Yagil Osem, and Rakefet David-Schwartz. 2022. "Comparison of Morphological and Physiological Traits between Pinus brutia, Pinus halepensis, and Their Vigorous F1 Hybrids" Forests 13, no. 9: 1477. https://doi.org/10.3390/f13091477
APA StyleHouminer, N., Riov, J., Moshelion, M., Osem, Y., & David-Schwartz, R. (2022). Comparison of Morphological and Physiological Traits between Pinus brutia, Pinus halepensis, and Their Vigorous F1 Hybrids. Forests, 13(9), 1477. https://doi.org/10.3390/f13091477