Management of Birch Spruce Mixed Stands with Consideration of Carbon Stock in Biomass and Harvested Wood Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Measurements
2.3. Calculations
3. Results
3.1. Carbon Stock between Different Management Practices
3.2. CB of HWP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathwys; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018. [Google Scholar]
- United Nations Framework Convention of Climate Change (UNFCCC). Paris Agreement; UNFCCC: Geneva, Switzerland, 2015; pp. 1–32. [Google Scholar]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on the Inclusion of Greenhouse Gas Emissions; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Karjalainen, T.; Kellomäki, S.; Pussinen, A. Role of wood-based products in absorbing atmospheric carbon. Silva Fennica 1994, 28, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, T. Does biofuel harvesting and continuous cover management increase carbon sequestration? For. Policy Econ. 2014, 43, 41–50. [Google Scholar] [CrossRef]
- Fortin, M.; Ningre, F.; Robert, N.; Mothe, F. Quantifying the impact of forest management on the carbon balance of the forest-wood product chain: A case study applied to even-aged oak stands in France. For. Ecol. Manag. 2012, 279, 176–188. [Google Scholar] [CrossRef]
- Liski, J.; Pussinen, A.; Pingoud, K.; Mäkipää, R.; Karjalainen, T. Which rotation length is favourable to carbon sequestration? Can. J. For. Res. 2001, 31, 2004–2013. [Google Scholar] [CrossRef]
- Jandl, R.; Ledermann, T.; Kindermann, G.; Freudenschuss, A.; Gschwantner, T.; Weiss, P. Strategies for climate-smart forest management in Austria. Forests 2018, 9, 592. [Google Scholar] [CrossRef] [Green Version]
- Sathre, R.; O’Connor, J. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ. Sci. Policy 2010, 13, 104–114. [Google Scholar] [CrossRef]
- Sikkema, R.; Dallemand, J.F.; Matos, C.T.; van der Velde, M.; San-Miguel-Ayanz, J. How can the ambitious goals for the EU’s future bioeconomy be supported by sustainable and efficient wood sourcing practices? Scand. J. For. Res. 2017, 32, 551–558. [Google Scholar] [CrossRef]
- Roman, K.; Barwicki, J.; Rzodkiewicz, W.; Dawidowski, M. Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process. Energies 2021, 14, 3270. [Google Scholar] [CrossRef]
- Pukkala, T. Does management improve the carbon balance of forestry? Forestry 2017, 90, 125–135. [Google Scholar] [CrossRef]
- Shen, Y.; Cheng, R.; Xiao, W.; Yang, S.; Guo, Y.; Wang, N.; Zeng, L.; Wang, X. Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Sci. Rep. 2018, 8, 573. [Google Scholar] [CrossRef]
- Horner, G.J.; Baker, P.J.; Nally, R.M.; Cunningham, S.C.; Thomson, J.R.; Hamilton, F. Forest structure, habitat and carbon benefits from thinning floodplain forests: Managing early stand density makes a difference. For. Ecol. Manag. 2010, 259, 286–293. [Google Scholar] [CrossRef]
- Verschuyl, J.; Riffell, S.; Miller, D.; Wigley, T.B. Biodiversity response to intensive biomass production from forest thinning in North American forests—A meta-analysis. For. Ecol. Manag. 2011, 261, 221–232. [Google Scholar] [CrossRef]
- European Commission. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives. 2020. Available online: https//ec.europa.eu/environment/strategy/biodiversity-strategy-2030_en (accessed on 9 June 2021).
- Laganière, J.; Cavard, X.; Brassard, B.W.; Paré, D.; Bergeron, Y.; Chen, H.Y.H. The influence of boreal tree species mixtures on ecosystem carbon storage and fluxes. For. Ecol. Manag. 2015, 354, 119–129. [Google Scholar] [CrossRef]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manage. 2010, 259, 857–866. [Google Scholar] [CrossRef]
- Tahvonen, O. Economics of rotation and thinning revisited: The optimality of clearcuts versus continuous cover forestry. For. Policy Econ. 2016, 62, 88–94. [Google Scholar] [CrossRef]
- Zālītis, P.; Jansons, J. Latvijas Mežu Tipoloģija un tās Nākotne; Daugavpils Universitātes Akadēmiskais Apgāds: Salaspils, Latvija, 2013. [Google Scholar]
- Sandström, F.; Petersson, H.; Kruys, N.; Ståhl, G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. For. Ecol. Manag. 2007, 243, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Pilli, R.; Fiorese, G.; Grassi, G. EU mitigation potential of harvested wood products. Carbon Balance Manag. 2015, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Browning, B.L. The Chemistry of Wood; Inter-Science: London, UK; New York, NY, USA, 1966. [Google Scholar]
- Lamlom, S.H.; Savidge, R.A. A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy 2003, 25, 381–388. [Google Scholar] [CrossRef]
- Grassi, G.; Fiorese, G.; Pilli, R.; Jonsson, K.; Blujdea, V.; Korosuo, A.; Vizzarri, M. Brief on the Role of the Forest-Based Bioeconomy in Mitigating Climate Change through Carbon Storage and Material Substitution, Sanchez Lopez, J., Jasinevičius, G., Avraamides, M., Eds.; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Ozoliņš, R. Forest stand assortment structure analysis using mathematical modelling. For. Stud. 2002, 7, 33–45. [Google Scholar]
- Cremer, M.; Kern, N.V.; Prietzel, J. Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. For. Ecol. Manag. 2016, 367, 30–40. [Google Scholar] [CrossRef]
- Berger, T.W.; Inselsbacher, E.; Zechmeister-Boltenstern, S. Carbon dioxide emissions of soils under pure and mixed stands of beech and spruce, affected by decomposing foliage litter mixtures. Soil Biol. Biochem. 2010, 42, 986–997. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Petersen, A.K.; Solberg, B. Environmental and economic impacts of substitution between wood products and alternative materials: A review of micro-level analyses from Norway and Sweden. For. Policy Econ. Elsevier. 2005, 7, 249–259. [Google Scholar] [CrossRef]
- Peter, H. Climate effects of the forest-based sector in the European Union. Confed. Eur. Pap. Ind. 2020, 1–25. Available online: https://www.cepi.org/wp-content/uploads/2020/07/Cepi_-study.pdf (accessed on 16 November 2022).
- Pukkala, T. Optimizing forest management in Finland with carbon subsidies and taxes. For. Policy Econ. 2011, 13, 425–434. [Google Scholar] [CrossRef]
- Pukkala, T.; Lähde, E.; Laiho, O.; Salo, K.; Hotanen, J.-P. A multifunctional comparison of even-aged and uneven-aged forest management in a boreal region. Can. J. For. Res. 2011, 41, 851–862. [Google Scholar] [CrossRef]
- Rüter, S.; Werner, F.; Forsell, N.; Prins, C.; Vial, E.; Levet, A.L. ClimWood2030-Climate Benefits of Material Substitution by Forest Biomass and Har-Vested Wood Products: Perspective 2030; Final Report; Thünen: Braunschweig, Germany, 2016. [Google Scholar] [CrossRef]
- Parobek, J.; Paluš, H.; Moravčík, M.; Kovalčík, M.; Dzian, M.; Murgaš, V.; Šimo-Svrček, S. Changes in Carbon Balance of Harvested Wood Products Resulting from Different Wood Utilization Scenarios. Forests 2019, 10, 590. [Google Scholar] [CrossRef]
Assortments | Sawn Wood | Mechanical Mass | Chemical Mass | Biofuel |
---|---|---|---|---|
Spruce saw log | 43 | 0 | 0 | 57 |
Spruce pulpwood * | 0 | 76 | 8 | 16 |
Birch saw log | 43 | 0 | 0 | 57 |
Birch pulpwood * | 0 | 0 | 46 | 54 |
Parameters ± CI | Unmanaged Stands | Managed Stands | |
---|---|---|---|
Spruce | Birch | Spruce | |
Mean tree DBH, cm | 15.23 ± 0.30 | 22.74 ± 0.44 | 18.14 ± 1.45 |
Mean tree height, m | 14.28 ± 0.23 | 24.83 ± 0.31 | 15.58 ± 1.20 |
Mean basal area, m2 ha−1 | 15.31 ± 1.80 | 21.61 ± 2.09 | 17.55 ± 1.88 |
Mean stand volume, m3 ha−1 | 139.43 ± 18.52 | 269.18 ± 30.58 | 139.68 ± 21.99 |
Number of sample plots | 29 | 29 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuguls, J.; Dubra, S.; Garanča, A.; Zute, D.; Jansons, Ā. Management of Birch Spruce Mixed Stands with Consideration of Carbon Stock in Biomass and Harvested Wood Products. Forests 2023, 14, 57. https://doi.org/10.3390/f14010057
Vuguls J, Dubra S, Garanča A, Zute D, Jansons Ā. Management of Birch Spruce Mixed Stands with Consideration of Carbon Stock in Biomass and Harvested Wood Products. Forests. 2023; 14(1):57. https://doi.org/10.3390/f14010057
Chicago/Turabian StyleVuguls, Jānis, Stefānija Dubra, Anete Garanča, Daiga Zute, and Āris Jansons. 2023. "Management of Birch Spruce Mixed Stands with Consideration of Carbon Stock in Biomass and Harvested Wood Products" Forests 14, no. 1: 57. https://doi.org/10.3390/f14010057
APA StyleVuguls, J., Dubra, S., Garanča, A., Zute, D., & Jansons, Ā. (2023). Management of Birch Spruce Mixed Stands with Consideration of Carbon Stock in Biomass and Harvested Wood Products. Forests, 14(1), 57. https://doi.org/10.3390/f14010057