Colour and Chemical Changes of Black Locust Wood during Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Chemical Analyses
2.3. Colour Measurement
2.4. FTIR Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Changes
3.2. Colour Changes with Statistical Evaluation
3.3. Changes in FTIR Spectra
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jones, D.; Kržišnik, D.; Hočevar, M.; Zagar, A.; Humar, M.; Popescu, C.-M.; Popescu, M.-C.; Brischke, C.; Nunes, L.; Curling, S.F.; et al. Evaluation of the Effect of a Combined Chemical and Thermal Modification of Wood though the Use of Bicine and Tricine. Forests 2022, 13, 834. [Google Scholar] [CrossRef]
- Bekhta, P.; Krystofiak, T.; Lis, B.; Bekhta, N. The Impact of Sanding and Thermal Compression of Wood, Varnish Type and Artificial Aging in Indoor Conditions on the Varnished Surface Color. Forests 2022, 13, 300. [Google Scholar] [CrossRef]
- Esteves, B.; Ayata, U.; Gurleyen, L. Effect of heat treatment on the colour and glossiness of black locust, wild pear, linden, alder and willow wood. Drewno 2019, 62, 39–52. [Google Scholar] [CrossRef]
- Zhan, T.; Zhu, J.; Liu, Z.; Li., T.; Peng, H.; Jiang, J.; Lyu, J. Meta-analysis of chromatic properties of heat-treated wood. Eur. J. Wood Prod. 2022, 80, 851–858. [Google Scholar] [CrossRef]
- Torniainen, P.; Jones, D.; Sandberg, D. Colour as a quality indicator for industrially manufactured ThermoWood®. Wood Mater. Sci. Eng. 2021, 16, 287–289. [Google Scholar] [CrossRef]
- Liu, X.Y.; Tu, X.W.; Liu, U. Effects of light thermal treatments on the color, hygroscopity and dimensional stability of wood. Wood Res. 2021, 66, 95–104. [Google Scholar] [CrossRef]
- Sundqvist., B.; Morén, T. The influence of wood polymers and extractives on wood colour induced by hydrothermal treatment. Eur. J. Wood Wood Prod. 2002, 60, 375–376. [Google Scholar] [CrossRef]
- Patzelt, M.; Emsenhuber, G.; Stingl, R. Colour Measurement as means of quality control of thermally treated wood. In Proceedings of the Abstracts of the first European conference on wood modification, Ghent, Belgium, 3–4 April 2003. [Google Scholar]
- Mitsui, K.; Takada, H.; Sugiyama, M.; Hasegawa, R. Changes in the properties of light-irradiated wood with heat treatment: Part 1 Effect of treatment conditions on the change in colour. Holzforschung 2001, 55, 601–605. [Google Scholar] [CrossRef]
- Jiang, H.C.; Lu, Q.J.; Li, G.J.; Li, M.; Li, J.N. Effect of heat treatment on the surface color of rubber wood (Hevea brasiliensis). Wood Res 2020, 65, 633–644. [Google Scholar] [CrossRef]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57. [Google Scholar] [CrossRef]
- Kačíková, D.; Kačík, F.; Čabalová, I.; Durkovič, J. Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresour. Technol. 2013, 144, 669–674. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačík, F. Changes of the wood surface colour induced by CO2 laser and its durability after the xenon lamp exposure. Wood Res. 2013, 58, 581–590. [Google Scholar]
- Matsuo, M.; Yokoyama, M.; Umemura, K.; Gril, J.; Yano, K.; Kawai, S. Color changes in wood during heating: Kinetic analysis by applying a time temperature superposition method. Appl. Phys. A 2010, 99, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Gao, J.; Chen, Y. Colour responses of black locust (Robinia pseudoacacia L.) to solvent extraction and heat treatment. Wood Sci. Technol. 2010, 44, 667–678. [Google Scholar] [CrossRef]
- Moya, R.; Fallas, R.S.; Bonilla, P.J.; Tenorio, C. Relationship Between Wood Color Parameters Measured by the CIELab System and Extractive and Phenol Content in Acacia mangium and Vochysia guatemalensis from Fast-Growth Plantations. Molecules 2012, 17, 3639–3652. [Google Scholar] [CrossRef] [Green Version]
- Rédei, K.; Veperdi, I. The role of black locust (Robinia pseudoacacia L.) in establishment of short-rotation energy plantations in Hungary. Int. J. Hortic. Sci. 2009, 15, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-López, L.; Martín-Sampedro, R.; Eugenio, M.E.; Santos, J.I.; Sixto, H.; Cañellas, I.; Ibarra, D. Co-production of soluble sugars and lignin from short rotation white poplar and black locust crops. Wood Sci. Technol. 2020, 54, 1617–1643. [Google Scholar] [CrossRef]
- Li, G.; Xu, G.; Guo, K.; Du, S. Mapping the Global Potential Geographical Distribution of Black Locust (Robinia Pseudoacacia L.) Using Herbarium Data and a Maximum Entropy Model. Forests 2014, 5, 2773–2792. [Google Scholar] [CrossRef] [Green Version]
- Sitzia, T.; Cierjacks, A.; de Rigo, D.; Caudullo, G. Robinia pseudoacacia in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; p. e014e79+. [Google Scholar]
- Sikora, A.; Kačík, F.; Gaff, M.; Vondrová, V.; Bubeníková, T.; Kubovský, I. Impact of thermal modification on color and chemical changes of spruce and oak wood. J. Wood Sci. 2018, 64, 406–416. [Google Scholar] [CrossRef]
- Sikora, A.; Hájková, K.; Jurczyková, T. Degradation of Chemical Components of Thermally Modified Robinia pseudoacacia L. Wood and Its Effect on the Change in Mechanical Properties. Int. J. Mol. Sci. 2022, 23, 15652. [Google Scholar] [CrossRef] [PubMed]
- ASTM D1107-21; Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International: West Conshohocken, PA, USA, 2021.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in biomass: Laboratory Analytical Procedure (LAP); NREL/TP-510-42618. Version 08-03-2012; National Renewable Energy Laboratory: Golden, CO, USA.
- Seifert, V.K. Über ein neues Verfahren zur Schnellbestimmung der Rein—Cellulose. Papier 1956, 10, 301–306. [Google Scholar]
- Wise, L.E.; Maxine, M.; D’Addieco, A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J. 1946, 122, 35–43. [Google Scholar]
- Chen, Y.; Fan, Y.; Gao, J.; Stark, N.M. The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour. BioResources 2012, 7, 1157–1170. [Google Scholar] [CrossRef]
- Ferreira, S.; Gil, N.; Queiroz, J.A.; Duarte, A.P.; Domingues, F.C. An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresour. Technol. 2011, 102, 4766–4773. [Google Scholar] [CrossRef]
- Yáñez, R.; Romaní, A.; Garrote, G.; Alonso, J.L.; Parajó, J.C. Experimental evaluation of alkaline treatment as a method for enhancing the enzymatic digestibility of autohydrolysed Acacia dealbata. J. Chem. Technol. Biotechnol. 2009, 84, 1070–1077. [Google Scholar] [CrossRef]
- Hoa, D.T.; Man, T.D.; Hau, N.V. Pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Asian J. Appl. Sci. Technol. 2008, 25, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Kačík, F.; Ďurkovič, J.; Kačíková, D.; Zenková, E. Changes in the chemical composition of black locust wood after hot-water pretreatment before bioethanol production. Acta Facultatis Xylologiae Zvolen. 2016, 58, 15–23. [Google Scholar] [CrossRef]
- Esteves, B.; Graca, J.; Pereira, H. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 2008, 62, 344–351. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, J.; Fan, Y.; Tshabalala, M.A.; Stark, N.M. Heat-induced chemical and color changes of extractive-free black locust (Robinia pseudoacacia) wood. BioResources 2012, 7, 2236–2248. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Jung, S.; Ragauskas, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 2012, 117, 7–12. [Google Scholar] [CrossRef]
- Shinde, S.D.; Meng, X.; Kumar, R.; Ragauskas, A.J. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 2018, 20, 2192–2205. [Google Scholar] [CrossRef] [Green Version]
- Kučerová, V.; Lagaňa, R.; Výbohová, E.; Hýrošová, T. The Effect of Chemical Changes during Heat Treatment on the Color and Mechanical Properties of Fir Wood. Bioresources 2016, 11, 9079–9094. [Google Scholar] [CrossRef]
- Bayani, S.; Bazyar, B.; Mirshokraie, S.A.; Taghiyari, H.R. Effects of heat treatment on the relative amounts of cellulose in nanosilver-impregnated and untreated poplar wood (Populus alba). Floresta Ambiente 2019, 26, e20160398. [Google Scholar] [CrossRef]
- Nguyen, T.H.V.; Nguyen, T.T.; Ji, X.; Minghui Guo, M. Predicting Color Change in Wood During Heat Treatment Using an Artificial Neural Network Model. BioResources 2018, 13, 6250–6264. [Google Scholar] [CrossRef]
- Torniainen, P.; Popescu, C.-M.; Jones, D.; Scharf, A.; Sandberg, D. Correlation of Studies between Colour, Structure and Me-chanical Properties of Commercially Produced ThermoWood® Treated Norway Spruce and Scots Pine. Forests 2021, 12, 1165. [Google Scholar] [CrossRef]
- Piernik, M.; Woźniak, M.; Pinkowski, G.; Szentner, K.; Ratajczak, I.; Krauss, A. Color as an Indicator of Properties in Thermally Modified Scots Pine Sapwood. Materials 2022, 15, 5776. [Google Scholar] [CrossRef]
- Hrčka, R. Identification of discoloration of beech wood in CIELAB space. Wood Res. 2008, 53, 119–124. [Google Scholar]
- Tolvaj, L.; Molnár, S.; Németh, R.; Varga, D. Color modification of black locust depending on the steaming parameters. Wood Res. 2010, 55, 81–88. [Google Scholar]
- Banadics, E.A.; Tolvaj, L.; Varga, D. Steaming of Poplar, Black Locust and Beech Timbers Simultaneously to Investigate Colour Modification Effect of Extractive Transport. Drewno 2022, 65. [Google Scholar] [CrossRef]
- Hon, D.N.S. Weathering and photochemistry. In Wood and Cellulosic Chemistry; Hon, D.N., Shiraishi, N., Eds.; Marcel Dekker: New York, NY, USA, 2001; pp. 513–546. [Google Scholar]
- Cirule, D.; Kuka, E.; Kevers, M.; Andersone, I.; Andersons, B. Photodegradation of Unmodified and Thermally Modified Wood Due to Indoor Lighting. Forests 2021, 12, 1060. [Google Scholar] [CrossRef]
- Polčin, J.; Rapson, W.H. Effect of Bleaching Agents on the Absorption of Lignin in Groundwood Pulps. Part II. Oxidative-Reductive Bleaching. Pulp Paper Mag. Can. 1971, 72, 80–91. [Google Scholar]
- Tribulová, T.; Kačík, F.; Evtuguin, D.; Čabalová, I. Assessment of chromophores in chemically treated and aged wood by UV-VIS diffuse reflectance spectroscopy. Cellul. Chem. Technol. 2016, 50, 659–667. [Google Scholar]
- Wei, Y.X.; Wang, M.J.; Zhang, P.; Chen, Y.; Gao, J.M.; Fan, Y.M. The role of phenolic extractives in color changes of locust wood (Robinia pseudoacacia) during heat treatment. Bioresources 2017, 12, 7041–7055. [Google Scholar]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Inari, G.N.; Petrissans, M.; Gerardin, P. Chemical reactivity of heat-treated wood. Wood Sci. Technol. 2007, 41, 157–168. [Google Scholar] [CrossRef]
- Tolvaj, L. Traditions, anomalies, mistakes and recommendations in infrared spectrum measurement for wood. Wood. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Lagaňa, R.; Csiha, C.; Horváth, N.; Tolvaj, L.; Andor, T.; Kúdela, J.; Németh, R.; Kačík, F.; Ďurkovič, J. Surface properties of thermally treated European beech wood studied by PeakForce Tapping atomic force microscopy and Fourier-transform infrared spectroscopy. Holzforschung 2021, 75, 56–64. [Google Scholar] [CrossRef]
- Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačík, F. Colour and chemical changes of the lime wood surface due to CO2 laser thermal modification. Appl. Surf. Sci. 2014, 321, 261–267. [Google Scholar] [CrossRef]
- Müller, G.; Schöpper, C.; Vos, H.; Kharazipour, A.; Polle, A. FTIR-ATR spectroscopic analysis of changes in wood properties during particle and fibreboard production of hard and softwood trees. BioResources 2009, 4, 49–71. [Google Scholar] [CrossRef]
- Kubovský, I.; Oberhofnerová, E.; Kačík, F.; Pánek, M. Surface changes of selected hardwoods due to weather conditions. Forests 2018, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Bhagia, S.; Ďurkovič, J.; Lagaňa, R.; Kardošová, M.; Kačík, F.; Cernescu, A.; Schäfer, P.; Yoo, C.G.; Ragauskas, A.J. Nanoscale FTIR and Mechanical Mapping of Plant Cell Walls for Understanding Biomass Deconstruction. ACS Sustainable Chem. Eng. 2022, 10, 3016–3026. [Google Scholar] [CrossRef]
- Popescu, M.C.; Froidevaux, J.; Navi, P.; Popescu, C.M. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J. Mol. Struct. 2013, 1033, 176–186. [Google Scholar] [CrossRef]
- Ciolacu, D.; Ciolacu, F.; Popa, V.I. Amorphous cellulose-structure and characterization. Cellul. Chem. Technol. 2011, 45, 13–21. [Google Scholar]
Trait | Temperature | |||
---|---|---|---|---|
20 °C | 160 °C | 180 °C | 210 °C | |
Extractives | 9.29 ± 0.08 | 8.71 ± 0.29 | 8.38 ± 0.17 | 7.64 ± 0.15 |
Lignin | 24.11 ± 0.06 | 23.94 ± 0.51 | 25.23 ± 0.14 | 28.82 ± 0.07 |
Holocellulose | 68.46 ± 0.41 | 67.35 ± 0.20 | 63.97 ± 0.16 | 59.30 ± 0.17 |
Cellulose | 42.50 ± 0.21 | 44.88 ± 0.08 | 47.63 ± 0.20 | 54.45 ± 0.28 |
Hemicelluloses | 25.96 ± 0.20 | 22.47 ± 0.25 | 16.33 ± 0.34 | 4.85 ± 0.22 |
Temperature | L* | a* | b* | ΔE |
---|---|---|---|---|
20 °C | 69.5 ± 1.96 | 3.7 ± 0.63 | 28.0 ±0.98 | 0.0 ± 0.00 |
160 °C | 38.0 ± 1.87 | 7.4 ± 0.51 | 11.6 ± 1.41 | 35.7 ± 3.27 |
180 °C | 34.0 ± 1.16 | 6.1 ± 0.58 | 9.2 ± 1.43 | 40.3 ± 2.09 |
210 °C | 32.2 ± 0.95 | 5.6 ± 0.46 | 8.2 ± 1.25 | 42.3 ± 4.57 |
Effect | Sum of Squares | Degree of Freedom | Variance | Fisher’s F-Test | Significance Level p |
---|---|---|---|---|---|
Intercept | 482,613.3 | 1 | 482,613.3 | 200,991.5 | *** |
Thermal modification | 59,316.7 | 3 | 19,772.2 | 8234.4 | *** |
Error | 605.1 | 252 | 2.4 |
Effect | Sum of Squares | Degree of Freedom | Variance | Fisher’s F-Test | Significance Level p |
---|---|---|---|---|---|
Intercept | 8251.33786 | 1 | 8251.33786 | 27,279.9329 | *** |
Thermal modification | 435.647217 | 3 | 145.215739 | 480.101007 | *** |
Error | 76.2222234 | 252 | 0.302469141 |
Effect | Sum of Squares | Degree of Freedom | Variance | Fisher’s F-Test | Significance Level p |
---|---|---|---|---|---|
Intercept | 51,978.5851 | 1 | 51,978.5851 | 31,701.9997 | *** |
Thermal modification | 16,479.5435 | 3 | 5493.18116 | 3350.31873 | *** |
Error | 413.179092 | 252 | 1.63959957 |
Effect | Sum of Squares | Degree of Freedom | Variance | Fisher’s F-Test | Significance Level p |
---|---|---|---|---|---|
Intercept | 224,333.835 | 1 | 224,333.835 | 47,625.563 | *** |
Thermal modification | 76,244.1131 | 3 | 25,414.7044 | 5395.48395 | *** |
Error | 1187.01224 | 252 | 4.71036604 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kačík, F.; Kubovský, I.; Bouček, J.; Hrčka, R.; Gaff, M.; Kačíková, D. Colour and Chemical Changes of Black Locust Wood during Heat Treatment. Forests 2023, 14, 73. https://doi.org/10.3390/f14010073
Kačík F, Kubovský I, Bouček J, Hrčka R, Gaff M, Kačíková D. Colour and Chemical Changes of Black Locust Wood during Heat Treatment. Forests. 2023; 14(1):73. https://doi.org/10.3390/f14010073
Chicago/Turabian StyleKačík, František, Ivan Kubovský, Jiří Bouček, Richard Hrčka, Milan Gaff, and Danica Kačíková. 2023. "Colour and Chemical Changes of Black Locust Wood during Heat Treatment" Forests 14, no. 1: 73. https://doi.org/10.3390/f14010073
APA StyleKačík, F., Kubovský, I., Bouček, J., Hrčka, R., Gaff, M., & Kačíková, D. (2023). Colour and Chemical Changes of Black Locust Wood during Heat Treatment. Forests, 14(1), 73. https://doi.org/10.3390/f14010073