Increasing Wood δ15N in Response to Pig Manure Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Tree Species
2.2. Field Sampling
2.3. Soil Analyses
2.4. Tree Growth, Leaf and Wood Chemical Data
2.5. Statistical Analyses
3. Results
3.1. Soils
3.2. Leaves
3.3. Tree Growth
3.4. Wood N Concentrations and δ15N Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.M.; Aber, J.D.; Howarth, R.H.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 2013, 368, 20130164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, M.A.; Simpson, D.; Levy, P.E.; Smith, R.I.; Reis, S.; van Oijen, M.; de Vries, W. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. Glob. Chang. Biol. 2008, 14, 2057–2063. [Google Scholar] [CrossRef] [Green Version]
- González de Andrés, E. Interactions between climate and nutrient cycles on forest response to global change: The role of mixed forests. Forests 2019, 10, 609. [Google Scholar] [CrossRef] [Green Version]
- De Vries, W.; Dobbertin, M.H.; Solberg, S.; van Dobben, H.F.; Schaub, M. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: An overview. Plant Soil 2014, 380, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Gessler, A.; Schaub, M.; McDowell, N.G. The role of nutrients in drought-induced tree mortality and recovery. New Phytol. 2017, 214, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Agricultura, Pesca y Alimentación. El Sector de la Carne de Cerdo en Cifras: Principales Indicadores Económicos; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2020. [Google Scholar]
- Van Damme, M.; Clarisse, L.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; Clerbaux, C.; Coheur, P.-F. Industrial and agricultural ammonia point sources exposed. Nature 2018, 564, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Menció, A.; Mas-Pla, J.; Otero, N.; Regàs, O.; Boy-Roura, M.; Puig, R.; Bach, J.; Domènech, C.; Zamorano, M.; Brusi, D.; et al. Nitrate pollution of groundwater; all right…, but nothing else? Sci. Total Environ. 2016, 539, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.; Storer, K. Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems. Plant Soil 2015, 386, 1–19. [Google Scholar] [CrossRef]
- Gerhart, L.M.; McLauchlan, K.K. Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood. Biogeochemistry 2014, 120, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Savard, M.M.; Siegwolf, R.T.W. Nitrogen isotopes in tree rings—Challenges and prospects. In Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses; Siegwolf, R.T.W., Brooks, J.R., Roden, J., Saurer, M., Eds.; Springer: Cham, Switzerland, 2022; pp. 361–380. [Google Scholar]
- McLauchlan, K.K.; Craine, J.M.; Oswald, W.W.; Likens, G.E. Changes in nitrogen cycling during the past century in a northern hardwood forest. Proc. Nat. Acad. Sci. USA 2007, 104, 7466–7470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLauchlan, K.K.; Craine, J.M. Species-specific trajectories of nitrogen isotopes in Indiana hardwood forests, USA. Biogeosciences 2012, 9, 867–874. [Google Scholar] [CrossRef] [Green Version]
- McLauchlan, K.K.; Gerhart, L.M.; Battles, J.J.; Craine, J.M.; Elmore, A.J.; Higuera, P.E.; Mack, M.C.; McNeil, B.E.; Nelson, D.M.; Pederson, N.; et al. Centennial-scale reductions in nitrogen availability in temperate forests of the United States. Sci. Rep. 2017, 7, 7856. [Google Scholar] [CrossRef] [Green Version]
- Hietz, P.; Dünisch, O.; Wanek, W. Long-term trends in nitrogen isotope composition and nitrogen concentration in Brazilian rainforest trees suggest changes in nitrogen cycle. Environ. Sci. Technol. 2010, 44, 1191–1196. [Google Scholar] [CrossRef]
- Hietz, P.; Turner, B.L.; Wanek, W.; Richter, A.; Nock, C.A.; Wright, S.J. Long-term change in the nitrogen cycle of tropical forests. Science 2011, 334, 664–666. [Google Scholar] [CrossRef] [Green Version]
- van der Sleen, P.; Vlam, M.; Groenendijk, P.; Anten, N.P.R.; Bongers, F.; Bunyavejchewin, S.; Hietz, P.; Pons, T.L.; Zuidema, P.A. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: An evaluation at three sites using two sampling methods. Front. Plant Sci. 2015, 6, 229. [Google Scholar] [CrossRef] [Green Version]
- Buyer, J.S.; Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 2012, 61, 127–130. [Google Scholar] [CrossRef]
- Frostegård, A.; Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 1996, 22, 59–65. [Google Scholar] [CrossRef]
- Zelles, L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 1997, 35, 275–294. [Google Scholar] [CrossRef]
- Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 1999, 29, 111–129. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK, 1976. [Google Scholar]
- Larsson, L.A.; Larsson, P.O. CDendro and CooRecorder (V. 9.3.1); Cybis Elektronik and Data AB: Saltsjöbaden, Sweden, 2018. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2020. Available online: https://CRAN.R-project.org/package=vegan (accessed on 11 May 2022).
- R Core Team. R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [Green Version]
- Finn, D.; Bergk-Pinto, B.; Hazard, C.; Nicol, G.W.; Tebbe, C.; Vogel, T.M. Functional trait relationships demonstrate life strategies in terrestrial prokaryotes. FEMS Microbiol. Ecol. 2021, 97, fiab068. [Google Scholar] [CrossRef] [PubMed]
- Wessen, E.; Hallin, S.; Philippot, L. Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management. Soil Biol. Biochem. 2010, 42, 1759–1765. [Google Scholar] [CrossRef]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Bastida, F.; Torres, I.F.; Moreno, J.L.; Baldrian, P.; Ondoño, S.; Ruiz-Navarro, A.; Hernández, T.; Richnow, H.H.; Starke, R.; García, C.; et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Mol. Ecol. 2016, 25, 4660–4673. [Google Scholar] [CrossRef]
- Ho, A.; Di Lonardo, P.D.; Bodelier, P.L. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 2017, 93, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, X.; Min, K.; Liu, T.; Li, D.; Xu, J.; Zhao, Y.; Li, H.; Chen, H.; Hu, F. Copiotrophic taxa in pig manure mitigate nitrogen limitation of soil microbial communities. Chemosphere 2022, 301, 134812. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Jia, J.; Kong, P.; Tong, X.; Lu, Y.; Xie, L.; Ma, F.; Giesy, J.P. Effects of pig manure containing copper and zinc on microbial community assessed via phospholipids in soils. Environ. Monit. Assess. 2014, 186, 5297–5306. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, M.; Ma, X.; Wu, M.; Jiang, C.; Liu, K.; Liu, J.; Li, Z. Responses of microbial communities to a gradient of pig manure amendment in red paddy soils. Sci. Total Environ. 2020, 705, 135884. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Lin, S.; Ni, Y.; Yao, L.; Huang, S.; Zuo, T.; Wang, J.; Ni, W. Assembly of functional microbial communities in paddy soil with long-term application of pig manure under rice-rape cropping system. J. Environ. Manag. 2022, 305, 114374. [Google Scholar] [CrossRef] [PubMed]
- AbdElgawad, H.; Abuelsoud, W.; Madany, M.M.Y.; Selim, S.; Zinta, G.; Mousa, A.S.M.; Hozzein, W.N. Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules 2020, 10, 1675. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Tripathi, G.D.; Mishra, M.; Dashora, K. Actinomycetes—The microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatal. Agric. Biotechnol. 2021, 31, 101893. [Google Scholar] [CrossRef]
- Kabir, Z.; O’Halloran, I.P.; Fyles, J.W.; Hamel, C. Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: Hyphal density and mycorrhizal root colonization. Plant Soil 1997, 192, 285–293. [Google Scholar] [CrossRef]
- Jeffries, P.; Gianinazzi, S.; Perotto, S.; Turnau, K.; Barea, J.-M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 2003, 37, 1–16. [Google Scholar] [CrossRef]
- Fofana Fall, A.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Obeng Apori, S.; Ndiaye, A.; Badji, A.; Ngom, K. Roles of arbuscular mycorrhizal fungi on soil fertility: Contribution in the improvement of physical, chemical, and biological properties of the soil. Front. Fungal Biol. 2022, 3, 723892. [Google Scholar] [CrossRef]
- Bettenfeld, P.; Fontaine, F.; Trouvelot, S.; Fernandez, O.; Courty, P.-E. Woody plant declines. What’s wrong with the microbiome? Trends Plant Sci. 2020, 25, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Lafleur, B.; Thiffault, E.; Paré, D.; Camiré, C.; Bernier-Cardou, M.; Masse, S. Effects of hog manure application on the nutrition and growth of hybrid poplar (Populus spp.) and on soil solution chemistry in short-rotation woody crops. Agric. Ecosyst. Environ. 2012, 155, 95–104. [Google Scholar] [CrossRef]
- Marron, N. Agronomic and environmental effects of land application of residues in short-rotation tree plantations: A literature review. Biomass Bioenergy 2015, 81, 378–400. [Google Scholar] [CrossRef]
- Cavanagh, A.; Gasser, M.O.; Labrecque, M. Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 2011, 25, 4165–4173. [Google Scholar] [CrossRef]
- Camarero, J.J.; Olano, J.M.; Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 2010, 185, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, M.; Walthert, L.; Weber, P. Soil nutrients influence growth response of temperate tree species to drought. J. Ecol. 2016, 104, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Dziedek, C.; Härdtle, W.; Von Oheimb, G.; Fichtner, A. Nitrogen addition enhances drought sensitivity of young deciduous tree species. Front. Plant Sci. 2016, 7, 1100. [Google Scholar] [CrossRef] [Green Version]
- Elhani, S.; Guehl, J.M.; Nys, C.; Picard, J.F.; Dupouey, J.L. Impact of fertilization on tree-ring δ15N and δ13C in beech stands: A retrospective analysis. Tree Physiol. 2005, 25, 1437–1446. [Google Scholar] [CrossRef]
Tree Species | Latitude N | Longitude W | Elevation (m) | Dbh (cm) |
---|---|---|---|---|
Pinus halepensis | 42.192° | 1.253° | 398 | 45.1 ± 6.8 |
Prunus dulcis | 42.134° | 1.141° | 320 | 18.3 ± 2.1 |
Variable | P. halepensis | P. dulcis | ||
---|---|---|---|---|
Dunn | p | Dunn | p | |
Biomass | −0.940 | 0.347 | 2.611 | 0.009 |
Eukaryotes | −0.731 | 0.465 | −0.522 | 0.602 |
Gram − bacteria | 1.149 | 0.251 | −1.149 | 0.251 |
Gram + bacteria | 0.104 | 0.917 | −1.358 | 0.175 |
Actinomycetes | 1.358 | 0.175 | −2.611 | 0.009 |
Total Gram + bacteria | −0.104 | 0.917 | 2.193 | 0.028 |
Total Bacteria | −1.358 | 0.175 | 1.984 | 0.047 |
Fungi | −0.940 | 0.347 | 2.611 | 0.009 |
AM Fungi | −0.104 | 0.917 | 1.984 | 0.047 |
Total Fungi | −1.149 | 0.251 | 0.940 | 0.347 |
Tree Species | Tree Type | No. Trees (No. Cores) | Period | Tree-Ring Width (mm) | AR1 | MSx | Corr |
---|---|---|---|---|---|---|---|
P. halepensis | Control | 5 (10) | 1970–2020 | 3.11 ± 0.87 | 0.87 ± 0.08 | 0.28 ± 0.05 | 0.46 ± 0.11 |
Manure | 5 (10) | 1970–2020 | 3.11 ± 0.80 | 0.77 ± 0.11 | 0.39 ± 0.09 | 0.59 ± 0.15 | |
P. dulcis | Control | 5 (10) | 2007–2020 | 5.92 ± 1.38 | 0.47 ± 0.24 | 0.54 ± 0.17 | 0.60 ± 0.25 |
Manure | 5 (10) | 2007–2020 | 5.52 ± 0.67 | 0.44 ± 0.23 | 0.55 ± 0.12 | 0.64 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camarero, J.J.; Gazol, A.; González de Andrés, E.; Valeriano, C.; Igual, J.M.; Causapé, J. Increasing Wood δ15N in Response to Pig Manure Application. Forests 2023, 14, 8. https://doi.org/10.3390/f14010008
Camarero JJ, Gazol A, González de Andrés E, Valeriano C, Igual JM, Causapé J. Increasing Wood δ15N in Response to Pig Manure Application. Forests. 2023; 14(1):8. https://doi.org/10.3390/f14010008
Chicago/Turabian StyleCamarero, Jesús Julio, Antonio Gazol, Ester González de Andrés, Cristina Valeriano, José M. Igual, and Jesús Causapé. 2023. "Increasing Wood δ15N in Response to Pig Manure Application" Forests 14, no. 1: 8. https://doi.org/10.3390/f14010008
APA StyleCamarero, J. J., Gazol, A., González de Andrés, E., Valeriano, C., Igual, J. M., & Causapé, J. (2023). Increasing Wood δ15N in Response to Pig Manure Application. Forests, 14(1), 8. https://doi.org/10.3390/f14010008