A Systematic Review of Logging Impacts in the Amazon Biome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Selection Process
2.4. Data Collection Process
2.5. Data Presentation in Map
- Acquisition of coordinates for the study sites: (a) coordinates explicitly available in texts or tables were converted to alpha-numeric format and recorded into Excel; (b) in some cases, articles did not provide explicit coordinates and only mentioned the name of the local where the study was conducted, so they were identified with Google Earth Pro (GEP). If the location area was clearly recognized, the coordinates were placed in central position; if not, logging infrastructure was identified in satellite images and the coordinates were assigned to a point over them (as centralized as possible).
- All records of coordinates initially recorded in Excel for each study/category were converted to decimal degrees;
- Using the Add XY Data function, the table containing all studies/categories and coordinates were added into ArcGIS Pro and then converted to a shapefile;
- The Amazon ecoregion (i.e., Amazon biome) and South American countries from ArcGIS Online database were used as background features for preparing the map.
3. Results
3.1. Quantitative Analysis
3.2. Qualitative Analysis
3.2.1. Forest
3.2.2. Wildlife
3.2.3. Streams
4. Discussion
4.1. Forest
4.2. Wildlife
4.3. Streams
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eva, H.D.; Huber, O. A Proposal for Defining the Geographic Boundaries of Amazonia: Synthesis of the Results from An Expert Consultation Workshop Organized by the European Commission in Collaboration with the Amazon Cooperation Treaty Organization—JRC Ispra, 7–8 June 2005; Eva, H.D., Huber, O., Eds.; Office for Official Publications of the European Communities: Luxenbourg, 2005. [Google Scholar]
- Ashton, M.S.; Hall, J.S. Review the ecology, silviculture, and use of tropical wet forests with special emphasis on timber rich types. In Silviculture in the Tropics; Günter, S., Weber, M., Stimm, B., Mosandal, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 145–192. [Google Scholar] [CrossRef]
- Higuchi, N.; Jardim, C.S.F.; dos Santos, J.; Barbosa, A.P.; Wood, T.W.W. Bacia 3—Inventário Florestal Comercial [Basin 3—Commercial Forest Inventory]. Acta Amazon. 1985, 15, 327–369. [Google Scholar] [CrossRef]
- Silva, J.N.M.; de Carvalho, J.O.P.; do Ca Lopes, J. Inventário florestal de uma área experimental na floresta nacional do Tapajós [Forest inventory of an experimental area in the Tapajós National Forest]. Bol. Pesq. Flor. 1985, 10/11, 38–110. [Google Scholar]
- ACTO. Regional Report on the Status of Forests in the Amazon Region; Amazon Cooperation Treaty Organization: Brasilia, Brazil, 2017. [Google Scholar]
- ITTO. Biennial Review and Assessment of the World Timber Situation 2019–2020; International Tropical Trade Organization, Division of Trade and Industry: Yokohama, Japan, 2021. [Google Scholar]
- CONAMA. Available online: http://conama.mma.gov.br/images/conteudo/CONAMA-ingles.pdf (accessed on 19 October 2022).
- Uhl, C.; Vieira, I.C.G. Ecological impacts of selective logging in the Brazilian Amazon: A case study from the Paragominas region of the state of Pará. Biotropica 1989, 21, 98–106. [Google Scholar] [CrossRef]
- Higuchi, N.; Vieria, G.; Minette, L.J.; de Freitas, J.V.; Jardim, F.C. Sistema, S. E. L. (Seleção de Espécies Listadas) para manejar a Floresta tropical úmida de terra firme da Amazônia [The S. E. L. system (Selection of Listed Species) for managing non-flooded humid tropical forest in Amazonia]. In Bases Científicas Para Estratégias de Preservação e Desenvolvimento da Amazônia; Val, A.L., Figlioulo, R., Feldberg, E., Eds.; Instituto Nacional de Pesquisas da Amazônia: Manaus, AM, Brazil, 1991; Volume 1, pp. 197–206. [Google Scholar]
- FAO. Management and Conservation of Closed Forests in Tropical America; Forestry Paper 101; Food and Agriculture Organization of the United Nations: Rome, Italy, 1993. [Google Scholar]
- Amaral, M.R.M.; Lima, A.J.N.; Higuchi, F.G.; dos Santos, J.; Higuchi, N. Dynamics of Tropical Forest Twenty-Five Years after Experimental Logging in Central Amazon Mature Forest. Forests 2019, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Jonkers, W.B.J. Tree growth, recruitment and mortality after logging and refinement. In Sustainable Management of Tropical Rainforests: The CELOS Management System; Werger, M.J.A., Ed.; Tropenbos International: Paramaribo, Suriname, 2011; pp. 47–73. [Google Scholar]
- Hogan, J.A.; Hérault, B.; Bachelot, B.; Gorel, A.; Jounieaux, M.; Baraloto, C. Understanding the recruitment response of juvenile Neotropical trees to logging intensity using functional traits. Ecol. Appl. 2018, 28, 1998–2010. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.N.M.; de Carvalho, J.O.P.; Lopes, J.D.C.A.; de Almedia, B.E.; Costa, D.H.M.; de Oliveira, L.C.; Vanclay, J.K.; Skovsgaard, J.P. Growth and yield of a tropical rainforest in the Brazilian Amazon 13 years after logging. For. Ecol. Manag. 1995, 71, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Blaser, J.; Sarre, A.; Poore, D.; Johnson, S. Status of Tropical Forest Management 2011; ITTO Technical Series No 38; International Tropical Trade Organization: Yokohama, Japan, 2011. [Google Scholar]
- Rondon, X.J.; Gorchov, D.L.; Cornejo, F. Revisiting the Palcazu forest management model and its sustainability for timber extraction in the tropics. Int. For. Rev. 2013, 15, 98–111. [Google Scholar] [CrossRef]
- Higuchi, N. Utilização e manejo dos recursos madeireiros das florestas tropicais úmidas [Utilization and Management of Forest Resources of the Tropical Moist Forests]. Acta Amazon. 1994, 24, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Blanc, L.; Echard, M.; Hérault, B.; Bonal, D.; Marcon, E.; Chave, J.; Baraloto, C. Dynamics of aboveground carbon stocks in a selectively logged tropical forest. Ecol. Appl. 2009, 19, 1397–1404. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, N.; dos Santos, J.; Ribeiro, R.J.; da Silva, R.P.; Rocha, R.M. Sustentabilidade na produção de madeira dura tropical [Sustainability in the production of tropical hardwood]. Rev. Silv. 2000, 83, 32–37. [Google Scholar]
- Favrichon, N.; Maître, H.-F.; Higuchi, N. Effects of silvicultural treatments in the tropical rain forest: A comparison between ZF-2 (Manaus, Brazil) and Paracou (French Guiana). In Ecology and Management of Tropical Secondary Forest: Science, People, and Policy, Proceedings of A Conference Held at CATIE, Turrialba, Costa Rica, 10–12 November 1997; Guariguata, M.R., Finegan, B., Eds.; CATIE, CIFOR: Turrialba, Costa Rica, 1998; pp. 191–199. [Google Scholar]
- de Carvalho, A.L.; d’Oliveira, M.V.N.; Putz, F.E.; de Oliveira, L.C. Natural regeneration of trees in selectively logged forest in western Amazonia. For. Ecol. Manag. 2017, 392, 36–44. [Google Scholar] [CrossRef]
- Johns, J.S.; Barreto, P.; Uhl, C. Logging damage during planned and unplanned logging operations in the eastern Amazon. For. Ecol. Manag. 1996, 89, 59–77. [Google Scholar] [CrossRef]
- Sist, P.; Nascimento Ferreira, F. Sustainability of reduced-impact logging in the Eastern Amazon. For. Ecol. Manag. 2007, 243, 199–209. [Google Scholar] [CrossRef]
- van der Hout, P. Guyana. In Sustainable Management of Tropical Rainforests: The CELOS Management System; Werger, M.J.A., Ed.; Tropenbos International: Paramaribo, Suriname, 2011; pp. 167–185. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Collyer, T. ‘Salami slicing’ helps careers but harms science. Nat. Hum. Behav. 2019, 3, 1005–1006. [Google Scholar] [CrossRef]
- Bomfim, B.; Silva, L.C.R.; Pereira, R.S.; Gatto, A.; Emmert, F.; Higuchi, N. Litter and soil biogeochemical parameters as indicators of sustainable logging in Central Amazonia. Sci. Total Environ. 2020, 714, 136780. [Google Scholar] [CrossRef]
- Darrigo, M.R.; Venticinque, E.M.; dos Santos, F.A.M. Effects of reduced impact logging on the forest regeneration in the central Amazonia. For. Ecol. Manag. 2016, 360, 52–59. [Google Scholar] [CrossRef]
- Pinagé, E.R.; Keller, M.; Duffy, P.; Longo, M.; dos-Santos, M.N.; Morton, D.C. Long-term impacts of selective logging on amazon forest dynamics from multi-temporal airborne lidar. Remote Sens. 2019, 11, 709. [Google Scholar] [CrossRef] [Green Version]
- Tritsch, I.; Sist, P.; Narvaes, I.D.S.; Mazzei, L.; Blanc, L.; Bourgoin, C.; Cornu, G.; Gond, V. Multiple Patterns of Forest Disturbance and Logging Shape Forest Landscapes in Paragominas, Brazil. Forests 2016, 7, 315. [Google Scholar] [CrossRef] [Green Version]
- Almeida, E.J.; Luizão, F.; Rodrigues, D.D.J. Produção de serrapilheira em florestas intactas e exploradas seletivamente no sul da Amazônia em função da área basal da vegetação e da densidade de plantas [Litterfall production in intact and selectively logged Forests in Southern of Amazonia as a function of basal area of vegetation and plant density]. Acta Amazon. 2015, 45, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Darrigo, M.R.; dos Santos, F.A.M.; Venticinque, E.M. The confounding effects of logging on tree seedling growth and herbivory in Central Amazon. Biotropica 2018, 50, 60–68. [Google Scholar] [CrossRef]
- Barreto, J.R.; Berenguer, E.; Ferreira, J.; Joly, C.A.; Malhi, Y.; de Seixas, M.M.M.; Barlow, J. Assessing invertebrate herbivory in human-modified tropical forest canopies. Ecol. Evol. 2021, 11, 4012–4022. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.A.; Beuchle, R.; Griess, V.C.; Verhegghen, A.; Vogt, P. Spatial patterns of logging-related disturbance events: A multi-scale analysis on forest management units located in the Brazilian Amazon. Landsc. Ecol. 2020, 35, 2083–2100. [Google Scholar] [CrossRef]
- Pinagé, E.R.; Bell, D.M.; Longo, M.; Gao, S.; Keller, M.; Silva, C.A.; Ometto, J.P.; Köhler, P.; Frankenberg, C.; Huete, A. Forest structure and solar-induced fluorescence across intact and degraded forests in the Amazon. Rem. Sens. Environ. 2022, 274, 112998. [Google Scholar] [CrossRef]
- Karsten, R.J.; Jovanovic, M.; Meilby, H.; Perales, E.; Reynel, C. Regeneration in canopy gaps of tierra-firme forest in the Peruvian Amazon: Comparing reduced impact logging and natural, unmanaged forests. For. Ecol. Manag. 2013, 310, 663–671. [Google Scholar] [CrossRef]
- DeArmond, D.; Emmert, F.; Lima, A.J.N.; Higuchi, N. Impacts of soil compaction persist 30 years after logging operations in the Amazon Basin. Soil Till. Res. 2019, 189, 207–216. [Google Scholar] [CrossRef]
- DeArmond, D.; Ferraz, J.B.S.; Lovera, L.H.; de Souza, C.A.S.; Spanner, G.C.; Lima, A.J.N.; dos Santos, J.; Higuchi, N. Impacts to soil properties still evident 27 years after abandonment in Amazonian log landings. For. Ecol. Manag. 2022, 510, 120105. [Google Scholar] [CrossRef]
- Trindade, A.D.S.; Ferraz, J.B.S.; DeArmond, D. Removal of Woody Debris from Logging Gaps Influences Soil Physical and Chemical Properties in the Short Term: A Case Study in Central Amazonia. Forest Sci. 2021, 67, 711–720. [Google Scholar] [CrossRef]
- Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; et al. Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. J. Geophys. Res.-Bioge. 2020, 125, e2020JG005677. [Google Scholar] [CrossRef]
- Gräfe, S.; Köhl, M. Impacts of future crop tree release treatments on forest carbon as REDD+ mitigation benefits. Land 2020, 9, 394. [Google Scholar] [CrossRef]
- Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R.G.; Koven, C.D.; Fisher, R.A. Assessing impacts of selective logging on water, energy, and carbon budgets and ecosystem dynamics in Amazon forests using the Functionally Assembled Terrestrial Ecosystem Simulator. Biogeosciences 2020, 17, 4999–5023. [Google Scholar] [CrossRef]
- Otani, T.; Lima, A.J.N.; Suwa, R.; Amaral, M.R.M.; Ohashi, S.; Pinto, A.C.M.; dos Santos, J.; Kajimoto, T.; Higuchi, N.; Ishizuka, M. Recovery of above-ground tree biomass after moderate selective logging in a central Amazonian forest. iForest 2018, 11, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Rockwell, C.A.; Kainer, K.A.; d’Oliveira, M.V.N.; Staudhammer, C.L.; Baraloto, C. Logging in bamboo-dominated forests in southwestern Amazonia: Caveats and opportunities for smallholder forest management. For. Ecol. Manag. 2014, 315, 202–210. [Google Scholar] [CrossRef]
- Vidal, E.; West, T.A.P.; Putz, F.E. Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil. For. Ecol. Manag. 2016, 376, 1–8. [Google Scholar] [CrossRef]
- Longo, M.; Keller, M.; dos-Santos, M.N.; Leitold, V.; Pinagé, E.R.; Baccini, A.; Saatchi, S.; Nogueira, E.M.; Batistella, M.; Morton, D.C. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Glob. Biogeochem. Cy. 2016, 30, 1639–1660. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Angulo, C.; Plata-Rocha, W.; Serrano, J.; Vilanova, E.; Monjardin-Armenta, S.; Gonzalez, A.; Camargo, C. A Low-Cost and Robust Landsat-Based Approach to Study Forest Degradation and Carbon Emissions from Selective Logging in the Venezuelan Amazon. Remote Sens. 2021, 13, 1435. [Google Scholar] [CrossRef]
- Vinson, C.C.; Kanashiro, M.; Harris, S.A.; Boshier, D.H. Impacts of selective logging on inbreeding and gene flow in two Amazonian timber species with contrasting ecological and reproductive characteristics. Mol. Ecol. 2015, 24, 38–53. [Google Scholar] [CrossRef]
- de Oliveira Junior, A.P.; Salm, R.A.; Hernández-Ruz, E.J. Dynamics of a Forest Submitted to Logging in the Eastern Amazon, Brazil. J. Sustain. Forest. 2022, 1–19. [Google Scholar] [CrossRef]
- d’oliveira, M.V.N.; Figueiredo, E.O.; de Almeida, D.R.A.; Oliveira, L.C.; Silva, C.A.; Nelson, B.W.; da Cunha, R.M.; Papa, D.D.A.; Stark, S.C.; Valbuena, R. Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence. For. Ecol. Manag. 2021, 500, 119648. [Google Scholar] [CrossRef]
- Guitet, S.; Pithon, S.; Brunaux, O.; Jubelin, G.; Gond, V. Impacts of logging on the canopy and the consequences for forest management in French Guiana. For. Ecol. Manag. 2012, 277, 124–131. [Google Scholar] [CrossRef]
- Landburg, G.; Amatamsir, C.; Muys, B.; Hermy, M. Medium and long term effects of logging systems on forest structure and composition in the tropical rainforest of Suriname. J. For. Res. 2021, 26, 328–335. [Google Scholar] [CrossRef]
- Locks, C.J.; Matricardi, E.A.T. Estimativa de impactos da extração seletiva de madeiras na Amazônia utilizando dados LIDAR [The estimation of selective logging impact in Amazon forest using LIDAR data]. Cienc. Florest. 2019, 29, 481–495. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, D.I.; Morton, D.C.; Longo, M.; Keller, M.; Dubayah, R.; dos-Santos, M.N. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environ. Res. Lett. 2018, 13, 065013. [Google Scholar] [CrossRef]
- Goodman, R.C.; Aramburu, M.H.; Gopalakrishna, T.; Putz, F.E.; Gutiérrez, N.; Alvarez, J.L.M.; Aguilar-Amuchastegui, N.; Ellis, P.W. Carbon emissions and potential emissions reductions from low-intensity selective logging in southwestern Amazonia. For. Ecol. Manag. 2019, 439, 18–27. [Google Scholar] [CrossRef]
- Condé, T.M.; Tonini, H.; Higuchi, N.; Higuchi, F.G.; Lima, A.J.N.; Barbosa, R.I.; Pereira, T.D.S.; Haas, M.A. Effects of sustainable forest management on tree diversity, timber volumes, and carbon stocks in an ecotone forest in the northern Brazilian Amazon. Land Use Policy 2022, 119, 106145. [Google Scholar] [CrossRef]
- Eguiguren, P.; Fischer, R.; Günter, S. Degradation of ecosystem services and deforestation in landscapes with and without incentive-based forest conservation in the Ecuadorian Amazon. Forests 2019, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Cruz Filho, D.; Barros, P.L.C.; Silva, J.N.M. Diametric distribution of wood residues in logged and unlogged forest areas of the eastern Brazilian Amazon. Cerne 2013, 19, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Barni, P.E.; Rego, A.C.M.; Silva, F.D.C.F.; Lopes, R.A.S.; Xaud, H.A.M.; Xaud, M.R.; Barbosa, R.I.; Fearnside, P.M. Logging Amazon forest increased the severity and spread of fires during the 2015–2016 El Niño. For. Ecol. Manag. 2021, 500, 119652. [Google Scholar] [CrossRef]
- DeArmond, D.; Ferraz, J.B.S.; Emmert, F.; Lima, A.J.N.; Higuchi, N. An assessment of soil compaction after logging operations in central Amazonia. Forest Sci. 2020, 66, 230–241. [Google Scholar] [CrossRef]
- Karsten, R.J.; Meilby, H.; Larsen, J.B. Regeneration and management of lesser known timber species in the Peruvian Amazon following disturbance by logging. For. Ecol. Manag. 2014, 327, 76–85. [Google Scholar] [CrossRef]
- Schwartz, G.; Falkowski, V.; Peña-Claros, M. Natural regeneration of tree species in the Eastern Amazon: Short-term responses after reduced-impact logging. For. Ecol. Manag. 2017, 385, 97–103. [Google Scholar] [CrossRef]
- Barreiros, J.L.; Oliveira, N.S.; Cerboncini, R.A.S.; Klemann Junior, L. Does selective logging affect litter deposition rates in central Brazilian Amazonia? An. Acad. Bras. Cienc. 2022, 94, e20201654. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, D.F.C.; Ruschel, A.R.; Schwartz, G.; de Carvalho, J.O.P.; Humphries, S.; Gama, J.R.V. Forest resilience to fire in eastern Amazon depends on the intensity of pre-fire disturbance. For. Ecol. Manag. 2020, 472, 118258. [Google Scholar] [CrossRef]
- de Oliveira, E.K.B.; Rezende, A.V.; Mazzei, L.; Murta Júnior, L.S.; Oliveira, R.V.C.; d’Oliveira, M.V.N.; Barros, Q.S. Competition indices after reduced impact logging in the Brazilian Amazon. J. Environ. Manag. 2021, 281, 111898. [Google Scholar] [CrossRef]
- Dionisio, L.F.S.; Schwartz, G.; Lopes, J.D.C.; Oliveira, F.D.A. Growth, mortality, and recruitment of tree species in an Amazonian rainforest over 13 years of reduced impact logging. For. Ecol. Manag. 2018, 430, 150–156. [Google Scholar] [CrossRef]
- Jacobsen, R.H.F.; Sccoti, M.S.V.; Fagundes, S.T.S.; de Brito Junior, J.F.; Biazatti, S.C. Impacts on Vegetation after Selective Cutting in Forest Concession Area in the Southwestern Brazilian Amazon. Floresta 2020, 50, 1778–1787. [Google Scholar] [CrossRef]
- Reis, L.P.; dos Reis, P.C.M.; Ruschel, A.R.; Silva, J.N.M.; de Carvalho, J.O.P.; de Souza, A.L.; Soares, M.H.M.; Miyahara, R.K.N. Forest dynamics in the eastern Amazon with special reference to sapotaceae species. Floresta 2015, 45, 567–576. [Google Scholar] [CrossRef]
- Schwartz, G.; Lopes, J.C.; Kanashiro, M.; Mohren, G.M.J.; Peña-Claros, M. Disturbance Level Determines the Regeneration of Commercial Tree Species in the Eastern Amazon. Biotropica 2014, 46, 148–156. [Google Scholar] [CrossRef]
- Mendes, F.D.S.; Jardim, F.C.D.S.; de Carvalho, J.O.P.; Souza, D.V.; Araújo, C.B.; Oliveira, M.G.D.; Leal, E.D.S. Dinâmica da estrutura da vegetação do sub-bosque sob influência da exploração em uma floresta de terra firme no município de Moju—PA [Dynamics structure of the understory vegetation influenced by logging in a terra firme forest, in the municipality of Moju, Pará state]. Cienc. Florest. 2013, 23, 377–389. Available online: https://doaj.org/article/a23b6aa9a9bf4e4db17fdca4e24edf70 (accessed on 20 December 2022).
- de Avila, A.L.; Ruschel, A.R.; de Carvalho, J.O.P.; Mazzei, L.; Silva, J.N.M.; Lopes, J.D.C.; Araujo, M.M.; Dormann, C.F.; Bauhus, J. Medium-term dynamics of tree species composition in response to silvicultural intervention intensities in a tropical rain forest. Biol. Conserv. 2015, 191, 577–586. [Google Scholar] [CrossRef]
- Gaui, T.D.; Costa, F.R.C.; de Souza, F.C.; Amaral, M.R.M.; de Carvalho, D.C.; Reis, F.Q.; Higuchi, N. Long-term effect of selective logging on floristic composition: A 25 year experiment in the Brazilian Amazon. For. Ecol. Manag. 2019, 440, 258–266. [Google Scholar] [CrossRef]
- Hirai, E.H.; de Carvalho, C.J.R.; Silva, J.N.M.E.; de Carvalho, J.O.P.; de Queiroz, W.T. Efeito da exploração florestal de impacto reduzido sobre a regeneração natural emu ma Floresta densa de terra firme no município de Paragominas na Amazônia brasileira [Effects of the reduced impact logging on natural regeneration in a terra firme dense forest in the municipality of Paragominas in Brazilian Amazonia]. Sci. For. 2012, 40, 305–315. [Google Scholar]
- Eguiguren, P.; Luna, T.O.; Torres, B.; Lippe, M.; Günter, S. Ecosystem service multifunctionality: Decline and recovery pathways in the Amazon and Chocó Lowland rainforests. Forests 2020, 12, 7786. [Google Scholar] [CrossRef]
- Lima, B.A.; Nicoletti, M.F.; Stepka, T.F.; Carvalho, S.P.C.; Melo, L.O.; Cruz, G.S. Efeitos da exploração de impacto reduzido (EIR) na composição florística e estrutura de uma floresta ombrófila densa na Amazônia Brasileira [Effects of reduced impact logging (RIL) on floristic composition and structure of a dense ombrophylous forest in the Brazilian Amazon. Sci. Forest. 2021, 49, e3635. [Google Scholar] [CrossRef]
- Vinhote, E.G.; de Freitas, F.C.; de Azevedo, C.P.; de Souza, C.R. Diversity and similarity of species of natural regeneration after logging in commercially managed forest in Central Amazon. Cienc. Florest. 2020, 30, 1116–1129. [Google Scholar] [CrossRef]
- Mollinari, M.M.; Peres, C.A.; Edwards, D.P. Rapid recovery of thermal environment after selective logging in the Amazon. Agr. Forest Meteorol. 2019, 278, 107637. [Google Scholar] [CrossRef]
- Berenguer, E.; Ferreira, J.; Gardner, T.A.; Aragão, L.E.O.C.; de Camargo, P.B.; Cerri, C.E.; Durigan, M.; de Oliveira Junior, R.C.; Vieira, I.C.G.; Barlow, J. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Change Biol. 2014, 20, 3713–3726. [Google Scholar] [CrossRef] [Green Version]
- Hiltner, U.; Huth, A.; Bräuning, A.; Hérault, B.; Fischer, R. Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions. For. Ecol. Manag. 2018, 430, 517–525. [Google Scholar] [CrossRef]
- Piponiot, C.; Sist, P.; Mazzei, L.; Peña-Claros, M.; Putz, F.E.; Rutishauser, E.; Shenkin, A.; Ascarrunz, N.; de Azevedo, C.P.; Baraloto, C.; et al. Carbon recovery dynamics following disturbance by selective logging in Amazonian forests. Elife 2016, 5, e21394. [Google Scholar] [CrossRef]
- Numazawa, C.T.D.; Numazawa, S.; Pacca, S.; John, V.M. Logging residues and CO2 of Brazilian Amazon timber: Two case studies of forest harvesting. Resour. Conserv. Recy. 2017, 122, 280–285. [Google Scholar] [CrossRef]
- Roopsind, A.; Caughlin, T.T.; van der Hout, P.; Arets, E.; Putz, F.E. Trade-offs between carbon stocks and timber recovery in tropical forests are mediated by logging intensity. Glob. Change Biol. 2018, 24, 2862–2874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roopsind, A.; Wortel, V.; Hanoeman, W.; Putz, F.E. Quantifying uncertainty about forest recovery 32-years after selective logging in Suriname. For. Ecol. Manag. 2017, 391, 246–255. [Google Scholar] [CrossRef]
- Hérault, B.; Piponiot, C. Key drivers of ecosystem recovery after disturbance in a neotropical forest: Long-term lessons from the Paracou experiment, French Guiana. For. Ecosyst. 2018, 5, 2. [Google Scholar] [CrossRef]
- Hiltner, U.; Huth, A.; Hérault, B.; Holtmann, A.; Bräuning, A.; Fischer, R. Climate change alters the ability of neotropical forests to provide timber and sequester carbon. For. Ecol. Manag. 2021, 492, 119166. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.; Casarim, F.M. Carbon emissions from tropical forest degradation caused by logging. Environ. Res. Lett. 2014, 9, 034017. [Google Scholar] [CrossRef] [Green Version]
- Baraloto, C.; Hérault, B.; Paine, C.E.T.; Massot, H.; Blanc, L.; Bonal, D.; Molino, J.-F.; Nicolini, E.A.; Sabatier, D. Contrasting taxonomic and functional responses of a tropical tree community to selective logging. J. Appl. Ecol. 2012, 49, 861–870. [Google Scholar] [CrossRef]
- Grogan, J.; Loveless, M.D. Flowering phenology and its implications for management of big-leaf mahogany Swietenia macrophylla in Brazilian Amazonia. Am. J. Bot. 2013, 100, 2293–2305. [Google Scholar] [CrossRef] [PubMed]
- Jardim, F.C.S.; Quadros, L.C.L. Estrutura de uma floresta tropical dez anos após exploração de madeira em Moju, Pará [Structure of a tropical rainforest 10 years after selective logging in Moju-Pará]. Rev. Ceres 2016, 63, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Cruz, L.L.; Nakajima, N.Y.; Silva, R.M.; Hosokawa, R.T.; Jardim, F.C.S.; Corte, A.P.D. Distribuição diamétrica de três espécies de Lecythidaceae após exploração de impacto reduzido na Amazônia Oriental [Diametric distribution of three species of Lecythidaceae after reduced impact logging in Eastern Amazon]. Cienc. Florest. 2021, 31, 171–190. [Google Scholar] [CrossRef]
- Cummings, A.R.; Read, J.M.; Fragoso, J.M.V. Implications of forest type and land tenure diversity for the sustainability of ecosystem services provided by northern Amazonia’s multiple-use tree species. Landsc. Ecol. 2018, 33, 423–438. [Google Scholar] [CrossRef]
- dos Reis, P.C.M.; Reis, L.P.; Ruschel, A.R.; Silva, J.N.M.; de Carvalho, J.O.P.; de Queiroz, W.T. Effect of timber harvesting on density and basal area of lecythidaceae species in the eastern amazon. Floresta 2014, 44, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Rivett, S.L.; Bicknell, J.E.; Davies, Z.G. Effect of reduced-impact logging on seedling recruitment in a neotropical forest. For. Ecol. Manag. 2016, 367, 71–79. [Google Scholar] [CrossRef]
- Fortini, L.B.; Cropper, W.P.; Zarin, D.J. Modeling the Complex Impacts of Timber Harvests to Find Optimal Management Regimes for Amazon Tidal Floodplain Forests. PloS ONE 2015, 10, e0136740. [Google Scholar] [CrossRef] [PubMed]
- de Avila, A.L.; Schwartz, G.; Ruschel, A.R.; Lopes, J.D.C.; Silva, J.N.M.; de Carvalho, J.O.P.; Dormann, C.F.; Mazzei, L.; Soares, M.H.M.; Bauhus, J. Recruitment, growth and recovery of commercial tree species over 30 years following logging and thinning in a tropical rain forest. For. Ecol. Manag. 2017, 385, 225–235. [Google Scholar] [CrossRef]
- Naves, R.P.; Grøtan, V.; Prado, P.I.; Vidal, E.; Batista, J.L.F. Tropical forest management altered abundances of individual tree species but not diversity. For. Ecol. Manag. 2020, 475, 118399. [Google Scholar] [CrossRef]
- Sist, P.; Mazzei, L.; Blanc, L.; Rutishauser, E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For. Ecol. Manag. 2014, 318, 103–109. Available online: http://agritrop.cirad.fr/573468/ (accessed on 20 December 2022).
- Fargeon, H.; Aubry-Kientz, M.; Brunaux, O.; Descroix, L.; Gaspard, R.; Guitet, S.; Rossi, V.; Hérault, B. Vulnerability of commercial tree species to water stress in logged forests of the Guiana shield. Forests 2016, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Shenkin, A.; Bolker, B.; Peña-Claros, M.; Licona, J.C.; Ascarrunz, N.; Putz, F.E. Interactive effects of tree size, crown exposure and logging on drought-induced mortality. Philos. T. Roy. Soc. B. 2018, 373, 20180189. [Google Scholar] [CrossRef] [Green Version]
- Quadros, L.C.L.; de Carvalho, J.O.P.; Gomes, J.M.; Taffarel, M.; Silva, J.C.F. Sobrevivência e crescimento de mudas de regeneração natural de Astronium gracile Engl. em clareiras causadas por exploração florestal na Amazônia Brasileira [Survival and growth rate of seedlings from natural regeneration of Astronium gracile Engl. In gaps caused by reduced impact logging in the Brazilian Amazon]. Cienc. Florest. 2013, 23, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Arruda, C.C.B.; Silva, M.B.; Gribel, R.; Lemes, M.R.; Kanashiro, M.; Sebbenn, A.M. Logging decreases the pollen dispersal distance in a low-density population of the tree Bagassa guianensis in the Brazilian Amazon. Silvae Genet. 2015, 64, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Chiriboga-Arroyo, F.; Jansen, M.; Bardales-Lozano, R.; Ismail, S.A.; Thomas, E.; Garcia, M.; Gomringer, R.C.; Kettle, C.J. Genetic threats to the Forest Giants of the Amazon: Habitat degradation effects on the socio-economically important Brazil nut tree (Bertholletia excelsa). Plants People Planet 2021, 3, 194–210. [Google Scholar] [CrossRef]
- Soriano, M.; Zuidema, P.A.; Barber, C.; Mohren, F.; Ascarrunz, N.; Licona, J.C.; Peña-Claros, M. Commercial Logging of Timber Species Enhances Amazon (Brazil) Nut Populations: Insights from Bolivian Managed Forests. Forests 2021, 12, 1059. [Google Scholar] [CrossRef]
- Klauberg, C.; Vidal, E.; Silva, C.A.; Hudak, A.T.; Oliveira, M.; Higuchi, P. Short-Term Effects of Reduced-Impact Logging on Copaifera spp. (Fabaceae) Regeneration in Eastern Amazon. Forests 2017, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, A.E.B.; Nimmo, E.R.; Sebbenn, A.M. Modeling the Long-Term Impacts of Logging on Genetic Diversity and Demography of Hymenaea courbaril. Forest Sci. 2013, 59, 15–26. [Google Scholar] [CrossRef]
- Silva, S.M.M.; Wadt, L.H.D.O.; Mesquita, A.G.G.; Martins, K. Impacto da exploração madeireira na diversidade genética e área basal de jatobá na Amazônia sul-ocidental [Logging impact on genetic diversity and basal area of jatobá in south-western Amazon]. Sci. For. 2016, 44, 545–555. [Google Scholar] [CrossRef] [Green Version]
- das Chagas, R.S.; Gomes, J.M.; de Carvalho, J.O.P.; Ferreira, J.E.R. Sobrevivência e crescimento de plântulas de Manilkara huberi Chevalier durante cinco anos em clareiras causadas pela exploração de impacto reduzido na Amazônia brasileira [Survival and growth rate of seedlings of Manilkara huberi Chevalier during five Years in clearings caused by reduced impact logging in the Brazilian Amazonia]. Sci. For. 2012, 40, 417–424. [Google Scholar]
- Dionisio, L.F.S. Efeitos a médio prazo da exploração seletiva no crescimento, mortalidade e recrutamento de Manilkara huberi (Ducke) A. Chev. em uma floresta amazônica [Mid-term effects of selective logging on the growth, mortality, and recruitment of Manilkara huberi (Ducke) A. Chev. In an Amazonian rainforest]. Sci. For. 2020, 48, e3154. [Google Scholar] [CrossRef]
- Dionisio, L.F.S.; Chaves, G.A.S.L.; Brandão, A.D.D.S.; Neves, R.L.P.; de Sousa, M.A.R.; Orrillo, H.M. Effects of reduced impact logging on population dynamics of Pseudopiptadenia suaveolens in Eastern Amazon, Brazil. Rev. Bras. Cienc. Agr. 2022, 17, e1648. [Google Scholar] [CrossRef]
- Lopes-Costa, N.-S.; da-Silva-Jardim, F.-C.; Macedo-Gomes, J.; Silva-Dionisio, L.-F.; Schwartz, G. Responses in growth and dynamics of the shade-tolerant species Theobroma subincanum to logging gaps in the Eastern Amazon. For. Syst. 2020, 29, e003. [Google Scholar] [CrossRef]
- Campos-Cerqueira, M.; Mena, J.L.; Tejeda-Gómez, V.; Aguilar-Amuchastegui, N.; Gutierrez, N.; Aide, T.M. How does FSC forest certification affect the acoustically active fauna in Madre de Dios, Peru? Remote Sens. Ecol. Conserv. 2020, 6, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Moura, N.G.; Lees, A.C.; Andretti, C.B.; Davis, B.J.W.; Solar, R.R.C.; Aleixo, A.; Barlow, J.; Ferreira, J.; Gardner, T.A. Avian biodiversity in multiple-use landscapes of the Brazilian Amazon. Biol. Conserv. 2013, 167, 339–348. [Google Scholar] [CrossRef]
- Soares, J.C.R.; Amaral, A.O.; de Moura, R.S.; Cerboncini, R.A.S.; Klemann-Júnior, L. Effects of low-impact logging on understory birds in the Brazilian Amazon. iForest 2021, 14, 122–126. [Google Scholar] [CrossRef]
- Mestre, L.A.M.; Cosset, C.C.P.; Nienow, S.S.; Krul, R.; Rechetelo, J.; Festti, L.; Edwards, D.P. Impacts of selective logging on avian phylogenetic and functional diversity in the Amazon. Anim. Conserv. 2020, 23, 725–740. [Google Scholar] [CrossRef]
- Bicknell, J.E.; Struebig, M.J.; Davies, Z.G. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging. J. Appl. Ecol. 2015, 52, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laufer, J.; Michalski, F.; Peres, C.A. Effects of reduced-impact logging on medium and large-bodied forest vertebrates in eastern Amazonia. Biota Neotro. 2015, 15, e20140131. [Google Scholar] [CrossRef]
- Chaves, W.A.; Sieving, K.E.; Fletcher, R.J. Avian responses to reduced-impact logging in the southwestern Brazilian Amazon. For. Ecol. Manag. 2017, 384, 147–156. [Google Scholar] [CrossRef]
- Rodrigues, D.J.; Florencio, F.P.; Oliveira, J.; Oliveira, D.M.M.; Lollback, G.W.; Hero, J.-M. Habitat associations of woodcreeper (Aves: Dendrocolaptidae) assemblage in selectively logged areas of Southern Amazonia. J. Trop. Ecol. 2016, 32, 63–74. [Google Scholar] [CrossRef]
- Carvalho, E.A.R., Jr.; Nienow, S.S.; Bonavigo, P.H.; Haugaasen, T. Mammal responses to reduced-impact logging in Amazonian forest concessions. For. Ecol. Manag. 2021, 496, 119401. [Google Scholar] [CrossRef]
- Roopsind, A.; Caughlin, T.T.; Sambhu, H.; Fragoso, J.M.V.; Putz, F.E. Logging and indigenous hunting impacts on persistence of large Neotropical animals. Biotropica 2017, 49, 565–575. [Google Scholar] [CrossRef]
- Almeida-Maués, P.C.R.; Bueno, A.S.; Palmeirim, A.F.; Peres, C.A.; Mendes-Oliveira, A.C. Assessing assemblage-wide mammal responses to different types of habitat modification in Amazonian forests. Sci. Rep. 2022, 12, 1797. [Google Scholar] [CrossRef]
- Mayor, P.; Pérez-Peña, P.; Bowler, M.; Puertas, P.E.; Kirkland, M.; Bodmer, R. Effects of selective logging on large mammal populations in a remote indigenous territory in the northern Peruvian Amazon. Ecol. Soc. 2015, 20, 36. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.B.; Bobrowiec, P.E.D.; Castro, S.J.; Rodrigues, L.R.R.; Fadini, R.F. Influence of reduced-impact logging on Central Amazonian bats using a before-after-control-impact design. Anim. Conserv. 2022, 25, 311–322. [Google Scholar] [CrossRef]
- Hölting, M.; Bovolo, C.I.; Ernst, R. Facing complexity in tropical conservation: How reduced impact logging and climatic extremes affect beta diversity in tropical amphibian assemblages. Biotropica 2016, 48, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Miranda, D.B.; Venâncio, N.M.; de Albuquerque, S. Rapid survey of the herpetofauna in an area of forest management in eastern Acre, Brazil. Check List 2014, 10, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Bicknell, J.E.; Phelps, S.P.; Davies, R.G.; Mann, D.J.; Struebig, M.J.; Davies, Z.G. Dung beetles as indicators for rapid impact assessments: Evaluating best practice forestry in the neotropics. Ecol. Indic. 2014, 43, 154–161. [Google Scholar] [CrossRef]
- Whitworth, A.; Huarcaya, R.P.; Mercado, H.G.; Braunholtz, L.D.; MacLeod, R. Food for thought. Rainforest carrion-feeding butterflies are more sensitive indicators of disturbance history than fruit feeders. Biol. Conserv. 2018, 217, 383–390. [Google Scholar] [CrossRef] [Green Version]
- França, F.; Louzada, J.; Barlow, J. Selective logging effects on ‘brown world’ faecal-detritus pathway in tropical forests: A case study from Amazonia using dung beetles. For. Ecol. Manag. 2018, 410, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Milheiras, S.G.; Guedes, M.; Silva, F.A.B.; Aparício, P.; Mace, G.M. Patterns of biodiversity response along a gradient of forest use in Eastern Amazonia, Brazil. PeerJ 2020, 8, e8486. [Google Scholar] [CrossRef] [Green Version]
- de Moura, R.S.; Noriega, J.A.; Cerboncini, R.A.S.; Vaz-de-Mello, F.Z.; Klemann Junior, L. Dung beetles in a tight-spot, but not so much: Quick recovery of dung beetles assemblages after low-impact selective logging in Central Brazilian Amazon. For. Ecol. Manag. 2021, 494, 119301. [Google Scholar] [CrossRef]
- Montejo-Kovacevich, G.; Hethcoat, M.G.; Lim, F.K.S.; Marsh, C.J.; Bonfantti, D.; Peres, C.A.; Edwards, D.P. Impacts of selective logging management on butterflies in the Amazon. Biol. Conserv. 2018, 225, 1–9. [Google Scholar] [CrossRef]
- Montejo-Kovacevich, G.; Marsh, C.J.; Smith, S.H.; Peres, C.A.; Edwards, D.P. Riparian reserves protect butterfly communities in selectively logged tropical forest. J. Appl. Ecol. 2022, 59, 1524–1535. [Google Scholar] [CrossRef]
- Azevedo, R.A.; Santos, Q.C.L.; Fluck, I.E.; Rodrigues, D.J.; Battirola, L.D.; Dambros, C.D.S. Selective logging does not alter termite response to soil gradients in Amazonia. J. Trop. Ecol. 2021, 37, 43–49. [Google Scholar] [CrossRef]
- Miranda, P.N.; Morato, E.F.; Oliveira, M.A.; Delabie, J.H.C. A riqueza e composição de formigas como indicadores dos efeitos do manejo florestal de baixo impacto em floresta tropical no estado do Acre [Richness and composition of ants as indicators of the reduced impact logging in tropical forest in the state of Acre]. Rev. Arvore 2013, 37, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Leão, H.; Siqueira, T.; Torres, N.R.; de Assis Montag, L.F. Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecol. Indic. 2020, 111, 106039. [Google Scholar] [CrossRef]
- Prudente, B.S.; Pompeu, P.S.; Juen, L.; Montag, L.F.A. Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshw. Biol. 2017, 62, 303–316. [Google Scholar] [CrossRef]
- Allard, L.; Popée, M.; Vigouroux, R.; Brosse, S. Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish assemblages. Aquat. Sci. 2016, 78, 315–325. [Google Scholar] [CrossRef]
- Jacob, L.L.; Prudente, B.S.; Montag, L.F.A.; Silva, R.R. The effect of different logging regimes on the ecomorphological structure of stream fish assemblages in the Brazilian Amazon. Hydrobiologia 2021, 848, 1027–1039. [Google Scholar] [CrossRef]
- Prudente, B.D.S.; Pompeu, P.S.; Montag, L. Using multimetric indices to assess the effect of reduced impact logging on ecological integrity of Amazonian streams. Ecol. Indic. 2018, 91, 315–323. [Google Scholar] [CrossRef]
- Dedieu, N.; Allard, L.; Vigouroux, R.; Brosse, S.; Céréghino, R. Physical habitat and water chemistry changes induced by logging and gold mining in French Guiana streams. Knowl. Manag. Aquat. Ec. 2014, 415, 02. [Google Scholar] [CrossRef] [Green Version]
- Guterres, A.P.M.; Cunha, E.J.; Juen, L. Tolerant semiaquatic bugs species (Heteroptera: Gerromorpha) are associated to pasture and conventional logging in the Eastern Amazon. J. Insect Conserv. 2021, 25, 555–567. [Google Scholar] [CrossRef]
- Calvão, L.B.; Nogueira, D.S.; Montag, L.F.A.; Lopes, M.A.; Juen, L. Are Odonata communities impacted by conventional or reduced impact logging? For. Ecol. Manag. 2016, 382, 143–150. [Google Scholar] [CrossRef]
- Mendes, T.P.; Montag, L.F.D.A.; Alvarado, S.T.; Juen, L. Assessing habitat quality on alpha and beta diversity of Odonata larvae (Insect) in logging areas in Amazon forest. Hydrobiologia 2021, 848, 1147–1161. [Google Scholar] [CrossRef]
- Nogueira, D.S.; Calvão, L.B.; Montag, L.F.D.A.; Juen, L.; De Marco, P. Little effects of reduced-impact logging on insect communities in eastern Amazonia. Environ. Monit. Assess. 2016, 188, 441. [Google Scholar] [CrossRef] [PubMed]
- Roque, F.O.; Escarpinati, S.C.; Valente-Neto, F.; Hamada, N. Responses of Aquatic Saproxylic Macroinvertebrates to Reduced-Impact Logging in Central Amazonia. Neotrop. Entomol. 2015, 44, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.N.; Calvão, L.B.; Montag, L.F.A.; Godoy, B.S.; Juen, L. Reducing the deleterious effects of logging on Ephemeroptera communities through reduced impact management. Hydrobiologia 2018, 823, 191–203. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Carter, D.R.; Schulze, M.D.; Vidal, E.; Lentini, M.W. The sustainability of timber production from Eastern Amazonian forests. Land Use Policy 2012, 29, 339–350. [Google Scholar] [CrossRef]
- Piponiot, C.; Rödig, E.; Putz, F.E.; Rutishauser, E.; Sist, P.; Ascarrunz, N.; Blanc, L.; Derroire, G.; Descroix, L.; Guedes, M.C.; et al. Can timber provision from Amazonian production forests be sustainable? Environ. Res. Lett. 2019, 14, 064014. [Google Scholar] [CrossRef]
- Ferreira, T.M.C.F.; de Carvalho, J.O.P.; Emmert, F.; Ruschel, A.R.; Nascimento, R.G.M. How long does the Amazon rainforest take to grow commercially sized trees? An estimation methodology for Manilkara elata (Allemão ex Miq.) Monach. For. Ecol. Manag. 2020, 473, 118333. [Google Scholar] [CrossRef]
- Canetti, A.; Braz, E.M.; de Mattos, P.P.; Basso, R.O.; Figueiredo Filho, A. A new approach to maximize the wood production in the sustainable management of Amazon forest. Ann. For. Sci. 2021, 78, 67. [Google Scholar] [CrossRef]
- de Miranda, D.L.C.; Higuchi, N.; Trumbore, S.E.; Latorraca, J.V.F.; do Carmo, J.F.; Lima, A.J.N. Using radiocarbon-calibrated dendrochronology to improve tree-cutting cycle estimates for timber management in southern Amazon forests. Trees 2018, 32, 587–602. [Google Scholar] [CrossRef]
- van Gardingen, P.R.; Valle, D.; Thompson, I. Evaluation of yield regulation options for primary forest in Tapajós National Forest, Brazil. For. Ecol. Manag. 2006, 231, 184–195. [Google Scholar] [CrossRef]
- Sist, P.; Piponiot, C.; Kanashiro, M.; Pena-Claros, M.; Putz, F.E.; Schulze, M.; Verissimo, A.; Vidal, E. Sustainability of Brazilian forest concessions. For. Ecol. Manag. 2021, 496, 119440. [Google Scholar] [CrossRef]
- Condé, T.M.; Higuchi, N.; Lima, A.J.N. Illegal selective logging and forest fires in the Northern Brazilian Amazon. Forests 2019, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, M.A.; Schulze, M.D. Fire as a recurrent event in tropical forests of the Eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica 1999, 31, 2–16. [Google Scholar] [CrossRef]
- Schwartz, G.; Pereira, P.C.G.; Siviero, M.A.; Pereira, J.F.; Ruschel, A.R.; Yared, J.A.G. Enrichment planting in logging gaps with Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby: A financially profitable alternative for degraded tropical forests in the Amazon. For. Ecol. Manag. 2017, 390, 166–172. [Google Scholar] [CrossRef]
- Jonkers, W.B.J. Vegetation Structure, Logging Damage and Silviculture in A Tropical Rain Forest in Suriname; Wageningen Agricultural University: Wageningen, The Netherlands, 1987; pp. 83–101. [Google Scholar]
- DeArmond, D.; Ferraz, J.B.S.; Marra, D.M.; Amaral, M.R.M.; Lima, A.J.N.; Higuchi, N. Logging intensity affects growth and lifespan trajectories for pioneer species in Central Amazonia. For. Ecol. Manag. 2022, 522, 120450. [Google Scholar] [CrossRef]
- Nascimento, R.G.M.; Machado, S.D.A.; Figueiredo Filho, A.; Higuchi, N. A growth and yield projection system for a tropical rainforest in the Central Amazon, Brazil. For. Ecol. Manag. 2014, 327, 201–208. [Google Scholar] [CrossRef]
- Schmidt, P.; Jonkers, W.B.J.; Ketner, P.; De Dijn, B.P.E. Impacts on forest structure and plant species diversity. In Sustainable Management of Tropical Rainforests: The CELOS Management System; Werger, M.J.A., Ed.; Tropenbos International: Paramaribo, Suriname, 2011; pp. 74–99. [Google Scholar]
- Azevedo-Ramos, C.; de Carvalho, O., Jr.; do Amaral, B.D. Short-term effects of reduced-impact logging on eastern Amazon fauna. For. Ecol. Manag. 2006, 232, 26–35. [Google Scholar] [CrossRef]
- ICUN. Harpy Eagle. Available online: https://www.iucnredlist.org/species/22695998/197957213 (accessed on 11 October 2022). [CrossRef]
- Miranda, E.B.P.; Peres, C.A.; Marini, M.Â.; Downs, C.T. Harpy Eagle (Harpia harpyja) nest tree selection: Selective logging in Amazon forest threatens Earth’s largest eagle. Biol. Conserv. 2020, 250, 108754. [Google Scholar] [CrossRef]
- Bicknell, J.; Peres, C.A. Vertebrate population responses to reduced-impact logging in a neotropical forest. For. Ecol. Manag. 2010, 259, 2267–2275. [Google Scholar] [CrossRef]
- Felton, A.M.; Felton, A.; Foley, W.J.; Lindenmayer, D.B. The role of timber tree species in the nutritional ecology of spider monkeys in a certified logging concession, Bolivia. For. Ecol. Manag. 2010, 259, 1642–1649. [Google Scholar] [CrossRef]
- Tobler, M.W.; Anleu, R.G.; Carrillo-Percastegui, S.E.; Santizo, G.P.; Polisar, J.; Hartley, A.Z.; Goldstein, I. Do responsibly managed logging concessions adequately protect jaguars and other large and medium-sized mammals? Two case studies from Guatemala and Peru. Biol. Conserv. 2018, 220, 245–253. [Google Scholar] [CrossRef]
- Lambert, T.D.; Malcolm, J.R.; Zimmerman, B.L. Effects of mahogany (Swietenia macrophylla) logging on small mammal communities, habitat structure, and seed predation in the southeastern Amazon Basin. For. Ecol. Manag. 2005, 206, 381–398. [Google Scholar] [CrossRef]
- Fredericksen, N.J.; Fredericksen, T.S. Impacts of selective logging on amphibians in a Bolivian tropical humid forest. For. Ecol. Manag. 2004, 191, 275–282. [Google Scholar] [CrossRef]
Forest Attribute | Characterization † | Reference |
---|---|---|
Above-ground biomass | ↓↓↓↔↓ | [41,42,43,44,45] |
Above-ground C density | ↓↓ | [46,47] |
Allele loss | ↑ | [48] |
Bamboo culm density | ↔ | [44] |
Basal area | ↓↓↓↔ | [42,44,46,49] |
Canopy cover | ↓↓↓↓↔↓↓ | [28,32,50,51,52,53,54] |
Carbon emissions | ↑ | [55] |
Carbon stocks | ↔↓ | [56,57] |
Coarse woody debris | ↔ | [58] |
Ecosystem respiration | ↓ | [42] |
Fire severity | ↑ | [59] |
Floristic composition | ↓ | [56] |
Ground disturbance | ↑↑ | [34,60] |
Herbivory | ↑ | [32] |
Lianas | ↑↑ | [61,62] |
Litterfall | ↔ | [63] |
Mortality | ↑↑↑↑↑↑ | [64,65,66,67,68,69] |
Palm regeneration | ↑ | [70] |
Periodic annual increment | ↑↑ | [49,68] |
Pioneer species | ↑↑↑↑ | [21,71,72,73] |
Residual tree damage | ↑↑ | [56,67] |
Soil carbon | ↔↔↑ | [27,39,74] |
Soil compaction | ↑↑↔ | [21,39,60] |
Species diversity | ↔↔↔↔ | [56,74,75,76] |
Species richness | ↓ | [57] |
Understory ambient temperature | ↑ | [77] |
Species | Result | Reference |
---|---|---|
Astronium gracile | Shade-tolerant species unaffected by gap size | [100] |
Bagassa guianensis | Decreased pollen dispersal distance | [101] |
Bertholletia excelsa | No decrease in genetic diversity | [102] |
Bertholletia excelsa | Increased population density and growth | [103] |
Copaifera spp. | Substantial increases to regeneration | [104] |
Hymenaea courbaril | Thirty-year cutting cycle not sustainable | [105] |
Hymenaea courbaril | Reduction of total number of alleles | [106] |
Manilkara huberi | Height and growth unaffected by gap size | [107] |
Manilkara huberi | Increased mortality for stems ≥ 75 cm DBH | [108] |
Pseudopiptadenia suaveolens | Increased mortality for stems ≥ 45 cm DBH | [109] |
Swietenia macrophylla | Decreased reproductive neighborhood density | [88] |
Theobroma subicanum | Growth highest on gap edge vs. gap center | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeArmond, D.; Emmert, F.; Pinto, A.C.M.; Lima, A.J.N.; Higuchi, N. A Systematic Review of Logging Impacts in the Amazon Biome. Forests 2023, 14, 81. https://doi.org/10.3390/f14010081
DeArmond D, Emmert F, Pinto ACM, Lima AJN, Higuchi N. A Systematic Review of Logging Impacts in the Amazon Biome. Forests. 2023; 14(1):81. https://doi.org/10.3390/f14010081
Chicago/Turabian StyleDeArmond, Daniel, Fabiano Emmert, Alberto C. M. Pinto, Adriano J. N. Lima, and Niro Higuchi. 2023. "A Systematic Review of Logging Impacts in the Amazon Biome" Forests 14, no. 1: 81. https://doi.org/10.3390/f14010081
APA StyleDeArmond, D., Emmert, F., Pinto, A. C. M., Lima, A. J. N., & Higuchi, N. (2023). A Systematic Review of Logging Impacts in the Amazon Biome. Forests, 14(1), 81. https://doi.org/10.3390/f14010081