Available Forage and the Conditions for Avoiding Predation of the Siberian Roe Deer (Capreolus pygargus) in the Lesser Xing’an Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landscape Map
2.3. Transect Design
2.4. Field Survey
2.5. Sampling Design
2.6. Plant Sample Classification
2.7. Measurement and Calculation of the Quantity of Available Forage
2.8. Measurement and Calculation of the Quality of Available Forage
2.9. Data Analysis
3. Results and Analysis
3.1. Available Forage
3.1.1. Quantity of Available Forage
3.1.2. Quality of Available Forage
3.2. Conditions for Avoiding Predation
3.2.1. Conditions of Concealment
3.2.2. Conditions of Escape
4. Discussion
4.1. Quantity of Available Forage
4.2. Quality of Available Forage
4.3. Conditions for Avoiding Predation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lima, S.L.; Zollner, P.A. Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 1996, 11, 131–135. [Google Scholar] [CrossRef]
- Treinys, R. Important landscape factors for the breeding territory selection by Lesser Spotted Eagle (Aquila pomarina). Acta Zool. Litu. 2004, 14, 58–61. [Google Scholar] [CrossRef]
- Zabala, J.; Zuberogoitia, I.; Garin, I.; Aihartza, J. Landscape features in the habitat selection of European mink (Mustela lutreola) in south-western Europe. J. Zool. 2003, 260, 415–421. [Google Scholar] [CrossRef]
- Carrasco, L.; Toquenaga, Y.; Mashiko, M. Extrapolation of random forest models shows scale adaptation in egret colony site selection against landscape complexity. Ecol. Complex. 2015, 24, 29–36. [Google Scholar] [CrossRef]
- Hecker, L.J.; Edwards, M.A.; Nielsen, S.E. Behavioral habitat selection of wood bison (Bison bison athabascae) in boreal forests. Mammal Res. 2023, 68, 341–353. [Google Scholar] [CrossRef]
- Wang, P.C.; Teng, M.J.; He, W.; Tang, C.; Yang, J.Y.; Yan, Z.G. Using habitat selection index for reserve planning and management for snub-nosed golden monkeys at landscape scale. Ecol. Indic. 2018, 93, 838–846. [Google Scholar] [CrossRef]
- Brindock, K.M.; Colwell, M.A. Habitat selection by western snowy plovers during the nonbreeding season. J. Wildl. Manag. 2011, 75, 786–793. [Google Scholar] [CrossRef]
- Boisjoly, D.; Ouellet, J.P.; Courtois, R. Coyote habitat selection and management implications for the Gaspésie caribou. J. Wildl. Manag. 2010, 74, 3–11. [Google Scholar] [CrossRef]
- Marchand, P.; Garel, M.; Bourgoin, G.; Dubray, D.; Maillard, D.; Loison, A. Coupling scale-specific habitat selection and activity reveals sex-specific food/cover trade-offs in a large herbivore. Anim. Behav. 2015, 102, 169–187. [Google Scholar] [CrossRef]
- Mugangu, T.E.; Hunter, M.L.; Gilbert, J.R. Food, water, and predation: A study of habitat selection by buffalo in Virunga National Park, Zaïre. Mammalia 1995, 59, 349–362. [Google Scholar] [CrossRef]
- Viejou, R.; Avgar, T.; Brown, G.S.; Patterson, B.R.; Reid, D.E.B.; Rodgers, A.R.; Shuter, J.; Thompson, I.D.; Fryxell, J.M. Woodland caribou habitat selection patterns in relation to predation risk and forage abundance depend on reproductive state. Ecol. Evol. 2018, 8, 5863–5872. [Google Scholar] [CrossRef] [PubMed]
- Dussault, C.; Ouellet, J.P.; Courtois, R.; Huot, J.; Breton, L.; Jolicoeur, H. Linking moose habitat selection to limiting factors. Ecography 2005, 28, 619–628. [Google Scholar] [CrossRef]
- Lü, Z.H.; Feng, Y.; Yu, Y.Z.; Zhang, M.H.; Zhang, W.Q. Influence of high dietary overlap on sympatric species habitat selection segregation: A case study of red deer and roe deer. J. North-East For. Univ. 2020, 48, 72–75. [Google Scholar] [CrossRef]
- Wang, Y.; Long, Z.W.; Xu, C.Y.; Lan, J.Y.; Piao, M.J.; Zhu, H.Q. Research situation of impact factors on habitat selection of roe deer (Capreolus capreolus). J. Econ. Anim. 2017, 21, 119–121. [Google Scholar] [CrossRef]
- Utz, J.L.; Shipley, L.A.; Rachlow, J.L.; Johnstone-Yellin, T.; Camp, M.; Forbey, J.S. Understanding tradeoffs between food and predation risks in a specialist mammalian herbivore. Wildl. Biol. 2016, 22, 167–173. [Google Scholar] [CrossRef]
- Nielsen, S.E.; McDermid, G.; Stenhouse, G.B.; Boyce, M.S. Dynamic wildlife habitat models: Seasonal foods and mortality risk predict occupancy-abundance and habitat selection in grizzly bears. Biol. Conserv. 2010, 143, 1623–1634. [Google Scholar] [CrossRef]
- Brodmann, P.A.; Reyer, H.U.; Bollmann, K.; Schläpfer, A.R.; Rauter, C. The importance of food quantity and quality for reproductive performance in alpine water pipits (Anthus spinoletta). Oecologia 1997, 109, 200–208. [Google Scholar] [CrossRef]
- Brasher, M.G.; Steckel, J.D.; Gates, R.J. Energetic carrying capacity of actively and passively managed wetlands for migrating ducks in Ohio. J. Wildl. Manag. 2007, 71, 2532–2541. [Google Scholar] [CrossRef]
- Heg, D.; Bachar, Z.; Brouwer, L.; Taborsky, M. Predation risk is an ecological constraint for helper dispersal in a cooperatively breeding cichlid. Proc. R. Soc. B-Biol. Sci. 2004, 271, 2367–2374. [Google Scholar] [CrossRef]
- Haapakoski, M.; Sundell, J.; Ylönen, H. Predation risk and food: Opposite effects on overwintering survival and onset of breeding in a boreal rodent. J. Anim. Ecol. 2012, 81, 1183–1192. [Google Scholar] [CrossRef]
- Morosinotto, C.; Villers, A.; Varjonen, R.; Korpimäki, E. Food supplementation and predation risk in harsh climate: Interactive effects on abundance and body condition of tit species. Oikos 2017, 126, 863–873. [Google Scholar] [CrossRef]
- Visscher, D.R.; Merrill, E.H. Temporal dynamics of forage succession for elk at two scales: Implications of forest management. For. Ecol. Manag. 2009, 257, 96–106. [Google Scholar] [CrossRef]
- Yin, Y.J. Study on the Diet, Habitat Capacity and Population Viability Analysis of the Reindeer in Aoluguya, Inner Mongolia, China. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2016. [Google Scholar]
- Godvik, I.M.R.; Loe, L.E.; Vik, J.O.; Veiberg, V.; Langvatn, R.; Mysterud, A. Temporal scales, trade-offs, and functional responses in red deer habitat selection. Ecology 2009, 90, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Dupke, C.; Bonenfant, C.; Reineking, B.; Hable, R.; Zeppenfeld, T.; Ewald, M.; Heurich, M. Habitat selection by a large herbivore at multiple spatial and temporal scales is primarily governed by food resources. Ecography 2017, 40, 1014–1027. [Google Scholar] [CrossRef]
- Visscher, D.R.; Merrill, E.H.; Fortin, D.; Frair, J.L. Estimating woody browse availability for ungulates at increasing snow depths. For. Ecol. Manag. 2006, 222, 348–354. [Google Scholar] [CrossRef]
- Takahashi, H.; Kaji, K. Fallen leaves and unpalatable plants as alternative foods for sika deer under food limitation. Ecol. Res. 2001, 16, 257–262. [Google Scholar] [CrossRef]
- Tremblay, J.P.; Thibault, I.; Dussault, C.; Huot, J.; Côté, S.D. Long-term decline in white-tailed deer browse supply: Can lichens and litterfall act as alternative food sources that preclude density-dependent feedbacks. Can. J. Zool. 2005, 83, 1087–1096. [Google Scholar] [CrossRef]
- Ward, R.L.; Marcum, C.L. Lichen litterfall consumption by wintering deer and elk in western Montana. J. Wildl. Manag. 2005, 69, 1081–1089. [Google Scholar] [CrossRef]
- Ditchkoff, S.S.; Servello, F.A. Litterfall: An overlooked food source for wintering white-tailed deer. J. Wildl. Manag. 1998, 62, 250–255. [Google Scholar] [CrossRef]
- Agetsuma, N.; Agetsuma-Yanagihara, Y.; Takafumi, H. Food habits of Japanese deer in an evergreen forest: Litter-feeding deer. Mamm. Biol. 2011, 76, 201–207. [Google Scholar] [CrossRef]
- Camp, M.J.; Rachlow, J.L.; Woods, B.A.; Johnson, T.R.; Shipley, L.A. When to run and when to hide: The influence of concealment, visibility, and proximity to refugia on perceptions of risk. Ethology 2012, 118, 1010–1017. [Google Scholar] [CrossRef]
- Boyer, J.S.; Hassa, L.L.; Lurie, M.H.; Blumstein, D.T. Effect of visibility on time allocation and escape decisions in crimson rosellas. Aust. J. Zool. 2006, 54, 363–367. [Google Scholar] [CrossRef]
- Panzacchi, M.; Herfindal, I.; Linnell, J.D.C.; Odden, M.; Odden, J.; Andersen, R. Trade-offs between maternal foraging and fawn predation risk in an income breeder. Behav. Ecol. Sociobiol. 2010, 64, 1267–1278. [Google Scholar] [CrossRef]
- Embar, K.; Kotler, B.P.; Mukherjee, S. Risk management in optimal foragers: The effect of sightlines and predator type on patch use, time allocation, and vigilance in gerbils. Oikos 2011, 120, 1657–1666. [Google Scholar] [CrossRef]
- Javurkova, V.; Sizling, A.L.; Kreisinger, J.; Albrecht, T. An alternative theoretical approach to escape decision-making: The role of visual cues. PLoS ONE 2012, 7, e32522. [Google Scholar] [CrossRef]
- Morellet, N.; Van Moorter, B.; Cargnelutti, B.; Angibault, J.-M.; Lourtet, B.; Merlet, J.; Ladet, S.; Hewison, A.J.M. Landscape composition influences roe deer habitat selection at both home range and landscape scales. Landsc. Ecol. 2011, 26, 999–1010. [Google Scholar] [CrossRef]
- Bose, S.; Forrester, T.D.; Casady, D.S.; Wittmer, H.U. Effect of activity states on habitat selection by black-tailed deer. J. Wildl. Manag. 2018, 82, 1711–1724. [Google Scholar] [CrossRef]
- Pierce, B.M.; Bowyer, R.T.; Bleich, V.C. Habitat selection by mule deer: Forage benefits or risk of predation? J. Wildl. Manag. 2004, 68, 533–541. [Google Scholar] [CrossRef]
- Di Stefano, J.; York, A.; Swan, M.; Greenfield, A.; Coulson, G. Habitat selection by the swamp wallaby (Wallabia bicolor) in relation to diel period, food and shelter. Austral Ecol. 2009, 34, 143–155. [Google Scholar] [CrossRef]
- Takada, H. The summer spatial distribution of Japanese serows (Capricornis crispus) in an area without predation risk. Mamm. Biol. 2020, 100, 63–71. [Google Scholar] [CrossRef]
- Camp, M.J.; Rachlow, J.L.; Woods, B.A.; Johnson, T.R.; Shipley, L.A. Examining functional components of cover: The relationship between concealment and visibility in shrub-steppe habitat. Ecosphere 2013, 4, art19. [Google Scholar] [CrossRef]
- Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A. Bed site selection by neonate deer in grassland habitats on the northern Great Plains. J. Wildl. Manag. 2010, 74, 1250–1256. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Gomes, P. Influence of herbaceous cover, shelter and land cover structure on wild rabbit abundance in NW Portugal. Acta Theriol. 2004, 49, 63–74. [Google Scholar] [CrossRef]
- Michel, E.S.; Gullikson, B.S.; Brackel, K.L.; Schaffer, B.A.; Jenks, J.A.; Jensen, W.F. Habitat selection of white-tailed deer fawns and their dams in the Northern Great Plains. Mammal Res. 2020, 65, 825–833. [Google Scholar] [CrossRef]
- Bowyer, R.T.; Van Ballenberghe, V.; Kie, J.G.; Maier, J.A.K. Birth-site selection by Alaskan moose: Maternal strategies for coping with a risky environment. J. Mammal. 1999, 80, 1070–1083. [Google Scholar] [CrossRef]
- Wang, J.W.; Long, Z.X.; Liang, X.; Li, S.Z.; Jiang, G.S. Habitat suitability evaluation for roe deer (Capreolus pygargus) in the Lesser Xing’an Mountains of northeast China. Chin. J. Wildl. 2020, 41, 566–572. [Google Scholar] [CrossRef]
- Norum, J.K.; Lone, K.; Linnell, J.D.C.; Odden, J.; Loe, L.E.; Mysterud, A. Landscape of risk to roe deer imposed by lynx and different human hunting tactics. Eur. J. Wildl. Res. 2015, 61, 831–840. [Google Scholar] [CrossRef]
- Krofel, M.; Jerina, K.; Kljun, F.; Kos, I.; Potocnik, H.; Razen, N.; Zor, P.; Zagar, A. Comparing patterns of human harvest and predation by Eurasian lynx Lynx lynx on European roe deer Capreolus capreolus in a temperate forest. Eur. J. Wildl. Res. 2014, 60, 11–21. [Google Scholar] [CrossRef]
- Teng, Y.; Zhang, S.; Saihan; Han, Z.Q.; Bao, W.D. Dynamic analysis of Capreolus pygargus home range in Saihanwula Nature Reserve, Inner Mongolia of northern China. J. Beijing For. Univ. 2021, 43, 73–82. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.H.; Hu, Y.M.; Chen, L.; Li, Y.; Li, Z.M.; Nie, Z.W.; Chen, T. Suitable winter habitat for Cervus elaphus on the southern slope of the Lesser Xingan Mountains. Biodivers. Sci. 2016, 24, 20–29. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.H.; Hu, Y.M.; Xiong, Z.P.; Wu, W.; Li, Y.; Wen, Q.C. Habitat selection by roe deer (Capreolus pygargus) over winter in the Tieli Forestry Bureau of the Lesser Xing’an Mountains. Biodivers. Sci. 2017, 25, 401–408. [Google Scholar] [CrossRef]
- Wang, C.M. Analysis on forestland inventory in target year of forestland protection and utilization planning in Tieli Forestry Bureau. For. Investig. Des. 2014, 1–3. [Google Scholar]
- Liu, D.P.; Chen, L.X.; Wang, Y.H.; Lu, J.; Huang, S.L. How much can we trust GPS wildlife tracking? An assessment in semi-free-ranging Crested Ibis Nipponia nippon. PeerJ 2018, 6, e5320. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; Morellet, N.; Hewison, A.J.M.; Merlet, J.; Cargnelutti, B.; Lourtet, B.; Angibault, J.M.; Daufresne, T.; Aulagnier, S.; Verheyden, H. Landscape fragmentation generates spatial variation of diet composition and quality in a generalist herbivore. Oecologia 2011, 167, 401–411. [Google Scholar] [CrossRef]
- Laver, P.N.; Kelly, M.J. A critical review of home range studies. J. Wildl. Manag. 2008, 72, 290–298. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, A.W.; Zhang, L.M.; Ju, G.C. The biological characteristics and the present situation of roe deer. J. Econ. Anim. 2017, 21, 241–243. [Google Scholar] [CrossRef]
- Nichols, R.V.; Cromsigt, J.; Spong, G. DNA left on browsed twigs uncovers bite-scale resource use patterns in European ungulates. Oecologia 2015, 178, 275–284. [Google Scholar] [CrossRef]
- Tixier, H.; Duncan, P. Are European roe deer browsers? A review of variations in the composition of their diets. Rev. D Ecol. -La Terre Et La Vie 1996, 51, 3–17. [Google Scholar] [CrossRef]
- Barancekova, M.; Krojerova-Prokesova, J.; Sustr, P.; Heurich, M. Annual changes in roe deer (Capreolus capreolus L.) diet in the Bohemian Forest, Czech Republic/Germany. Eur. J. Wildl. Res. 2010, 56, 327–333. [Google Scholar] [CrossRef]
- Barancekova, M. The roe deer diet: Is floodplain forest optimal habitat? Folia Zool. 2004, 53, 285–292. [Google Scholar]
- Argunov, A.V.; Stepanova, V.V. Diet structure of the Siberian roe deer in Yakutia. Russ. J. Ecol. 2011, 42, 161–164. [Google Scholar] [CrossRef]
- Mussa, P.P.; Aceto, P.; Abba, C.; Sterpone, L.; Meineri, G. Preliminary study on the feeding habits of roe deer (Capreolus capreolus) in the western Alps. J. Anim. Physiol. Anim. Nutr. 2003, 87, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, A.; Park, S.-M.; Kim, T.-W.; Lee, J.-W.; Kim, G.-R.; Han, S.-H.; Hongshik, O. Seasonal and altitudinal variation in roe deer (Capreolus pygargus tianschanicus) diet on Jeju Island, South Korea. J. Asia-Pac. Biodivers. 2016, 9, 422–428. [Google Scholar] [CrossRef]
- Brown, R.D.; Hellgren, E.C.; Abbott, M.; Ruthven, D.C.; Bingham, R.L. Effects of dietary energy and protein restriction on nutritional indexes of female white-tailed deer. J. Wildl. Manag. 1995, 59, 595–609. [Google Scholar] [CrossRef]
- Robbins, C.T. Wildlife Feeding and Nutrition; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Verheyden-Tixier, H.; Renaud, P.C.; Morellet, N.; Jamot, J.; Besle, J.M.; Dumont, B. Selection for nutrients by red deer hinds feeding on a mixed forest edge. Oecologia 2008, 156, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Gursoy, E.; Kaya, A.; Gul, M. Determining the nutrient content, energy, and in vitro true digestibility of some grass forage plants. Emir. J. Food Agric. 2021, 33, 417–422. [Google Scholar] [CrossRef]
- Van Soest, P.; Robertson, J. Systems of analysis for evaluating fibrous feeds. In Standardization of Analytical Methodology for Feeds; IDRC: Ottawa, ON, Canada, 1979. [Google Scholar]
- Walsh, N.E.; McCabe, T.R.; Welker, J.M.; Parsons, A.N. Experimental manipulations of snow-depth: Effects on nutrient content of caribou forage. Glob. Change Biol. 1997, 3, 158–164. [Google Scholar] [CrossRef]
- Chen, H.P.; Ma, J.Z.; Li, F.; Sun, Z.W.; Wang, H.A.; Luo, L.Y.; Li, F. Seasonal composition and quality of red deer Cervus elaphus diets in northeastern China. Acta Theriol. 1998, 43, 77–94. [Google Scholar] [CrossRef]
- Chen, H.P.; Li, F.; Luo, L.Y.; Wang, H.; Ma, J.Z.; Li, F. Winter bed-site selection by red deer Cervus elaphus xanthopygus and roe deer Capreolus capreolus bedfordi in forests of northeastern China. Acta Theriol. 1999, 44, 195–206. [Google Scholar] [CrossRef]
- Parikh, G.L.; Webster, C.R.; Vucetich, J.A. A microhistological investigation of winter diets of white- tailed deer in relict Eastern Hemlock stands, Upper Peninsula of Michigan. Northeast. Nat. 2021, 28, 296–310. [Google Scholar] [CrossRef]
- Konôpka, B.; Pajtík, J.; Bošeľa, M.; Šebeň, V.; Shipley, L.A. Modeling forage potential for red deer (Cervus elaphus): A tree-level approach. Eur. J. For. Res. 2020, 139, 419–430. [Google Scholar] [CrossRef]
- Axmanova, I.; Chytry, M.; Zeleny, D.; Li, C.F.; Vymazalova, M.; Danihelka, J.; Horsak, M.; Koci, M.; Kubesova, S.; Lososova, Z.; et al. The species richness-productivity relationship in the herb layer of European deciduous forests. Glob. Ecol. Biogeogr. 2012, 21, 657–667. [Google Scholar] [CrossRef]
- Teng, L.W.; Liu, Z.S.; Zhang, E.D.; Ma, J.Z. Winter bedding site selection by the roe deer (Capreolus capreolus) in Sanjiang National Nature Reserve, Heilongjiang Province, China. Zool. Res. 2006, 27, 403–410. [Google Scholar]
- Li, B.B. Estimating Carrying Capacity of Deer at Qinglongtai Forestry in Hunchun Nature Reserve, Jilin. Master’s Thesis, East China Normal University, Shanghai, China, 2006. [Google Scholar]
- Zhou, Y.L. Vegetation of Xiao Hinggan Ling in China; Science Press: Beijing, China, 1994. [Google Scholar]
- Wang, L.; Yang, L.M.; Sai, J.M.; Wei, J.J.; Huang, C.M.; Li, D.; Zhu, X.L.; Wang, T.M.; Feng, L.M.; Ge, J.P.; et al. The quantity and quality of understory forages of the ungulates’ habitat in the eastern part of Northeast Tiger and Leopard National Park. Acta Theriol. Sin. 2019, 39, 373–385. [Google Scholar] [CrossRef]
- González-Hernández, M.P.; Silva-Pando, F.J. Nutritional attributes of understory plants known as components of deer diets. J. Range Manag. 1999, 52, 132–138. [Google Scholar] [CrossRef]
- López-Pérez, E.; Serrano-Aspeitia, N.; Aguilar-Valdés, B.C.; Herrera-Corredor, A. Composición nutricional de la dieta del venado cola blanca (Odocoileous virginianus ssp. mexicanus) en Pitzotlán, Morelos. Rev. Chapingo Ser. Cienc. For. Y Del Ambiente 2012, 18, 219–229. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, W.; Shen, G.S. Nutrient analysis of plant food of black bear on the southern slope of Lesser Xingan Mountains. Chin. J. Wildl. 2009, 30, 121–123. [Google Scholar] [CrossRef]
- Ma, J.Z.; Chen, H.P.; Sun, Z.W.; Li, F.; Wang, H.; Li, F.; Du, Y.X.; Li, J. Seasonal nutritional quality of red deer and roe deer forages in southern Xiao Xingan Mountains, China. Acta Ecol. Sin. 1996, 16, 269–275. [Google Scholar]
- Li, J.S.; Wu, J.P.; Li, J.H.; Jiang, Z.W. A preliminary study on nutritional quality of Mongolian gazelle foods. J. Northeast For. Univ. 2000, 28, 105–109. [Google Scholar] [CrossRef]
- Belovsky, G.E. Food plant selection by a generalist herbivore: The moose. Ecology 1981, 62, 1020–1030. [Google Scholar] [CrossRef]
- Zhou, S.C.; Zhang, M.H.; Yin, Y.X.; Ren, M.F. Habitat selection of roe deer (Capreolus capreolus) in winter in the eastern Wandashan mountains, Heilongjiang Province. J. Beijing For. Univ. 2010, 32, 122–127. [Google Scholar] [CrossRef]
- Xia, X.; Ren, J.; Li, L.; Wang, H.Y.; Song, Y.C.; Yang, D.D.; Jiang, Z.G. Autumn-winter habitat selection by the re-wild Milu (Elaphurus davidianus) at the early stage after release in Dongting Lake Wetland, China. Biodivers. Sci. 2021, 29, 1087–1096. [Google Scholar] [CrossRef]
- Xiang, R.W.; Da, Z.; Wu, J.Y.; Bu, X.L.; Wang, J.; Lu, Q.B.; Hao, Y.H.; Sheng, Y.; Meng, X.X. Summer habitat preference of roe deer (Capreolus pygargus) in mountainous areas around Beijing. Chin. J. Ecol. 2021, 40, 3252–3258. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zhu, H.Q.; Ge, Z.Y.; Chang, S.H.; Li, C.; Zhang, X.D. Selection of musk deer winter habitat in Huangnihe Nature Reserve. J. Northwest AF Univ. (Nat. Sci. Ed.) 2015, 43, 15–20. [Google Scholar] [CrossRef]
- Zhang, H.L.; Wu, J.P.; Liu, Y.Z.; Zhang, Y. Habitat selection by Moschus moschiferus in summer in Daxing’an Mountains. Chin. J. Ecol. 2008, 27, 1313–1316. [Google Scholar]
- Masse, A.; Cote, S.D. Habitat selection of a large herbivore at high density and without predation: Trade-off between forage and cover? J. Mammal. 2009, 90, 961–970. [Google Scholar] [CrossRef]
- Mysterud, A.; Ostbye, E. Bed-site selection by European roe deer (Capreolus capreolus) in southern Norway during winter. Can. J. Zool. 1995, 73, 924–932. [Google Scholar] [CrossRef]
- Bonnot, N.; Morellet, N.; Verheyden, H.; Cargnelutti, B.; Lourtet, B.; Klein, F.; Hewison, A.J.M. Habitat use under predation risk: Hunting, roads and human dwellings influence the spatial behaviour of roe deer. Eur. J. Wildl. Res. 2013, 59, 185–193. [Google Scholar] [CrossRef]
- Teng, L.W.; Liu, Z.S.; Zhang, E.D.; Ma, J.Z. Winter bed-site selection of Capreolus capreolus in low mountain areas of southern Xiaoxing’anling Mountains. Chin. J. Ecol. 2007, 26, 213–218. [Google Scholar]
Forage Category | Meadows (n = 18) | Forests (n = 80) | Soybean Fields (n = 36) | Cornfields (n = 17) | ||
---|---|---|---|---|---|---|
Horsetails | Other Plants | Soybeans | Soybean Pods | |||
Standing withered | 416.40 ± 209.27 | 9.84 ± 27.57 | 38.19 ± 46.82 | — | — | — |
Litterfall | — | 4.04 ± 11.51 | 86.98 ± 53.33 | 31.26 ± 36.31 | 40.89 ± 85.84 | 57.64 ± 233.31 |
Total | 416.40 ± 209.27 a | 139.06 ± 65.26 b | 72.16 ± 97.39 b | 57.64 ± 233.31 b |
Forage Category | Cornfields (n = 12) | Rice Fields (n = 3) | Meadows (n = 64) | Coniferous Forests (n = 62) | Soybean Fields (n = 5) | Broadleaf Forests (n = 69) | Mixed Forests (n = 7) |
---|---|---|---|---|---|---|---|
Woody | — | — | 6.24 ± 22.01 | 16.38 ± 40.12 | — | 15.28 ± 28.97 | 6.24 ± 8.93 |
Herbaceous | — | — | 549.43 ± 172.27 | 346.81 ± 233.34 | — | 149.36 ± 108.88 | 144.46 ± 61.44 |
Crops | 1081.08 ± 526.76 | 593.83 ± 65.75 | — | — | 198.05 ± 20.55 | — | — |
Total | 1081.08 ± 526.76 a | 593.83 ± 65.75 b | 555.67 ± 176.15 b | 363.19 ± 223.89 bc | 198.05 ± 20.55 c | 164.64 ± 108.94 c | 150.70 ± 63.04 c |
Landscape Type | Forage Category | Hemicellulose | Cellulose | Lignin | Non-Fibrous Components | Nitrogen | Carbon |
---|---|---|---|---|---|---|---|
Forests | Standing horsetails | 9.93 ± 0.24 | 30.40 ± 0.46 | 1.05 ± 0.05 | 58.62 ± 0.72 | 1.36 ± 0.01 | 35.88 ± 0.12 |
Standing other plants | 16.21 ± 0.85 | 24.51 ± 1.08 | 13.17 ± 1.12 | 46.11 ± 2.14 | 1.53 ± 0.03 | 41.50 ± 0.06 | |
Fallen horsetails | 9.62 ± 0.40 | 31.72 ± 0.97 | 1.20 ± 0.22 | 57.46 ± 1.34 | 1.22 ± 0.01 | 35.14 ± 0.07 | |
Fallen other plants | 15.32 ± 0.79 | 23.67 ± 2.99 | 12.81 ± 3.27 | 48.20 ± 1.70 | 1.44 ± 0.16 | 41.27 ± 0.38 | |
Subtotal | 12.77 ± 3.08 b | 27.58 ± 3.91 ab | 7.06 ± 6.18 ab | 52.60 ± 5.73 b | 1.39 ± 0.14 b | 38.45 ± 2.96 b | |
Meadows | Herbaceous plants | 20.98 ± 0.26 a | 34.76 ± 0.70 a | 11.65 ± 2.28 a | 32.61 ± 1.80 c | 0.73 ± 0.03 b | 43.67 ± 0.04 a |
Soybean fields | Soybeans | 5.84 ± 0.94 | 7.08 ± 0.09 | 0.31 ± 0.17 | 86.77 ± 1.00 | 6.00 ± 0.03 | 48.99 ± 0.07 |
Soybean pods | 17.06 ± 0.69 | 34.38 ± 0.61 | 10.12 ± 0.57 | 38.44 ± 1.61 | 1.26 ± 0.05 | 41.51 ± 0.03 | |
Subtotal | 11.45 ± 5.67 b | 20.73 ± 13.66 b | 5.21 ± 4.92 ab | 62.61 ± 24.20 b | 3.63 ± 2.37 a | 45.25 ± 3.74 a | |
Cornfields | Corn | 5.07 ± 0.75 c | 2.93 ± 0.29 c | 0.10 ± 0.03 b | 91.90 ± 1.05 a | 1.41 ± 0.01 b | 41.90 ± 0.08 ab |
Total | 12.50 ± 5.39 | 23.68 ± 11.54 | 6.30 ± 5.90 | 57.51 ± 20.18 | 1.87 ± 1.58 | 41.23 ± 4.07 |
Landscape Type | Forage Category | Hemicellulose | Cellulose | Lignin | Non-Fibrous Components | Nitrogen | Carbon |
---|---|---|---|---|---|---|---|
Forests | Standing horsetails | 0.98 ± 2.74 | 2.99 ± 8.38 | 0.10 ± 0.29 | 5.77 ± 16.16 | 0.13 ± 0.37 | 3.53 ± 9.89 |
Standing other plants | 6.19 ± 7.59 | 9.36 ± 11.47 | 5.03 ± 6.17 | 17.61 ± 21.59 | 0.58 ± 0.72 | 15.85 ± 19.43 | |
Fallen horsetails | 0.39 ± 1.11 | 1.28 ± 3.65 | 0.05 ± 0.14 | 2.32 ± 6.61 | 0.05 ± 0.14 | 1.42 ± 4.04 | |
Fallen other plants | 13.33 ± 8.17 | 20.59 ± 12.62 | 11.14 ± 6.83 | 41.93 ± 25.71 | 1.25 ± 0.77 | 35.90 ± 22.01 | |
Subtotal | 17.76 ± 8.33 b | 38.35 ± 18.00 b | 9.82 ± 4.61 b | 73.15 ± 34.33 b | 1.93 ± 0.91 ab | 53.47 ± 25.09 b | |
Meadows | Herbaceous plants | 87.36 ± 43.90 a | 144.74 ± 72.74 a | 48.51 ± 24.38 a | 135.79 ± 68.24 a | 3.04 ± 1.53 a | 181.84 ± 91.39 a |
Soybean fields | Soybeans | 1.83 ± 2.12 | 2.21 ± 2.57 | 0.10 ± 0.11 | 27.13 ± 31.51 | 1.88 ± 2.18 | 15.32 ± 17.79 |
Soybean pods | 6.98 ± 14.65 | 14.06 ± 29.51 | 4.14 ± 8.69 | 15.72 ± 33.00 | 0.52 ± 1.08 | 16.97 ± 35.63 | |
Subtotal | 8.26 ± 11.15 bc | 14.96 ± 20.19 c | 3.76 ± 5.07 bc | 45.18 ± 60.98 b | 2.62 ± 3.54 a | 32.65 ± 44.07 b | |
Cornfields | Corn | 2.92 ± 11.83 c | 1.69 ± 6.84 c | 0.06 ± 0.23 c | 52.97 ± 214.41 b | 0.81 ± 3.29 b | 24.15 ± 97.76 b |
Total | 22.12 ± 30.13 | 41.33 ± 50.03 | 11.89 ± 16.72 | 71.67 ± 87.31 | 2.10 ± 2.27 | 60.51 ± 69.86 |
Landscape Type | Forage Category | Hemicellulose | Cellulose | Lignin | Non-Fibrous Components | Nitrogen | Carbon |
---|---|---|---|---|---|---|---|
Broadleaf forests | Woody | 21.34 ± 0.91 | 9.60 ± 1.92 | 23.53 ± 2.36 | 45.53 ± 0.57 | 2.18 ± 0.02 | 43.64 ± 0.03 |
Herbaceous | 19.18 ± 3.02 | 5.36 ± 2.89 | 45.02 ± 6.28 | 33.67 ± 5.22 | 2.07 ± 0.03 | 44.24 ± 0.01 | |
Subtotal | 20.26 ± 2.48 a | 7.91 ± 3.14 ab | 34.28 ± 11.75 a | 39.60 ± 6.99 d | 2.13 ± 0.06 c | 43.94 ± 0.30 bc | |
Coniferous forests | Woody | 21.36 ± 0.83 | 8.33 ± 0.59 | 25.67 ± 1.05 | 44.64 ± 1.57 | 2.69 ± 0.01 | 44.71 ± 0.07 |
Herbaceous | 22.62 ± 0.86 | 18.72 ± 2.67 | 18.13 ± 2.77 | 40.53 ± 2.04 | 1.82 ± 0.01 | 43.11 ± 0.04 | |
Subtotal | 21.99 ± 1.05 a | 13.52 ± 5.55 a | 21.90 ± 4.31 bc | 42.59 ± 2.75 cd | 2.26 ± 0.43 c | 43.91 ± 0.80 bc | |
Mixed forests | Woody | 20.67 ± 2.87 | 4.92 ± 2.48 | 28.32 ± 2.55 | 46.09 ± 3.94 | 3.03 ± 0.04 | 44.52 ± 0.05 |
Herbaceous | 16.71 ± 0.95 | 21.55 ± 2.02 | 24.71 ± 4.13 | 37.02 ± 2.11 | 2.32 ± 0.01 | 41.53 ± 0.08 | |
Subtotal | 18.69 ± 2.91 a | 13.24 ± 8.62 a | 26.52 ± 3.88 ab | 41.55 ± 5.53 cd | 2.67 ± 0.36 b | 43.03 ± 1.50 c | |
Meadows | Woody | 11.45 ± 0.61 | 7.57 ± 0.97 | 16.50 ± 1.46 | 64.48 ± 1.23 | 1.85 ± 0.02 | 45.84 ± 0.01 |
Herbaceous | 27.04 ± 0.14 | 17.92 ± 3.18 | 14.93 ± 4.59 | 40.12 ± 1.30 | 1.54 ± 0.01 | 43.47 ± 0.07 | |
Subtotal | 19.25 ± 7.81 a | 12.74 ± 5.68 a | 15.72 ± 3.50 cd | 52.30 ± 12.25 c | 1.69 ± 0.15 d | 44.66 ± 1.18 ab | |
Soybean fields | Crops | 8.35 ± 1.13 b | 15.34 ± 1.07 a | 5.42 ± 0.75 e | 70.88 ± 2.21 b | 3.76 ± 0.03 a | 45.76 ± 0.03 a |
Cornfields | Crops | 4.75 ± 0.13 b | 0.86 ± 0.15 b | 2.89 ± 0.65 e | 91.95 ± 0.11 a | 1.32 ± 0.01 d | 40.95 ± 0.07 d |
Rice fields | Crops | 8.24 ± 1.73 b | 11.40 ± 0.52 a | 8.11 ± 0.87 de | 72.26 ± 2.13 b | 1.43 ± 0.00 d | 41.59 ± 0.30 d |
Total | 16.52 ± 7.03 | 11.56 ± 6.39 | 19.38 ± 11.87 | 53.38 ± 17.91 | 2.18 ± 0.70 | 43.58 ± 1.59 |
Landscape Type | Forage Category | Hemicellulose | Cellulose | Lignin | Non-Fibrous Components | Nitrogen | Carbon |
---|---|---|---|---|---|---|---|
Broadleaf forests | Woody | 3.26 ± 6.18 | 1.47 ± 2.78 | 3.59 ± 6.82 | 6.96 ± 13.19 | 0.33 ± 0.63 | 6.67 ± 12.64 |
Herbaceous | 28.65 ± 20.88 | 8.01 ± 5.84 | 67.24 ± 49.02 | 50.29 ± 36.66 | 3.09 ± 2.25 | 66.08 ± 48.17 | |
Subtotal | 33.36 ± 22.07 bc | 13.02 ± 8.62 c | 56.44 ± 37.35 ab | 65.20 ± 43.14 d | 3.51 ± 2.32 b | 72.34 ± 47.87 c | |
Coniferous forests | Woody | 3.50 ± 8.57 | 1.36 ± 3.34 | 4.20 ± 10.30 | 7.31 ± 17.91 | 0.44 ± 1.08 | 7.32 ± 17.94 |
Herbaceous | 78.45 ± 52.78 | 64.92 ± 43.68 | 62.88 ± 42.30 | 140.56 ± 94.57 | 6.31 ± 4.25 | 149.51 ± 100.59 | |
Subtotal | 79.87 ± 49.23 ab | 49.10 ± 30.27 ab | 79.54 ± 49.03 a | 154.68 ± 95.35 cd | 8.21 ± 5.06 ab | 159.48 ± 98.31 bc | |
Mixed forests | Woody | 1.29 ± 1.85 | 0.31 ± 0.44 | 1.77 ± 2.53 | 2.88 ± 4.11 | 0.19 ± 0.27 | 2.78 ± 3.97 |
Herbaceous | 24.14 ± 10.27 | 31.13 ± 13.24 | 35.70 ± 15.18 | 53.48 ± 22.75 | 3.35 ± 1.43 | 59.99 ± 25.52 | |
Subtotal | 28.17 ± 11.78 bc | 19.95 ± 8.35 bc | 39.96 ± 16.72 ab | 62.61 ± 26.19 d | 4.02 ± 1.68 b | 64.85 ± 27.13 c | |
Meadows | Woody | 0.71 ± 2.52 | 0.47 ± 1.67 | 1.03 ± 3.63 | 4.02 ± 14.20 | 0.12 ± 0.41 | 2.86 ± 10.09 |
Herbaceous | 148.57 ± 46.58 | 98.46 ± 30.87 | 82.03 ± 25.72 | 220.43 ± 69.12 | 8.46 ± 2.65 | 238.84 ± 74.89 | |
Subtotal | 106.97 ± 33.91 a | 70.79 ± 22.44 a | 87.35 ± 27.69 a | 290.62 ± 92.12 bc | 9.39 ± 2.98 ab | 248.16 ± 78.67 b | |
Soybean fields | Crops | 16.54 ± 1.72 c | 30.38 ± 3.15 bc | 10.73 ± 1.11 b | 140.37 ± 14.56 cd | 7.45 ± 0.77 b | 90.63 ± 9.40 c |
Cornfields | Crops | 51.35 ± 25.02 abc | 9.30 ± 4.53 c | 31.24 ± 15.22 ab | 994.05 ± 484.36 a | 14.27 ± 6.95 a | 442.70 ± 215.71 a |
Rice fields | Crops | 48.93 ± 5.42 bc | 67.70 ± 7.50 a | 48.16 ± 5.33 ab | 429.10 ± 47.51 b | 8.49 ± 0.94 ab | 249.11 ± 27.58 b |
Total | 68.53 ± 46.60 | 40.83 ± 32.08 | 69.14 ± 41.15 | 211.25 ± 248.28 | 7.26 ± 4.79 | 169.95 ± 130.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, Y.; Hu, Y.; Li, Y.; Guo, J.; Shao, X.; Gao, H. Available Forage and the Conditions for Avoiding Predation of the Siberian Roe Deer (Capreolus pygargus) in the Lesser Xing’an Mountains. Forests 2023, 14, 2072. https://doi.org/10.3390/f14102072
Li Y, Li Y, Hu Y, Li Y, Guo J, Shao X, Gao H. Available Forage and the Conditions for Avoiding Predation of the Siberian Roe Deer (Capreolus pygargus) in the Lesser Xing’an Mountains. Forests. 2023; 14(10):2072. https://doi.org/10.3390/f14102072
Chicago/Turabian StyleLi, Yueyuan, Yuehui Li, Yuanman Hu, Yue Li, Jia Guo, Xuefeng Shao, and Huifang Gao. 2023. "Available Forage and the Conditions for Avoiding Predation of the Siberian Roe Deer (Capreolus pygargus) in the Lesser Xing’an Mountains" Forests 14, no. 10: 2072. https://doi.org/10.3390/f14102072
APA StyleLi, Y., Li, Y., Hu, Y., Li, Y., Guo, J., Shao, X., & Gao, H. (2023). Available Forage and the Conditions for Avoiding Predation of the Siberian Roe Deer (Capreolus pygargus) in the Lesser Xing’an Mountains. Forests, 14(10), 2072. https://doi.org/10.3390/f14102072