Evaluation of Different Geographic Provenances of Silver Fir (Abies alba) as Seed Sources, Based on Seed Traits and Germination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Locations of the Provenances
2.2. Characterization of Cones and Seeds of A. alba
2.3. The Studied Germination Parameters
2.4. Data Analysis
3. Results
3.1. The Main Characteristics of Silver Fir Cones Depending on Provenances
3.2. The Main Characteristics of Seeds Depending on Provenances
3.3. The Germination of Silver Fir Seeds
3.4. The Germination Indices
3.5. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alotaibi, M. Climate change, its impact on crop production, challenges, and possible solutions. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 13020. [Google Scholar] [CrossRef]
- Fady, B.; Cottrell, J.; Ackzell, L.; Alía, R.; Muys, B.; Prada, A.; González-Martínez, S.C. Forests and global change: What can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg. Environ. Chang. 2016, 16, 927–939. [Google Scholar] [CrossRef]
- Baldrian, P.; López-Mondéjar, R.; Kohout, P. Forest microbiome and global change. Nat. Rev. Microbiol. 2023, 21, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Marsz, A.A.; Sobkowiak, L.; Styszyńska, A.; Wrzesiński, D. Causes and course of climate change and its hydrological consequences in the Greater Poland Region in 1951–2020. Quaest. Geogr. 2022, 41, 183–206. [Google Scholar] [CrossRef]
- Keenan, R.J. Climate change impacts and adaptation in forest management: A review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar] [CrossRef]
- Aspinwall, M.J.; Loik, M.E.; De Dios, V.R.; Tjoelker, M.G.; Payton, P.R.; Tissue, D.T. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change. Plant Cell Environ. 2015, 38, 1752–1764. [Google Scholar] [CrossRef]
- Koulelis, P.P.; Proutsos, N.; Solomou, A.D.; Avramidou, E.V.; Malliarou, E.; Athanasiou, M.; Xanthopoulos, G.; Petrakis, P.V. Effects of climate change on greek forests: A review. Atmosphere 2023, 14, 1155. [Google Scholar] [CrossRef]
- Thompson, I.; Mackey, B.; McNulty, S.; Mosseler, A. Forest resilience, biodiversity, and climate change. In A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems; Technical Series; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2009; pp. 1–67. [Google Scholar]
- Girona, M.M.; Aakala, T.; Aquilué, N.; Bélisle, A.C.; Chaste, E.; Danneyrolles, V.; Díaz-Yáñez, O.; D’Orangeville, L.; Grosbois, G.; Hester, A.; et al. Challenges for the Sustainable Management of the Boreal Forest Under Climate Change. In Boreal Forests in the Face of Climate Change. Advances in Global Change Research; Girona, M.M., Morin, H., Gauthier, S., Bergeron, Y., Eds.; Springer: Cham, Switzerland, 2023; Volume 74. [Google Scholar] [CrossRef]
- Chambel, M.R.; Climent, J.; Alia, R.; Valladares, F. Phenotypic plasticity: A useful framework for understanding adaptation in forest species. For. Syst. 2005, 14, 334–344. [Google Scholar] [CrossRef]
- Ahirvar, B.P.; Chaudhry, S.; Kumar, M.; Das, P. Climate change impact on forest and agrobiodiversity: A special reference to Amarkantak Area, Madhya Pradesh. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Singh, P., Singh, R.P., Srivastava, V., Eds.; Springer: Singapore, 2020; pp. 65–76. [Google Scholar]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- McDowell, N.G.; Williams, A.P.; Xu, C.; Pockman, W.T.; Dickman, L.T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.; Mackay, D.S.; et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 2016, 6, 295–300. [Google Scholar] [CrossRef]
- Halpin, P.N. Global climate change and natural-area protection: Management responses and research directions. Ecol. Appl. 1997, 7, 828–843. [Google Scholar] [CrossRef]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Bilaşco, Ş.; Roşca, S.; Păcurar, I.; Moldovan, N.; Boţ, A.; Negrușier, C.; Sestras, P.; Bondrea, M.; Naș, S. Identification of land suitability for agricultural use by applying morphometric and risk parameters based on GIS spatial analysis. Not. Bot. Horti Agrobo. 2016, 44, 302–312. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Curovic, M.; Spalevic, V.; Sestras, P.; Motta, R.; Dan, C.; Garbarino, M.; Vitali, A.; Urbinati, C. Structural and ecological characteristics of mixed broadleaved old-growth forest (Biogradska Gora-Montenegro). Turk. J. Agric. For. 2020, 44, 428–438. [Google Scholar] [CrossRef]
- Belcher, B.M. Forest product markets, forests and poverty reduction. Int. For. Rev. 2005, 7, 82–89. [Google Scholar] [CrossRef]
- Jones, J.; Ellison, D.; Ferraz, S.; Lara, A.; Wei, X.; Zhang, Z. Forest restoration and hydrology. For. Ecol. Manag. 2022, 520, 120342. [Google Scholar] [CrossRef]
- Muys, B.; Angelstam, P.; Bauhus, J.; Bouriaud, L.; Jactel, H.; Kraigher, H.; Müller, J.; Pettorelli, N.; Pötzelsberger, E.; Primmer, E. Forest Biodiversity in Europe; European Forest Institute: Joensuu, Finland, 2022. [Google Scholar]
- Ratnam, W.; Rajora, O.P.; Finkeldey, R.; Aravanopoulos, F.; Bouvet, J.M.; Vaillancourt, R.E.; Kanashiro, M.; Fady, B.; Tomita, M.; Vinson, C. Genetic effects of forest management practices: Global synthesis and perspec-tives. For. Ecol. Manag. 2014, 333, 52–65. [Google Scholar] [CrossRef]
- Richter, S.; Kipfer, T.; Wohlgemuth, T.; Calderón Guerrero, C.; Ghazoul, J.; Moser, B. Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 2012, 169, 269–279. [Google Scholar] [CrossRef]
- Sestras, P.; Bondrea, M.V.; Cetean, H.; Sălăean, T.; Bilașco, Ş.; Naș, S.; Spalevic, V.; Fountas, S.; Cîmpeanu, S.M. Ameliorative, ecological and landscape roles of Făget Forest, Cluj-Napoca, Romania, and possibilities of avoiding risks based on GIS landslide susceptibility map. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 292–300. [Google Scholar] [CrossRef]
- Rajora, O.P.; Mosseler, A. Challenges and opportunities for conservation of forest genetic resources. Euphytica 2001, 118, 197–212. [Google Scholar] [CrossRef]
- Muscolo, A.; Sidari, M.; Bagnato, S.; Mallamaci, C.; Mercurio, R. Gap size effects on above- and below-ground processes in a silver fir stand. Eur. J. For. Res. 2010, 129, 355–365. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A.; Tollefsrud, M.M.; Graudal, L.; Koskela, J.; Kätzel, R.; Soto, A.; Nagy, L.; Pilipovič, A.; Zhelev, P.; Božič, G.; et al. Development of Genetic Monitoring Methods for Genetic Conservation Units of Forest Trees in Europe; Bioversity International; European Forest Genetic Resources Programme (EUFORGEN): Rome, Italy, 2015. [Google Scholar]
- Nadrowski, K.; Wirth, C.; Scherer-Lorenzen, M. Is forest diversity driving ecosystem function and service? Curr. Opin. Environ. Sustain. 2010, 2, 75–79. [Google Scholar] [CrossRef]
- Steel, E.A.; Hinckley, T.M.; Richards, W.H.; D’Amore, D.V. Forests then and now: Managing for ecosystem benefits, services to humans, and healthy forests across scales. In Future Forests; Elsevier: Amsterdam, The Netherlands, 2024; pp. 49–64. [Google Scholar] [CrossRef]
- Teshome, D.T.; Zharare, G.E.; Naidoo, S. The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Front. Plant Sci. 2020, 11, 1874. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; He, H.S.; Thompson, F.R.; Fraser, J.S.; Dijak, W.D. Changes in forest biomass and tree species distribution under climate change in the northeastern United States. Landsc. Ecol. 2017, 32, 1399–1413. [Google Scholar] [CrossRef]
- Wolf, H. EUFORGEN Technical Guidelines for Genetic Conservation and Use for for Silver Fir (Abies alba); Bioversity International; International Plant Genetic Resources Institute: Rome, Italy, 2003; p. 6. [Google Scholar]
- Dinca, L.; Marin, M.; Radu, V.; Murariu, G.; Drasovean, R.; Cretu, R.; Georgescu, L.; Timiș-Gânsac, V. Which are the best site and stand conditions for silver fir (Abies alba Mill.) located in the Carpathian Mountains? Diversity 2022, 14, 547. [Google Scholar] [CrossRef]
- Dobrowolska, D.; Bončina, A.; Klumpp, R. Ecology and silviculture of silver fir (Abies alba Mill.): A review. J. For. Res. 2017, 22, 326–335. [Google Scholar] [CrossRef]
- Becker, M.; Bert, G.D.; Landmann, G.; Lévy, G.; Rameau, J.C.; Ulrich, E. Growth and decline symptoms of silver fir and Norway spruce in northeastern France: Relation to climate, nutrition and silviculture. In Forest Decline and Atmospheric Deposition Effects in the French Mountains; Springer: Berlin/Heidelberg, Germany, 1995; pp. 120–142. [Google Scholar]
- Ficko, A.; Roessiger, J.; Bončina, A. Can the use of continuous cover forestry alone maintain silver fir (Abies alba Mill.) in central European mountain forests? For. Int. J. For. Res. 2016, 89, 412–421. [Google Scholar] [CrossRef]
- Huth, F.; Wehnert, A.; Tiebel, K.; Wagner, S. Direct seeding of silver fir (Abies alba Mill.) to convert Norway spruce (Picea abies L.) forests in Europe: A review. For. Ecol. Manag. 2017, 403, 61–78. [Google Scholar] [CrossRef]
- Bravo-Navas, M.V.; Sánchez-Romero, C. Germination behavior and early seedling growth in Abies pinsapo Boiss. seeds. Plants 2022, 11, 2715. [Google Scholar] [CrossRef]
- Bradbeer, J.W. Seed Dormancy and Germination; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Daffalla, H.M.; Ali, K.S.; Osman, M.G.; Yahiya, Y.O. Rapid germination and development of Acacia sieberiana DC in vitro. Not. Sci. Biol. 2022, 14, 11176. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Zhao, M.-H.; Pang, Z.-Y.; Wei, J.-T.; Tigabu, M.; Chiang, V.L.; Sederoff, H.; Sederoff, R.; Zhao, X.-Y. An overview of the practices and management methods for enhancing seed production in conifer plantations for commercial use. Horticulturae 2021, 7, 252. [Google Scholar] [CrossRef]
- Mihai, G.; Alexandru, A.M. Silver Fir Seeds Conservation; Forestry Publishing: Bucharest, Romania, 2021; p. 65. [Google Scholar]
- Motta, R.; Garbarino, F. Stand history and its consequences for the present and future dynamic in two silver fir (Abies alba Mill.) stands in the high Pesio Valley (Piedmont, Italy). Ann. For. Sci. 2003, 60, 361–370. [Google Scholar] [CrossRef]
- Keeling, C.I.; Lewis, A.R.; Kolotelo, D.; Russell, J.H.; Kermode, A.R. Resin vesicles in conifer seeds: Morphology and allelopathic effects. Can. J. For. Res. 2018, 48, 1515–1525. [Google Scholar] [CrossRef]
- Lamont, B.B.; He, T.; Yan, Z. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biol. Rev. 2019, 94, 903–928. [Google Scholar] [CrossRef]
- Ivetić, V.; Tsakaldimi, M.; Ganatsas, P.; Kerkez Janković, I.; Devetaković, J. Freezing and heating tolerance of Pinus nigra seedlings from three south to North Balkan provenances. Sustainability 2021, 13, 9290. [Google Scholar] [CrossRef]
- Mirzaei, M.; Moghadam, A.R.L.; Ardebili, Z.O. The induction of seed germination using sulfuric acid, gibberellic acid and hot water in Robinia pseudoacacia L. Int. Res. J. Appl. Basic Sci. 2013, 4, 96–98. [Google Scholar]
- Bouteiller, X.P.; Moret, F.; Ségura, R.; Klisz, M.; Martinik, A.; Monty, A.; Pino, J.; van Loo, M.; Wojda, T.; Porté, A.J.; et al. The seeds of invasion: Enhanced germination in invasive European populations of black locust (Robinia pseudoacacia L.) compared to native American populations. Plant Biol. 2021, 23, 1006–1017. [Google Scholar] [CrossRef]
- Roman, A.M.; Truta, A.M.; Viman, O.; Morar, I.M.; Spalevic, V.; Dan, C.; Sestras, R.E.; Holonec, L.; Sestras, A.F. Seed germination and seedling growth of Robinia pseudoacacia depending on the origin of different geographic provenances. Diversity 2022, 14, 34. [Google Scholar] [CrossRef]
- Truța, A.M.; Viman, O.; Dohotar, V.-D.; Sîngeorzan, S.; Truţa, P.; Holonec, L. The Influence of certain types of substrate and biochemical substances in seed germination and plant development of spruce (Picea abies). Bull UASVM Cluj-Napoca Hortic. 2020, 77, 128–135. [Google Scholar] [CrossRef]
- Bonner, F.T.; Vozzo, J.A.; Elam, W.W.; Land, S.B., Jr. Tree Seed Technology Training Course, Instructor´s Manual; USDA Forest Service: Washington, DC, USA, 1994; p. 160.
- Bonner, F.T. Seed biology. In The Woody Plant Seed Manual; USDA Forest Service: Washington, DC, USA, 2008; pp. 3–38. [Google Scholar]
- Pârnuţă, G.; Stuparu, E.; Budeanu, M.; Scărlătescu, V.; Marica, F.M.; Lalu, I.; Curtu, A.L. Catalogul Naţional al Resurselor Genetice Forestiere [National Catalogue of Forest Genetic Resources]; Editura Silvică: Voluntari, Romania, 2011. (In Romanian) [Google Scholar]
- Fetouh, M.; Hassan, F. Seed germination criteria and seedling characteristics of Magnolia grandiflora L. trees after cold stratification treatments. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 235–241. [Google Scholar]
- Awasthi, P.; Karki, H.; Vibhuti; Bargali, K.; Bargali, S. Germination and seedling growth of pulse crop (Vigna spp.) as affected by soil salt stress. Curr. Agric. Res. 2016, 4, 159–170. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D.; Fotiadis, S. Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Agriculture 2019, 9, 201. [Google Scholar] [CrossRef]
- Roman, A.M.; Truta, A.M.; Morar, I.M.; Viman, O.; Dan, C.; Sestras, A.F.; Holonec, L.; Boscaiu, M.; Sestras, R.E. From seed to seedling: Influence of seed geographic provenance and germination treatments on reproductive material represented by seedlings of Robinia pseudoacacia. Sustainability 2022, 14, 5654. [Google Scholar] [CrossRef]
- Association of Official Seed Analysts. Rules for testing seeds. J. Seed Technol. 1993, 16, 1–113. [Google Scholar]
- Islam, A.K.M.; Anuar, N.; Yaakob, Z. Effect of genotypes and pre-sowing treatments on seed germination behavior of Jatropha. Asian J. Plant Sci. 2009, 8, 433–439. [Google Scholar] [CrossRef]
- Chiapusio, G.; Sánchez, A.M.; Reigosa, M.J.; González, L.; Pellissier, F. Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 1997, 23, 2445–2453. [Google Scholar] [CrossRef]
- Holonec, R.; Viman, O.; Morar, I.M.; Sîngeorzan, S.; Scheau, C.; Vlasin, H.D.; Truta, P.; Criveanu, H.; Holonec, L.; Truță, A.M. Non-chemical treatments to improve the seeds germination and plantlets growth of sessile oak. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12401. [Google Scholar] [CrossRef]
- Hossain, M.A.; Arefin, M.K.; Khan, B.M.; Rahman, M.A. Effects of seed treatments on germination and seedling growth attributes of Horitaki (Terminalia chebula Retz.) in the nursery. Res. J. Agric. Biol. Sci. 2005, 1, 135–141. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 4–9. [Google Scholar]
- McCartan, S.; Jinks, R. Upgrading seed lots of European silver fir (Abies alba Mill.) using imbibition-drying-separation. Tree Plant. Notes 2015, 58, 21–27. [Google Scholar]
- Kheloufi, A.; Mansouri, L.; Aziz, N.; Sahnoune, M.; Boukemiche, S.; Ababsa, B. Breaking seed coat dormancy of six tree species. Reforesta 2018, 5, 4–14. [Google Scholar] [CrossRef]
- Skrzyszewska, K.; Chłanda, J. A study on the variation of morphological characteristics of silver fir (Abies alba Mill.) seeds and their internal structure determined by X-ray radiography in the Beskid Sądecki and Beskid Niski mountain ranges of the Carpathians (southern Poland). J. For. Sci. 2009, 55, 403–414. [Google Scholar] [CrossRef]
- Castro, J. Seed mass versus seedling performance in Scots pine: A maternally dependent trait. New Phytol. 1999, 144, 153–161. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, N.; He, B.; Zhang, R.; Zhao, W.; Mao, J.; Duan, A.; Li, Y.; Woeste, K. Germination and early seedling growth of Pinus densata Mast. provenances. J. For. Res. 2016, 27, 283–294. [Google Scholar] [CrossRef]
- Cremer, E.; Ziegenhagen, B.; Schulerowitz, K.; Mengel, C.; Donges, K.; Bialozyt, R.; Hussendörfer, E.; Liepelt, S. Local seed dispersal in European silver fir (Abies alba Mill.): Lessons learned from a seed trap experiment. Trees 2012, 26, 987–996. [Google Scholar] [CrossRef]
- Ganatsas, P.; Tsakaldimi, M.; Thanos, C. Seed and cone diversity and seed germination of Pinus pinea in Strofylia Site of the Natura 2000 Network. Biodivers. Conserv. 2008, 17, 2427–2439. [Google Scholar] [CrossRef]
- Boncaldo, E.; Bruno, G.; Sicoli, G.; Tommasi, F.; Mastropasqua, L. Germinability and fungal occurrence in seeds of Abies alba Mill. populations in southern Italy. Plant Biosyst. 2010, 144, 740–745. [Google Scholar] [CrossRef]
- Salaj, T.; Klubicová, K.; Matusova, R.; Salaj, J. Somatic embryogenesis in selected conifer trees Pinus nigra arn. and Abies hybrids. Front. Plant Sci. 2019, 10, 13. [Google Scholar] [CrossRef]
- Tsakaldimi, M.; Ganatsas, P. Treatments improving seeds germination of two Mediterranean sclerophyll species Ceratonia siliqua and Pistacia lentiscus. In Proceedings of the Third Balkan Scientific Conference: Study, Conservation and Utilization of Forests Resources, Sofia, Bulgaria, 2–6 October 2001; pp. 119–127. [Google Scholar]
- Ganatsas, P.; Tsakaldimi, M. A comparative study of desiccation responses of seeds of three drought-resistant Mediterranean oaks. For. Ecol. Manag. 2013, 305, 189–194. [Google Scholar] [CrossRef]
- Giuliani, C.; Lazzaro, L.; Calamassi, R.; Fico, G.; Foggi, B.; Mariotti Lippi, M. Induced water stress affects seed germination response and root anatomy in Robinia pseudoacacia (Fabaceae). Trees 2019, 33, 1627–1638. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Sheeba, J.A.; Devi, D.D.; Bangarusamy, U. Effect of Atonik seed treatment on seedling physiology of cotton and tomato. J. Biol. Sci 2005, 5, 163–169. [Google Scholar] [CrossRef]
- Covașă, M.; Slabu, C.; Marta, A.E.; Jităreanu, C.D. Increasing the salt stress tolerance of some tomato cultivars under the influence of growth regulators. Plants 2023, 12, 363. [Google Scholar] [CrossRef] [PubMed]
- Banful, B.K.; Attivor, D. Growth and yield response of two hybrid rice cultivars to Atonik plant growth regulator in a tropical environment. J. Environ. Earth Ecol. 2017, 1, 33–45. [Google Scholar] [CrossRef]
- Sîngeorzan, S.; Creț, D.; Grosariu, D.; Holonec, L.; Truta, A. Aspects regarding the stimulation of seeds’ germination and the seedlings’ growth in Pinus pinea. J. Hort. For. Biotech. 2019, 23, 113–117. [Google Scholar]
- Javaid, M.M.; Mahmood, A.; Alshaya, D.S.; AlKahtani, M.D.F.; Waheed, H.; Wasaya, A.; Khan, S.A.; Naqve, M.; Haider, I.; Shahid, M.A.; et al. Influence of environmental factors on seed germination and seedling characteristics of perennial ryegrass (Lolium perenne L.). Sci. Rep. 2022, 12, 9522. [Google Scholar] [CrossRef] [PubMed]
- Tatoj, A.; Możdżeń, K.; Barabasz-Krasny, B.; SoŁTys-Lelek, A.; Gruszka, W.; Zandi, P. Effect of Rosa gorenkensis Besser aqueous extracts on germination and early growth of native plant species. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12668. [Google Scholar] [CrossRef]
- Hatzilazarou, S.; El Haissoufi, M.; Pipinis, E.; Kostas, S.; Libiad, M.; Khabbach, A.; Lamchouri, F.; Bourgou, S.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; et al. GIS-Facilitated seed germination and multifaceted evaluation of the endangered Abies marocana Trab. (Pinaceae) enabling conservation and sustainable exploitation. Plants 2021, 10, 2606. [Google Scholar] [CrossRef]
- Alm, D.M.; Stoller, E.W.; Wax, L.M. An index model for predicting seed germination and emergence rates. Weed Technol. 1993, 7, 560–569. [Google Scholar] [CrossRef]
- Stoian-Dod, R.L.; Dan, C.; Morar, I.M.; Sestras, A.F.; Truta, A.M.; Roman, G.; Sestras, R.E. Seed germination within genus Rosa: The complexity of the process and influencing factors. Horticulturae 2023, 9, 914. [Google Scholar] [CrossRef]
- Masoodi, H.U.R.; Thapliyal, M.; Singh, V.R.R. Studies on the variation in germination and seedling growth of Abies pindrow Spach. (Royle) in Garhwal region of Uttarakhand, India. J. Appl. Nat. Sci. 2014, 6, 711–715. [Google Scholar] [CrossRef]
- Roman, A.M.; Morar, I.M.; Truta, A.M.; Dan, C.; Sestras, A.F.; Holonec, L.; Ioras, F.; Sestras, R.E. Trees, seeds and seedlings analyses in the process of obtaining a quality planting material for black locust (Robinia pseudoacacia L.). Not. Sci. Biol. 2020, 12, 940–958. [Google Scholar] [CrossRef]
- Tanovski, V.; Matovic, B.; Kesic, L.; Stojanovic, B.D. A review of the influence of climate change on conif-erous forests in the Balkan peninsula. Poplar/Topola 2022, 210, 41–64. [Google Scholar]
No. | Provenance | County | Code | Administrative Location |
---|---|---|---|---|
1 | Valea Bistrei | Alba | BR–E320–3 * | O.S.P. Abrud, UP III, u.a. 228B |
2 | Someșul Rece | Cluj | BR–E320–7 * | O.S. Someșul Rece, UP I, u.a. 92A |
3 | Avrig | Sibiu | BR–C120–10 * | O.S. Izvorul Florii, UP III, u.a. 75A |
4 | Budescu | Maramureș | BR–A120–22 * | O.S. Poieni, UP IV, u.a. 96A |
5 | Sohodol | Alba | BR, MO–E320–2 * | O.S.P. Abrud, UP 18C |
6 | Valea Morii | Alba | ** | O.S. Valea Arieșului, UP V, u.a. 39 |
7 | Gârda Seacă | Alba | ** | O.S. Gârda, UP VI, u.a. 20H |
No. | Treatment | Observations |
---|---|---|
1 | Control | Without special treatment, just involving soaking fir seeds for 24 h in water, at 18 °C. |
2 | Atonik | The fir seeds were soaked in biostimulator solution for 2 h before being put to germinate. |
3 | Mechanical scarification method | This was performed using abrasive sandpaper until the coat was visibly damaged. |
4 | Acetone (80%) | The fir seeds were kept in acetone solution for 10 min. |
5 | Sulfuric acid solution (H2SO4 70%) | The fir seeds were soaked in sulfuric acid solution for 10 min. |
Treatment | Provenance | Germination Index 1 | ||||
---|---|---|---|---|---|---|
GP | GI | SE | CRG | SVI | ||
Control (no treatment) | Valea Bistrei | 45.0 a | 1.3 a | 33.3 a | 10.3 a | 4.8 b |
Someșul Rece | 35.0 c | 0.4 e | 28.6 b | 5.3 c | 4.4 c | |
Avrig | 40.0 b | 0.5 d | 12.5 d | 5.3 c | 2.9 e | |
Budescu | 35.0 c | 0.4 e | 28.6 b | 5.3 c | 3.8 d | |
Sohodol | 35.0 c | 0.4 e | 28.6 b | 5.3 c | 3.0 e | |
Valea Morii | 45.0 a | 0.8 c | 11.1 e | 7.2 b | 4.3 c | |
Gârda Seacă | 50.0 a | 1.1 b | 20.0 c | 7.5 b | 6.1 a | |
Atonik | Valea Bistrei | 45.0 b | 0.8 c | 11.1 d | 5.9 c | 4.7 b |
Someșul Rece | 55.0 a | 1.1 b | 18.2 c | 6.5 b | 7.10 a | |
Avrig | 45.0 b | 0.6 e | 22.2 b | 5.9 c | 3.3 c | |
Budescu | 45.0 b | 1.0 b | 22.2 b | 8.0 a | 4.9 b | |
Sohodol | 40.0 c | 0.8 c | 12.5 d | 7.7 a | 3.7 c | |
Valea Morii | 50.0 ab | 1.0 b | 20.0 bc | 6.5 b | 4.6 b | |
Gârda Seacă | 60.0 a | 1.3 a | 25.0 a | 7.3 ab | 7.6 a | |
Scarification | Valea Bistrei | 30.0 c | 0.3 c | 16.7 d | 2.3 d | 3.1 c |
Someșul Rece | 30.0 c | 0.3 c | 50.0 b | 5.4 b | 3.7 b | |
Avrig | 30.0 c | 0.5 b | 50.0 b | 6.5 a | 2.2 e | |
Budescu | 35.0 b | 0.5 b | 28.6 c | 5.6 b | 3.7 b | |
Sohodol | 25.0 d | 0.3 c | 60.0 a | 6.0 ab | 2.1 e | |
Valea Morii | 30.0 c | 0.3 c | 50.0 b | 4.8 c | 2.7 d | |
Gârda Seacă | 55.0 a | 1.2 a | 27.3 c | 6.5 a | 6.5 a | |
Acetone | Valea Bistrei | 35.0 c | 0.5 c | 28.6 c | 5.9 bc | 3.7 a |
Someșul Rece | 25.0 b | 0.3 e | 60.0 a | 5.5 c | 3.2 b | |
Avrig | 35.0 e | 0.5 c | 42.9 b | 6.5 b | 2.5 c | |
Budescu | 35.0 b | 0.6 b | 14.3 d | 5.9 bc | 3.7 a | |
Sohodol | 25.0 e | 0.4 d | 40.0 b | 6.0 bc | 2.1 d | |
Valea Morii | 30.0 d | 0.3 e | 16.7 d | 4.7 d | 2.6 c | |
Gârda Seacă | 35.0 a | 0.7 a | 14.3 a | 7.4 a | 3.8 a | |
H2SO4 | Valea Bistrei | 10.0 d | 0.1 c | 50.0 c | 5.7 b | 1.0 d |
Someșul Rece | 5.0 e | 0.0 e | 100.0 a | 3.6 d | 0.6 f | |
Avrig | 20.0 b | 0.2 b | 25.0 d | 4.8 c | 1.4 c | |
Budescu | 15.0 c | 0.1 c | 66.7 b | 4.3 c | 1.6 b | |
Sohodol | 5.0 e | 0.0 e | 100.0 a | 3.6 d | 0.3 g | |
Valea Morii | 10.0 d | 0.1 c | 50.0 c | 5.7 b | 0.9 e | |
Gârda Seacă | 25.0 a | 0.5 a | 20.0 d | 6.5 a | 2.7 a |
Correlated Traits | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Cone length | 0.96 | 0.31 | 0.57 | 0.09 | 0.90 | 0.19 | 0.11 | 0.80 | 0.10 | 0.45 | 0.90 | 0.80 | |
2 Cone diameter | 0.02 | 0.09 | 0.53 | 0.53 | 0.57 | 0.14 | 0.14 | 0.44 | 0.69 | 0.13 | 0.05 | 0.01 | |
3 No seeds/cones | 0.45 | 0.69 | 0.42 | 0.66 | 0.74 | 0.00 | 0.00 | 0.07 | 0.03 | 0.00 | 0.01 | 0.02 | |
4 Cone mass | 0.26 | −0.29 | 0.37 | 0.60 | 0.01 | 0.31 | 0.52 | 0.19 | 0.08 | 0.44 | 0.55 | 0.84 | |
5 Seed length | 0.68 | −0.29 | 0.21 | 0.24 | 0.93 | 0.59 | 0.46 | 0.44 | 0.46 | 0.61 | 0.93 | 0.86 | |
6 Seed width | −0.06 | −0.27 | 0.15 | 0.87 | −0.04 | 0.66 | 0.95 | 0.22 | 0.38 | 0.82 | 0.66 | 0.90 | |
7 Seed mass 1 | 0.56 | 0.62 | 0.96 | 0.45 | 0.25 | 0.20 | 0.00 | 0.10 | 0.02 | 0.01 | 0.03 | 0.02 | |
8 Seed mass 2 | 0.65 | 0.62 | 0.92 | 0.30 | 0.34 | −0.03 | 0.97 | 0.22 | 0.04 | 0.01 | 0.07 | 0.04 | |
9 G%–Control | 0.12 | 0.35 | 0.71 | 0.56 | 0.35 | 0.53 | 0.67 | 0.53 | 0.26 | 0.07 | 0.02 | 0.10 | |
10 G%–Atonik | 0.67 | 0.19 | 0.80 | 0.70 | 0.34 | 0.40 | 0.84 | 0.78 | 0.50 | 0.05 | 0.23 | 0.36 | |
11 G%–Scarification | 0.34 | 0.63 | 0.97 | 0.35 | 0.23 | 0.11 | 0.90 | 0.87 | 0.73 | 0.76 | 0.00 | 0.04 | |
12 G%–Acetone | 0.06 | 0.75 | 0.90 | 0.27 | 0.04 | 0.21 | 0.81 | 0.72 | 0.84 | 0.53 | 0.91 | 0.00 | |
13 G%–H2SO4 | 0.12 | 0.90 | 0.85 | 0.09 | −0.08 | 0.06 | 0.82 | 0.77 | 0.68 | 0.41 | 0.79 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morar, I.M.; Dan, C.; Sestras, R.E.; Stoian-Dod, R.L.; Truta, A.M.; Sestras, A.F.; Sestras, P. Evaluation of Different Geographic Provenances of Silver Fir (Abies alba) as Seed Sources, Based on Seed Traits and Germination. Forests 2023, 14, 2186. https://doi.org/10.3390/f14112186
Morar IM, Dan C, Sestras RE, Stoian-Dod RL, Truta AM, Sestras AF, Sestras P. Evaluation of Different Geographic Provenances of Silver Fir (Abies alba) as Seed Sources, Based on Seed Traits and Germination. Forests. 2023; 14(11):2186. https://doi.org/10.3390/f14112186
Chicago/Turabian StyleMorar, Irina M., Catalina Dan, Radu E. Sestras, Roxana L. Stoian-Dod, Alina M. Truta, Adriana F. Sestras, and Paul Sestras. 2023. "Evaluation of Different Geographic Provenances of Silver Fir (Abies alba) as Seed Sources, Based on Seed Traits and Germination" Forests 14, no. 11: 2186. https://doi.org/10.3390/f14112186
APA StyleMorar, I. M., Dan, C., Sestras, R. E., Stoian-Dod, R. L., Truta, A. M., Sestras, A. F., & Sestras, P. (2023). Evaluation of Different Geographic Provenances of Silver Fir (Abies alba) as Seed Sources, Based on Seed Traits and Germination. Forests, 14(11), 2186. https://doi.org/10.3390/f14112186