Assessment of Metal Elements and Biochemical Constituents of Wild Turkey Tail (Trametes versicolor) Mushrooms Collected from the Shivalik Foothills of the Himalayas, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area and Sample Collection
2.2. Metal Element Analysis Using ICP-OES
2.3. Methods for Biochemical Analyses
2.4. Methods for Proximate Analyses
2.5. Data Analysis and Software
3. Results and Discussion
3.1. Results of Metal Element Content Analysis in Turkey Tail (T. versicolor)
3.2. Results of Analysis of Biochemical Constituents in Turkey Tail (T. versicolor)
3.3. Results of Analysis of Proximate Constituents in Turkey Tail (T. versicolor)
3.4. Fatty Acids in Turkey Tail (T. versicolor)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devkota, S.; Fang, W.; Arunachalam, K.; Phyo, K.M.M.; Shakya, B. Systematic Review of Fungi, Their Diversity and Role in Ecosystem Services from the Far Eastern Himalayan Landscape (FHL). Heliyon 2023, 9, e12756. [Google Scholar] [CrossRef] [PubMed]
- Cacciotti, R.; Kaiser, A.; Sardella, A.; De Nuntiis, P.; Drdácký, M.; Hanus, C.; Bonazza, A. Climate Change-Induced Disasters and Cultural Heritage: Optimizing Management Strategies in Central Europe. Clim. Risk Manag. 2021, 32, 100301. [Google Scholar] [CrossRef]
- Procházka, P.; Soukupová, J.; Tomšík, K.; Mullen, K.J.; Čábelková, I. Climatic Factors Affecting Wild Mushroom Foraging in Central Europe. Forests 2023, 14, 382. [Google Scholar] [CrossRef]
- Stojek, K.; Gillerot, L.; Jaroszewicz, B. Predictors of Mushroom Production in the European Temperate Mixed Deciduous Forest. For. Ecol. Manag. 2022, 522, 120451. [Google Scholar] [CrossRef]
- Savoie, J.-M.; Largeteau, M.L. Production of Edible Mushrooms in Forests: Trends in Development of a Mycosilviculture. Appl. Microbiol. Biotechnol. 2011, 89, 971–979. [Google Scholar] [CrossRef]
- Hardin, A. Biotic Inventory: Documenting Diversity at the Katharine Ordway Natural History Study Area. Available online: https://www.macalester.edu/ordway/biodiversity/inventory/turkeytailfungus/#:~:text=TheTurkeyTailfungusis,conifersintheUnitedStates (accessed on 7 July 2023).
- Ayimbila, F.; Keawsompong, S. Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Curr. Nutr. Rep. 2023, 12, 290–307. [Google Scholar] [CrossRef]
- Kıvrak, I.; Kivrak, S.; Karababa, E. Assessment of Bioactive Compounds and Antioxidant Activity of Turkey Tail Medicinal Mushroom Trametes versicolor (Agaricomycetes). Int. J. Med. Mushrooms 2020, 22, 559–571. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Belwal, T.; Liang, Z.; Wang, L.; Li, D.; Luo, Z.; Li, L. A Comprehensive Review on Phenolic Compounds from Edible Mushrooms: Occurrence, Biological Activity, Application and Future Prospective. Crit. Rev. Food Sci. Nutr. 2022, 62, 6204–6224. [Google Scholar] [CrossRef]
- Im, K.; Nguyen, T.; Choi, J.; Lee, T. In Vitro Antioxidant, Anti-Diabetes, Anti-Dementia, and Inflammation Inhibitory Effect of Trametes pubescens Fruiting Body Extracts. Molecules 2016, 21, 639. [Google Scholar] [CrossRef]
- Benson, K.F.; Stamets, P.; Davis, R.; Nally, R.; Taylor, A.; Slater, S.; Jensen, G.S. The Mycelium of the Trametes versicolor (Turkey Tail) Mushroom and Its Fermented Substrate Each Show Potent and Complementary Immune Activating Properties in Vitro. BMC Complement. Altern. Med. 2019, 19, 342. [Google Scholar] [CrossRef]
- Choi, B.-H.; Coloff, J.L. The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers 2019, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Ofoedu, C.E.; Iwouno, J.O.; Ofoedu, E.O.; Ogueke, C.C.; Igwe, V.S.; Agunwah, I.M.; Ofoedum, A.F.; Chacha, J.S.; Muobike, O.P.; Agunbiade, A.O.; et al. Revisiting Food-Sourced Vitamins for Consumer Diet and Health Needs: A Perspective Review, from Vitamin Classification, Metabolic Functions, Absorption, Utilization, to Balancing Nutritional Requirements. PeerJ 2021, 9, e11940. [Google Scholar] [CrossRef] [PubMed]
- Stamets, P. Trametes versicolor (Turkey Tail Mushrooms) and the Treatment of Breast Cancer. Glob. Adv. Health Med. 2012, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Sande, D.; de Oliveira, G.P.; Moura, M.A.F.E.; Martins, B.d.A.; Lima, M.T.N.S.; Takahashi, J.A. Edible Mushrooms as a Ubiquitous Source of Essential Fatty Acids. Food Res. Int. 2019, 125, 108524. [Google Scholar] [CrossRef] [PubMed]
- Širić, I.; Kumar, P.; Adelodun, B.; Abou Fayssal, S.; Bachheti, R.K.; Bachheti, A.; Ajibade, F.O.; Kumar, V.; Taher, M.A.; Eid, E.M. Risk Assessment of Heavy Metals Occurrence in Two Wild Edible Oyster Mushrooms (Pleurotus spp.) Collected from Rajaji National Park. J. Fungi 2022, 8, 1007. [Google Scholar] [CrossRef]
- Širić, I.; Rukavina, K.; Mioč, B.; Držaić, V.; Kumar, P.; Taher, M.A.; Eid, E.M. Bioaccumulation and Health Risk Assessment of Nickel Uptake by Five Wild Edible Saprotrophic Mushroom Species Collected from Croatia. Forests 2023, 14, 879. [Google Scholar] [CrossRef]
- Pacheco, J.S.; Santana, M.; Guadalupe, M.; Uscanga, A.; Cavazos, A.; Niño, J.S.; Gómez, H.; Uscanga, B.A. Ability of Phanerochaete Chrysosporium and Trametes Versicolor to Remove Zn2+, Cr3+, Pb2+ Metal Ions. Terra Latinoam. 2015, 33, 189–198. [Google Scholar]
- Aksu, Z.; Kılıç, N.K.; Ertuğrul, S.; Dönmez, G. Inhibitory Effects of Chromium(VI) and Remazol Black B on Chromium(VI) and Dyestuff Removals by Trametes versicolor. Enzym. Microb. Technol. 2007, 40, 1167–1174. [Google Scholar] [CrossRef]
- Akar, S.T.; Akar, T.; Kaynak, Z.; Anilan, B.; Cabuk, A.; Tabak, Ö.; Demir, T.A.; Gedikbey, T. Removal of Copper(II) Ions from Synthetic Solution and Real Wastewater by the Combined Action of Dried Trametes versicolor Cells and Montmorillonite. Hydrometallurgy 2009, 97, 98–104. [Google Scholar] [CrossRef]
- Manna, A.; Sundaram, E.; Amutha, C.; Vasantha, V.S. Efficient Removal of Cadmium Using Edible Fungus and Its Quantitative Fluorimetric Estimation Using (Z)-2-(4 H -1,2,4-Triazol-4-Yl)Iminomethylphenol. ACS Omega 2018, 3, 6243–6250. [Google Scholar] [CrossRef]
- Kaur, T.; Sehgal, S.K.; Singh, S.; Sharma, S.; Dhaliwal, S.S.; Sharma, V. Assessment of Seasonal Variability in Soil Nutrients and Its Impact on Soil Quality under Different Land Use Systems of Lower Shiwalik Foothills of Himalaya, India. Sustainability 2021, 13, 1398. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Adelodun, B.; Bedeković, D.; Kos, I.; Širić, I.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Abou Fayssal, S.; et al. Sustainable Use of Sewage Sludge as a Casing Material for Button Mushroom (Agaricus bisporus) Cultivation: Experimental and Prediction Modeling Studies for Uptake of Metal Elements. J. Fungi 2022, 8, 112. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Barros, L.; Ferreira, M.-J.; Queirós, B.; Ferreira, I.C.F.R.; Baptista, P. Total Phenols, Ascorbic Acid, β-Carotene and Lycopene in Portuguese Wild Edible Mushrooms and Their Antioxidant Activities. Food Chem. 2007, 103, 413–419. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, V.; Kothari, R.; Kumar, P. Experimental and Optimization Studies on Phycoremediation of Dairy Wastewater and Biomass Production Efficiency of Chlorella vulgaris Isolated from Ganga River, Haridwar, India. Environ. Sci. Pollut. Res. 2022, 29, 74643–74654. [Google Scholar] [CrossRef] [PubMed]
- Uju, N.L.; Obiakor, O.P. Nutritional Profile of Three Different Mushroom Varieties Consumed in Amaifeke, Orlu Local Government Area, Imo State, Nigeria. Food Sci. Qual. Manag. 2014, 31, 70–78. [Google Scholar]
- James, C.S. Analytical Chemistry of Foods; Chapman and Hall: New York, NY, USA, 1995; Volume 309. [Google Scholar]
- Bulam, S.; Karadeniz, M.; Bakir, T.K.; Ünal, S. Assessment of Total Phenolic, Total Flavonoid, Metal Contents and Antioxidant Activities of Trametes versicolor and Laetiporus sulphureus. Acta Sci. Pol. Hortorum Cultus 2022, 21, 39–47. [Google Scholar] [CrossRef]
- Sinha, S.K.; Upadhyay, T.K.; Sharma, S.K. Heavy Metals Detection in White Button Mushroom (Agaricus bisporus) Cultivated in State of Maharashtra, India. Biochem. Cell Arch. 2019, 19, 3501–3506. [Google Scholar]
- Chunhabundit, R. Cadmium Exposure and Potential Health Risk from Foods in Contaminated Area, Thailand. Toxicol. Res. 2016, 32, 65–72. [Google Scholar] [CrossRef]
- Keskin, F.; Sarikurkcu, C.; Akata, I.; Tepe, B. Element Concentration, Daily Intake of Elements, and Health Risk Indices of Wild Mushrooms Collected from Belgrad Forest and Ilgaz Mountain National Park (Turkey). Environ. Sci. Pollut. Res. 2021, 28, 51544–51555. [Google Scholar] [CrossRef]
- USEPA Integrated Risk Information System US EPA. 2018.
- Codex Alimentarius Commission. Joint FAO/WHO Food Standards Programme CODEX Committee on Contaminants in Foods; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- FAO/WHO Codex Alimentarius Commission. Food Additives and Contaminants. Joint FAO/WHO Food Standards Programme; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Akgul, H.; Sevindik, M.; Coban, C.; Alli, H.; Selamoglu, Z. New Approaches in Traditional and Complementary Alternative Medicine Practices: Auricularia auricula and Trametes versicolor. J. Tradit. Med. Clin. Nat. 2017, 6, 239. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Akata, I.; Tepe, B. Metal Concentration and Health Risk Assessment of Eight Russula Mushrooms Collected from Kizilcahamam-Ankara, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 15743–15754. [Google Scholar] [CrossRef] [PubMed]
- Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; Bouziane, H.; López-Castillo, J.G.; Palma, M.; Barbero, G.F. Toxic Elements and Trace Elements in Macrolepiota procera Mushrooms from Southern Spain and Northern Morocco. J. Food Compos. Anal. 2022, 108, 104419. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Eid, E.M.; AL-Huqail, A.A.; Adelodun, B.; Abou Fayssal, S.; Goala, M.; Arya, A.K.; Bachheti, A.; Andabaka, Ž.; et al. Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. J. Fungi 2022, 8, 452. [Google Scholar] [CrossRef] [PubMed]
- Bains, A.; Chawla, P. In Vitro Bioactivity, Antimicrobial and Anti-Inflammatory Efficacy of Modified Solvent Evaporation Assisted Trametes versicolor Extract. 3 Biotech 2020, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Babbar, N.; Oberoi, H.S.; Sandhu, S.K. Therapeutic and Nutraceutical Potential of Bioactive Compounds Extracted from Fruit Residues. Crit. Rev. Food Sci. Nutr. 2015, 55, 319–337. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef]
- Szwajkowska-Michałek, L.; Stuper-Szablewska, K.; Krzyżaniak, M.; Łakomy, P. A Bioactive Compounds Profile Present in the Selected Wood Rot. Forests 2022, 13, 1242. [Google Scholar] [CrossRef]
- Pop, R.M.; Puia, I.C.; Puia, A.; Chedea, V.S.; Leopold, N.; Bocsan, I.C.; Buzoianu, A.D. Characterization of Trametes versicolor: Medicinal Mushroom with Important Health Benefits. Not. Bot. Horti. Agrobot. Cluj Napoca 2018, 46, 343–349. [Google Scholar] [CrossRef]
- Arts, I.C.W.; Hollman, P.C.H. Polyphenols and Disease Risk in Epidemiologic Studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S. [Google Scholar] [CrossRef]
- Rao, A.V.; Ray, M.R.; Rao, L.G. Lycopene. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2006; Volume 51, pp. 99–164. ISBN 0120164515. [Google Scholar]
- Rao, L.G.; Mackinnon, E.S.; Josse, R.G.; Murray, T.M.; Strauss, A.; Rao, A.V. Lycopene Consumption Decreases Oxidative Stress and Bone Resorption Markers in Postmenopausal Women. Osteoporos. Int. 2007, 18, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Palozza, P.; Simone, R.; Catalano, A.; Boninsegna, A.; Böhm, V.; Fröhlich, K.; Mele, M.C.; Monego, G.; Ranelletti, F.O. Lycopene Prevents 7-Ketocholesterol-Induced Oxidative Stress, Cell Cycle Arrest and Apoptosis in Human Macrophages. J. Nutr. Biochem. 2010, 21, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Rao, L. Carotenoids and Human Health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- Grune, T.; Lietz, G.; Palou, A.; Ross, A.C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.; Biesalski, H.K. β-Carotene Is an Important Vitamin A Source for Humans. J. Nutr. 2010, 140, 2268S–2285S. [Google Scholar] [CrossRef] [PubMed]
- George, D.; Mallery, P. SPSS for Windows Step by Step: A Simple Guide and Reference. 11.0 Update; Pearson Education: London, UK, 2003; Volume 10. [Google Scholar]
- Tokul-Olmez, O.; Kaplaner, E.; Ozturk, M.; Ullah, Z.; Duru, M.E. Fatty Acid Profile of Four Ganoderma Species Collected from Various Host Trees with Chemometric Approach. Biochem. Syst. Ecol. 2018, 78, 91–97. [Google Scholar] [CrossRef]
- Heinke, R.; Schöne, P.; Arnold, N.; Wessjohann, L.; Schmidt, J. Metabolite Profiling and Fingerprinting of Suillus Species (Basidiomycetes) by Electrospray Mass Spectrometry. Eur. J. Mass Spectrom. 2014, 20, 85–97. [Google Scholar] [CrossRef]
- Alzand, K.I.; Bofaris, M.S.M.; Ugis, A. Chemical Composition and Nutritional Value of Edible Wild Growing Mushrooms: A Review. World J. Pharm. Res. 2019, 8, 31–46. [Google Scholar]
- Hobbs, C. Medicinal Value of Turkey Tail Fungus Trametes versicolor (L.:Fr.) Pilat (Aphyllophoromycetideae). Int. J. Med. Mushrooms 2005, 7, 346–347. [Google Scholar] [CrossRef]
- Upadhyaya, J. Analysis of Nutritional and Nutraceutical Properties of Wild-Grown Mushrooms of Nepal. Planta Medica Int. Open 2018, 5, FF09P. [Google Scholar]
- Bazinet, R.P.; Chu, M.W.A. Omega-6 Polyunsaturated Fatty Acids: Is a Broad Cholesterol-Lowering Health Claim Appropriate? Can. Med. Assoc. J. 2014, 186, 434–439. [Google Scholar] [CrossRef]
- Yehuda, S. Omega-6/Omega-3 Ratio and Brain-Related Functions. World Rev. Nutr. Diet 2003, 92, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Günç Ergönül, P.; Akata, I.; Kalyoncu, F.; Ergönül, B. Fatty Acid Compositions of Six Wild Edible Mushroom Species. Sci. World J. 2013, 2013, 163964. [Google Scholar] [CrossRef] [PubMed]
State | District | Site Name | Latitude (N) | Longitude (E) | Altitude (m) |
---|---|---|---|---|---|
Uttarakhand | Haridwar | Chilla Forest Range (H1) | 30.1557532 | 78.1325196 | 481.69 |
Ranipur Forest Range (H2) | 29.9824955 | 78.1640361 | 454.91 | ||
Dhaulkhand Range (H3) | 30.0491669 | 78.0439193 | 637.78 | ||
Pathri Forest Range (H4) | 29.8845353 | 78.2714997 | 365.83 | ||
Dehradun | Rishikesh Forest Range (D1) | 30.1243866 | 78.2687036 | 422.58 | |
Jollygrant (D2) | 30.2027738 | 78.1780745 | 582.36 | ||
Chandravani Grant (D3) | 30.2657891 | 77.9829248 | 650.35 | ||
Singhniwala (D4) | 30.3327691 | 77.8489892 | 554.37 | ||
Uttar Pradesh | Saharanpur | Mohand (S1) | 30.1766563 | 77.8992169 | 493.52 |
Shakumbhari Devi (S2) | 30.2529176 | 77.7482701 | 531.11 | ||
Rehna (S3) | 30.3473449 | 77.6218811 | 602.17 |
Sampling Site | Cd | Cr | Cu | Fe | Mn | Zn | Ni | Co |
---|---|---|---|---|---|---|---|---|
H1 | 0.023 ± 0.001 c | 0.340 ± 0.021 d | 1.690 ± 0.050 c | 7.100 ± 0.507 d | 2.190 ± 0.156 a | 3.140 ± 0.024 a | 0.088 ± 0.016 b | 0.100 ± 0.007 d |
H2 | 0.139 ± 0.007 f | 0.521 ± 0.007 i | 3.108 ± 0.022 e | 8.467 ± 0.205 e | 3.892 ± 0.078 f | 4.478 ± 0.109 e | 0.186 ± 0.013 d | 0.114 ± 0.028 de |
H3 | 0.011 ± 0.001 a | 0.283 ± 0.020 b | 1.073 ± 0.019 a | 5.074 ± 0.360 ab | 2.338 ± 0.260 ab | 4.135 ± 0.291 de | 0.103 ± 0.007 c | 0.081 ± 0.006 c |
H4 | 0.025 ± 0.001 c | 0.391 ± 0.018 f | 1.224 ± 0.047 b | 6.259 ± 0.146 c | 2.464 ± 0.116 b | 3.743 ± 0.067 c | 0.118 ± 0.010 c | 0.035 ± 0.002 a |
D1 | 0.031 ± 0.002 d | 0.225 ± 0.016 a | 2.083 ± 0.102 d | 5.868 ± 0.219 b | 2.157 ± 0.054 a | 3.552 ± 0.154 b | 0.065 ± 0.005 a | 0.058 ± 0.004 b |
D2 | 0.017 ± 0.001 b | 0.472 ± 0.034 h | 1.091 ± 0.094 a | 4.273 ± 0.305 a | 3.608 ± 0.018 f | 3.410 ± 0.043 b | 0.109 ± 0.009 c | 0.073 ± 0.005 bc |
D3 | 0.114 ± 0.006 e | 0.680 ± 0.049 k | 2.782 ± 0.120 e | 8.136 ± 1.581 d | 3.079 ± 0.420 c | 4.031 ± 0.188 d | 0.176 ± 0.013 d | 0.120 ± 0.020 de |
D4 | 0.025 ± 0.001 c | 0.378 ± 0.027 e | 2.050 ± 0.240 d | 4.794 ± 0.642 a | 2.962 ± 0.061 c | 3.069 ± 0.070 a | 0.093 ± 0.007 b | 0.087 ± 0.006 c |
S1 | 0.021 ± 0.001 c | 0.440 ± 0.035 g | 1.782 ± 0.097 c | 6.849 ± 0.089 c | 3.275 ± 0.134 d | 3.989 ± 0.125 d | 0.070 ± 0.005 a | 0.094 ± 0.017 cd |
S2 | 0.013 ± 0.001 a | 0.618 ± 0.005 j | 1.590 ± 0.115 c | 5.343 ± 0.581 ab | 3.438 ± 0.045 e | 4.045 ± 0.280 d | 0.110 ± 0.018 c | 0.064 ± 0.005 b |
S3 | 0.035 ± 0.002 d | 0.315 ± 0.020 c | 2.177 ± 0.253 d | 7.840 ± 0.260 d | 2.390 ± 0.171 ab | 3.772 ± 0.069 c | 0.089 ± 0.006 b | 0.090 ± 0.006 cd |
Range | 0.011–0.139 | 0.225–0.680 | 1.073–3.108 | 4.273–8.467 | 2.157–3.892 | 3.069–4.478 | 0.065–0.186 | 0.035–0.120 |
CV (%) | 1.04 | 0.33 | 0.35 | 0.22 | 0.21 | 0.12 | 0.35 | 0.30 |
Kurtosis | 2.29 | −0.39 | −0.26 | −1.34 | −1.46 | −0.61 | 0.69 | 0.03 |
Skewness | 1.88 | 0.55 | 0.57 | 0.10 | 0.26 | −0.21 | 1.17 | −0.41 |
Sampling Site | Total Phenolics (mg GAE/g) | Flavonoids (mg QE/mg) | Lycopene (mg/g) | β-Carotene (mg/g) |
---|---|---|---|---|
H1 | 60.57 ± 4.32 | 12.01 ± 0.86 | 0.03 ± 0.01 | 0.41 ± 0.03 |
H2 | 70.13 ± 5.01 | 13.95 ± 1.00 | 0.04 ± 0.01 | 0.72 ± 0.05 |
H3 | 55.81 ± 3.98 | 9.02 ± 0.64 | 0.06 ± 0.02 | 0.49 ± 0.03 |
H4 | 64.80 ± 4.63 | 9.56 ± 0.68 | 0.02 ± 0.01 | 0.56 ± 0.04 |
D1 | 65.46 ± 4.67 | 13.41 ± 0.96 | 0.06 ± 0.02 | 0.31 ± 0.02 |
D2 | 58.39 ± 4.17 | 13.20 ± 0.94 | 0.05 ± 0.01 | 0.49 ± 0.03 |
D3 | 69.33 ± 4.95 | 14.01 ± 1.00 | 0.08 ± 0.03 | 0.67 ± 0.05 |
D4 | 55.69 ± 3.98 | 9.67 ± 0.69 | 0.06 ± 0.01 | 0.50 ± 0.04 |
S1 | 54.29 ± 3.88 | 12.40 ± 0.89 | 0.03 ± 0.01 | 0.38 ± 0.03 |
S2 | 51.81 ± 3.70 | 10.29 ± 0.73 | 0.04 ± 0.01 | 0.46 ± 0.03 |
S3 | 55.54 ± 3.97 | 11.38 ± 0.81 | 0.06 ± 0.02 | 0.36 ± 0.03 |
Range | 51.81–70.13 | 9.02–14.01 | 0.02–0.08 | 0.31–0.72 |
CV (%) | 0.11 | 0.16 | 0.37 | 0.26 |
Kurtosis | −1.26 | −1.62 | −0.57 | −0.15 |
Skewness | 0.45 | –0.19 | 0.07 | 0.62 |
Site Name | Carbohydrates (%) | Proteins (%) | Fat (%) | Moisture (%) | Fiber | Total Ash (%) |
---|---|---|---|---|---|---|
H1 | 38.33 ± 0.74 | 8.12 ± 0.58 | 1.15 ± 0.08 | 68.70 ± 4.91 | 14.13 ± 1.01 | 3.37 ± 0.24 |
H2 | 40.66 ± 1.90 | 9.83 ± 0.70 | 1.24 ± 0.09 | 70.62 ± 5.04 | 9.59 ± 0.68 | 2.65 ± 0.19 |
H3 | 41.33 ± 2.05 | 10.09 ± 0.32 | 0.97 ± 0.07 | 64.16 ± 4.58 | 11.24 ± 0.80 | 3.06 ± 0.22 |
H4 | 39.40 ± 2.41 | 11.06 ± 0.49 | 1.26 ± 0.09 | 68.20 ± 4.87 | 14.30 ± 1.02 | 2.92 ± 0.21 |
D1 | 40.24 ± 1.87 | 9.24 ± 0.66 | 1.10 ± 0.08 | 65.54 ± 4.68 | 13.09 ± 0.93 | 2.71 ± 0.19 |
D2 | 39.14 ± 2.70 | 10.23 ± 0.73 | 1.08 ± 0.08 | 69.97 ± 5.00 | 12.05 ± 0.86 | 3.48 ± 0.25 |
D3 | 38.94 ± 2.38 | 8.92 ± 0.64 | 0.93 ± 0.07 | 63.80 ± 4.56 | 12.42 ± 0.89 | 3.32 ± 0.24 |
D4 | 41.94 ± 1.92 | 9.66 ± 0.60 | 0.94 ± 0.07 | 66.61 ± 4.76 | 10.29 ± 0.73 | 2.89 ± 0.21 |
S1 | 40.83 ± 1.42 | 9.65 ± 0.49 | 1.22 ± 0.09 | 70.64 ± 5.04 | 13.85 ± 0.99 | 2.42 ± 0.17 |
S2 | 41.14 ± 2.94 | 10.33 ± 0.54 | 1.03 ± 0.07 | 65.89 ± 4.70 | 11.66 ± 0.83 | 2.91 ± 0.21 |
S3 | 40.41 ± 1.69 | 9.74 ± 0.70 | 1.17 ± 0.08 | 68.15 ± 4.87 | 10.63 ± 0.76 | 2.69 ± 0.19 |
Range | 38.33–41.94 | 8.12–11.06 | 0.93–1.26 | 63.80–70.64 | 9.59–14.30 | 2.42–3.48 |
CV (%) | 0.03 | 0.08 | 0.11 | 0.04 | 0.13 | 0.11 |
Kurtosis | −0.94 | 1.12 | −1.44 | −1.31 | −1.23 | −0.82 |
Skewness | −0.25 | −0.48 | −0.15 | −0.15 | −0.04 | 0.25 |
Site Name | Linoleic Acid (18:2n6c) | Palmitic Acid (C16:0) | Oleic Acid (18:1n9c) | Linolenic Acid (18:3n3) | Stearic Acid (C18:0) |
---|---|---|---|---|---|
H1 | 15.32 | 16.28 | 6.90 | 1.06 | 2.12 |
H2 | 18.40 | 17.14 | 7.74 | 0.90 | 2.54 |
H3 | 21.16 | 15.20 | 5.08 | 2.02 | 2.72 |
H4 | 13.94 | 16.98 | 7.12 | 1.84 | 2.09 |
D1 | 16.85 | 15.12 | 6.43 | 1.22 | 2.25 |
D2 | 23.38 | 14.45 | 5.89 | 1.41 | 1.97 |
D3 | 14.74 | 18.29 | 4.92 | 1.18 | 2.40 |
D4 | 17.99 | 14.52 | 6.64 | 1.65 | 2.16 |
S1 | 18.02 | 16.27 | 7.08 | 2.01 | 2.35 |
S2 | 20.98 | 17.61 | 8.13 | 1.70 | 1.74 |
S3 | 21.57 | 14.08 | 6.49 | 1.93 | 2.06 |
Range | 13.94–23.38 | 14.08–18.29 | 4.92–8.13 | 0.90–2.02 | 1.74–2.72 |
CV (%) | 0.17 | 0.09 | 0.15 | 0.26 | 0.12 |
Kurtosis | −1.12 | −1.30 | −0.31 | −1.50 | 0.14 |
Skewness | 0.10 | 0.16 | −0.35 | −0.26 | 0.21 |
Retention Time | 6.18 | 10.76 | 13.72 | 15.50 | 15.75 |
Molecular Weight (g/mol) | 280.24 | 256.42 | 282.46 | 278.40 | 284.48 |
Molecular Formula | C18H32O2 | C16H32O2 | C18C34O2 | C18H30O2 | C18H36O2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, Y.S.; Širić, I.; Alamri, S.A.M.; Alrumman, S.A.; Kumar, P.; Abou Fayssal, S.; Zjalić, S.; Singh, R.; Eid, E.M. Assessment of Metal Elements and Biochemical Constituents of Wild Turkey Tail (Trametes versicolor) Mushrooms Collected from the Shivalik Foothills of the Himalayas, India. Forests 2023, 14, 2247. https://doi.org/10.3390/f14112247
Mostafa YS, Širić I, Alamri SAM, Alrumman SA, Kumar P, Abou Fayssal S, Zjalić S, Singh R, Eid EM. Assessment of Metal Elements and Biochemical Constituents of Wild Turkey Tail (Trametes versicolor) Mushrooms Collected from the Shivalik Foothills of the Himalayas, India. Forests. 2023; 14(11):2247. https://doi.org/10.3390/f14112247
Chicago/Turabian StyleMostafa, Yasser S., Ivan Širić, Saad A. M. Alamri, Sulaiman A. Alrumman, Pankaj Kumar, Sami Abou Fayssal, Slaven Zjalić, Rattan Singh, and Ebrahem M. Eid. 2023. "Assessment of Metal Elements and Biochemical Constituents of Wild Turkey Tail (Trametes versicolor) Mushrooms Collected from the Shivalik Foothills of the Himalayas, India" Forests 14, no. 11: 2247. https://doi.org/10.3390/f14112247
APA StyleMostafa, Y. S., Širić, I., Alamri, S. A. M., Alrumman, S. A., Kumar, P., Abou Fayssal, S., Zjalić, S., Singh, R., & Eid, E. M. (2023). Assessment of Metal Elements and Biochemical Constituents of Wild Turkey Tail (Trametes versicolor) Mushrooms Collected from the Shivalik Foothills of the Himalayas, India. Forests, 14(11), 2247. https://doi.org/10.3390/f14112247