Modification and Application of Bamboo-Based Materials: A Review—Part II: Application of Bamboo-Based Materials
Abstract
:1. Introduction
2. Direct Application of Bamboo-Based Materials
2.1. Building Materials
2.1.1. Raw Bamboo Building Materials
2.1.2. Engineered Bamboo Building Materials
2.1.3. Functional Bamboo Building Materials
2.2. Furniture Materials
2.3. Biofuel/Energy
2.3.1. Bioethanol
2.3.2. Biosynthesis Gas
2.3.3. Solid Biofuels
Direct Combustion
Torrefaction and Carbonization for Combustion
2.3.4. Bio-Oil
3. Indirect Application of Bamboo-Based Materials
3.1. Adsorption Materials
3.1.1. Organic Pollutants
3.1.2. Inorganic Pollutants
3.1.3. Gaseous Pollutants
3.2. Electrode Materials (Supercapacitors)
3.3. Electromagnetic-Shielding Materials
4. Future Prospectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Abbreviations | ||
Fiber-reinforced polymer | FRP | Central composite rotatable design | CCD |
Volatile organic compounds | VOCs | Ciprofloxacin hydrochloride | CIP |
Bamboo self-bonded composites | BSCs | Cetyltrimethylammonium bromide | CTAB |
Scanning electron microscope | SEM | Bamboo activated carbon | BAC |
Theory of Inventive Problem Solving | TRIZ | Nitrogen-doped bamboo-based activated carbon | NBAC |
High heating value | HHV | Bamboo charcoal | BC |
Low heating value | LHV | Bamboo-derived hierarchical porous carbon | BHPC |
Fuel ratio | FR | Electromagnetic interference | EMI |
Methylene blue | MB | Reflection loss | RL |
Brunauer–Emmett–Teller | BET | Carbon tubular array | CTA |
Response surface methodology | RSM | Electromagnetic wave | EMW |
References
- Wu, Y.; Bian, Y.Q.; Yang, F.; Ding, Y.; Chen, K.X. Preparation and properties of chitosan/graphene modified bamboo fiber fabrics. Polymers 2019, 11, 1540. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.C.; Wang, X.Z.; Liu, X.R.; Lou, Z.C.; Mao, S.F.; Li, Y.J. Bamboo flattening technology enables efficient and value-added utilization of bamboo in the manufacture of furniture and engineered composites. Compos. B Eng. 2022, 242, 110097. [Google Scholar] [CrossRef]
- Shi, J.J.; Xu, X.; Zhong, T.H.; Zhang, W.F.; Yuan, S.F.; Feng, X.H.; Sang, R.J.; Xia, C.L.; Chen, H.; Fei, B.H. Fabrication and application of eco-friendly bamboo self-bonded composites for furniture. ACS Sustain. Chem. Eng. 2023, 11, 7833–7843. [Google Scholar] [CrossRef]
- Bala, A.; Gupta, S. Engineered bamboo and bamboo-reinforced concrete elements as sustainable building materials: A review. Constr. Build Mater. 2023, 394, 132116. [Google Scholar] [CrossRef]
- Hong, C.K.; Li, H.T.; Xiong, Z.H.; Lorenzo, R.; Corbi, I.; Corbi, O.; Wei, D.D.; Yuan, C.G.; Yang, D.; Zhang, H.Z. Review of connections for engineered bamboo structures. J. Build. Eng. 2020, 30, 101324. [Google Scholar] [CrossRef]
- Shu, B.Q.; Xiao, Z.P.; Hong, L.; Zhang, S.J.; Li, C.; Fu, N.A.; Lu, X.N. Review on the application of bamboo-based materials in construction engineering. J. Renew. Mater. 2020, 8, 1215–1242. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Liu, Y.Q.; Fang, Y.X.; Teng, Y.F.; Fang, K.Y.; Xie, J.P.; Cao, X.W.; Deng, Z.M. Extraction and characterization of bamboo shoot shell fibers by sodium percarbonate assisted degumming. J. Nat. Fibers 2022, 19, 11974–11983. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, L.M.; Li, N.; Bao, M.Z.; Bao, Y.J.; Wu, Z.X.; Wang, J.L.; Rao, F.; Chen, Y.H. Sustainable production of engineered bamboo scrimber composites for construction and flooring applications. Constr. Build Mater. 2022, 347, 128615. [Google Scholar] [CrossRef]
- Hao, X.M.; Wang, Q.Y.; Wang, Y.H.; Han, X.; Yuan, C.L.; Cao, Y.; Lou, Z.C.; Li, Y.J. The effect of oil heat treatment on biological, mechanical and physical properties of bamboo. J. Wood Sci. 2021, 67, 26. [Google Scholar] [CrossRef]
- Ma, X.X.; Smith, L.M.; Cai, L.P.; Shi, S.Q.; Li, H.; Fei, B.H. Preparation of high-performance activated carbons using bamboo through one-step pyrolysis. Bioresources 2019, 14, 688–699. [Google Scholar] [CrossRef]
- Gontijo, L.O.L.; Barbosa, M.N.; de Sá, D.S.; Letichevsky, S.; Pedrozo-Peñafiel, M.J.; Aucélio, R.Q.; Bott, I.S.; Alves, H.D.L.; Fragneaud, B.; Maciel, I.O.; et al. 3D conductive monolithic carbons from pyrolyzed bamboo for microfluidic self-heating system. Carbon 2023, 213, 118214. [Google Scholar] [CrossRef]
- Liang, Z.W.; Neményi, A.; Kovács, G.P.; Gyuricza, C. Potential use of bamboo resources in energy value-added conversion technology and energy systems. GCB Bioenergy 2023, 15, 936–953. [Google Scholar] [CrossRef]
- Kalderis, D.; Seifi, A.; Trang, T.K.; Tsubota, T.; Anastopoulos, I.; Manariotis, I.; Pashalidis, I.; Khataee, A. Bamboo-derived adsorbents for environmental remediation: A review of recent progress. Environ. Res. 2023, 224, 115533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Qiu, G.F.; Wang, R.M.; Guo, Y.; Guo, F.H.; Wu, J.J. Preparation of bamboo-based hierarchical porous carbon modulated by FeCl3 towards efficient copper adsorption. Molecules 2021, 26, 6014. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zheng, Y.; Zhu, X.Q.; Hong, W.L.; Tong, Y.F.; Lu, Y.Z.; Pei, G.; Pang, Y.J.; Shen, Z.H.; Guan, C. Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors. Mater. Res. Bull. 2021, 139, 111281. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Li, Y.D.; Yang, X.M.; Han, E.S.; Chen, G.J.; Yan, C.H.; Yang, X.H.; Zhou, D.S.; He, Y.Z. In-situ confined construction of N-doped compact bamboo charcoal composites for supercapacitors. J. Energy Storage 2023, 62, 106954. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Lu, S.; Li, Y.D.; Song, J.S.; Han, E.S.; Wang, H.W.; He, Y.Z. Promoting hierarchical porous carbon derived from bamboo via copper doping for high-performance supercapacitors. Ind. Crops Prod. 2023, 203, 117155. [Google Scholar] [CrossRef]
- Iroegbu, A.O.C.; Ray, S.S. Bamboos: From bioresource to sustainable materials and chemicals. Sustainability 2021, 13, 12200. [Google Scholar] [CrossRef]
- Trujillo, D.; Jangra, S.; Gibson, J.M. Flexural properties as a basis for bamboo strength grading. P. I. Civil Eng-Str. B 2017, 170, 284–294. [Google Scholar] [CrossRef]
- Trujillo, D.J.A.; Malkowska, D. Empirically derived connection design properties for Guadua bamboo. Constr. Build Mater. 2018, 163, 9–20. [Google Scholar] [CrossRef]
- Moran, R.; García, J.J. Bamboo joints with steel clamps capable of transmitting moment. Constr. Build Mater. 2019, 216, 249–260. [Google Scholar] [CrossRef]
- Yihan, Z.; Longchao, M.; Xiuying, X.; Tiancheng, Y.; Xiaohong, Y.; Liang, C.; Yanjun, L. Mechanisms of two types of flattening treatments on the bonding characteristics of bamboo and the effect of laminate design on flexural properties. Constr. Build Mater. 2023, 408, 133673. [Google Scholar]
- Meng, T.T.; Ding, Y.; Liu, Y.; Xu, L.; Mao, Y.M.; Gelfond, J.; Li, S.K.; Li, Z.H.; Salipante, P.F.; Kim, H.; et al. In Situ Lignin Adhesion for High-Performance Bamboo Composites. Nano Lett. 2023, 23, 8411–8418. [Google Scholar] [CrossRef]
- Guan, M.J.; Huang, Z.W.; Zhu, D.Y. The effect of ultrasonic process on the shear strength and the microstructure of the bonding interface of laminated bamboo lumber. Eur. J. Wood Wood Prod. 2022, 80, 1401–1411. [Google Scholar] [CrossRef]
- Sulastiningsih, I.M.; Nurwati. Physical and mechanical properties of laminated bamboo board. J. Trop. For. Sci. 2009, 21, 246–251. [Google Scholar]
- Li, H.T.; Zhang, Q.S.; Huang, D.S.; Deeks, A.J. Compressive performance of laminated bamboo. Compos. B Eng. 2013, 54, 319–328. [Google Scholar] [CrossRef]
- Mahdavi, M.; Clouston, P.L.; Arwade, S.R. Development of laminated bamboo lumber: Review of processing, performance, and economical considerations. J. Mater. Civ. Eng. 2011, 23, 1036–1042. [Google Scholar] [CrossRef]
- Lee, C.H.; Chung, M.J.; Lin, C.H.; Yang, T.H. Effects of layered structure on the physical and mechanical properties of laminated moso bamboo (Phyllosachys edulis) flooring. Constr. Build Mater. 2012, 28, 31–35. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.; Yan, L.B.; Semple, K.E.; Dai, C.P. In-plane compressive behavior of short cross-laminated bamboo and timber. Ind. Crops Prod. 2023, 200, 116807. [Google Scholar] [CrossRef]
- Jie, W.; Yan, X. The flexural behavior of cross laminated bamboo and timber (CLBT) and cross laminated timber (CLT) beams. Constr. Build Mater. 2023, 408, 133739. [Google Scholar]
- Shan, B.; Xiao, Y.; Zhang, W.L.; Liu, B. Mechanical behavior of connections for glubam-concrete composite beams. Constr. Build Mater. 2017, 143, 158–168. [Google Scholar] [CrossRef]
- Wei, Y.; Ji, X.W.; Duan, M.J.; Li, G.F. Flexural performance of bamboo scrimber beams strengthened with fiber-reinforced polymer. Constr. Build Mater. 2017, 142, 66–82. [Google Scholar] [CrossRef]
- Shen, Y.R.; Huang, D.S.; Zhou, A.P.; Hui, D. An inelastic model for ultimate state analysis of CFRP reinforced PSB beams. Compos. B Eng. 2017, 115, 266–274. [Google Scholar] [CrossRef]
- Chithambaram, S.J.; Kumar, S. Flexural behaviour of bamboo based ferrocement slab panels with flyash. Constr. Build Mater. 2017, 134, 641–648. [Google Scholar] [CrossRef]
- Zhao, K.; Wei, Y.; Yan, S.C.; Chen, S.; Dong, F.H. Experimental and analytical investigations on flexural behavior of bamboo beams strengthened with steel bars. Adv. Struct. Eng. 2021, 24, 3338–3356. [Google Scholar] [CrossRef]
- Huang, Z.J.; Sun, Y.M.; Musso, F. Hygrothermal performance of natural bamboo fiber and bamboo charcoal as local construction infills in building envelope. Constr. Build Mater. 2018, 177, 342–357. [Google Scholar] [CrossRef]
- Li, Z.H.; Chen, C.J.; Xie, H.; Yao, Y.; Zhang, X.; Brozena, A.; Li, J.G.; Ding, Y.; Zhao, X.P.; Hong, M.; et al. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 2022, 5, 235–244. [Google Scholar] [CrossRef]
- Parviz Navi, F.H. Combined Densification and Thermo-Hydro-Mechanical Processing of Wood. MRS Bull. 2004, 29, 332–336. [Google Scholar] [CrossRef]
- Gong, M.; Lamason, C.; Li, L. Interactive effect of surface densification and post-heat-treatment on aspen wood. J. Mater. Process. Technol. 2010, 210, 293–296. [Google Scholar] [CrossRef]
- Pařil, P.; Brabec, M.; Maňák, O.; Rousek, R.; Rademacher, P.; Čermák, P.; Dejmal, A. Comparison of selected physical and mechanical properties of densified beech wood plasticized by ammonia and saturated steam. Eur. J. Wood Wood Prod. 2014, 72, 583–591. [Google Scholar] [CrossRef]
- Ge, S.; Ma, N.L.; Jiang, S.; Ok, Y.S.; Lam, S.S.; Li, C.; Shi, S.Q.; Nie, X.; Qiu, Y.; Li, D.; et al. Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl. Mater. Interfaces 2020, 12, 30824–30832. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Fang, H.; Dai, F. Study on the properties of the recombinant bamboo by finite element method. Compos. B Eng. 2017, 115, 151–159. [Google Scholar] [CrossRef]
- Dong, W.; Dai, X.; Yao, J.J.; Xiong, Y. Preliminary study on the innovative design of original bamboo furniture based on the coordination evolution rules of subsystems of TRIZ theory. IOP Conf. Ser. Mater. Sci. Eng. 2020, 711, 012070. [Google Scholar] [CrossRef]
- Vengala, J.; Namratha, K.B.; Anusha, S. Precast bamboo reinforced furniture elements using self compacting concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 936, 012010. [Google Scholar] [CrossRef]
- Siti Suhaily, S.; Islam, M.N.; Asniza, M.; Rizal, S.; Abdul Khalil, H.P.S. Physical, mechanical and morphological properties of laminated bamboo hybrid composite: A potential raw material for furniture manufacturing. Mater. Res. Express. 2020, 7, 075503. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Yuan, S.; Zhang, J.; Li, Q.; Wang, H. Drying process of waterborne paint film on bamboo laminated lumber for furniture. Polymers 2023, 15, 1288. [Google Scholar] [CrossRef]
- Wang, F.; Ding, S.; Wu, Y.; Zhang, C.; Zhang, T.; Shao, Z.; Guo, Y.; Chen, Y.; Xie, H.; Zhang, E. Study on the influence of node part on the bending behaviors of bamboo. Ind. Crops Prod. 2023, 204, 117384. [Google Scholar] [CrossRef]
- Huang, C.; Wu, X.X.; Huang, Y.; Lai, C.H.; Li, X.; Yong, Q. Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content. Bioresour. Technol. 2016, 219, 583–588. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, B.; Wen, J.L.; Cao, X.F.; Sun, S.N.; Sun, R.C. Availability of four energy crops assessing by the enzymatic hydrolysis and structural features of lignin before and after hydrothermal treatment. Energy Convers. Manag. 2018, 155, 58–67. [Google Scholar] [CrossRef]
- Lai, C.H.; Jia, Y.; Zhou, C.F.; Yang, C.D.; Shen, B.Z.; Zhang, D.H.; Yong, Q. Facilitating enzymatic digestibility of larch by in-situ lignin modification during combined acid and alkali pretreatment. Bioresour. Technol. 2020, 311, 123517. [Google Scholar] [CrossRef]
- García-Aparicio, M.; Parawira, W.; Van Rensburg, E.; Diedericks, D.; Galbe, M.; Rosslander, C.; Zacchi, G.; Görgens, J. Evaluation of Steam-Treated Giant Bamboo for Production of Fermentable Sugars. Biotechnol. Prog. 2011, 27, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.Y.; Yang, H.Y.; Shi, Z.J.; Zhao, P.; Yang, J. Alkaline deacetylation-aided hydrogen peroxide-acetic acid pretreatment of bamboo residue to improve enzymatic saccharification and bioethanol production. Bioresour. Technol. 2022, 358, 127321. [Google Scholar] [CrossRef]
- Yang, H.Y.; Shi, Z.J.; Xu, G.F.; Qin, Y.J.; Deng, J.; Yang, J. Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresour. Technol. 2019, 274, 261–266. [Google Scholar] [CrossRef]
- Alvarez-Vasco, C.; Zhang, X. Alkaline hydrogen peroxide pretreatment of softwood: Hemicellulose degradation pathways. Bioresour. Technol. 2013, 150, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Lei, F.H.; Zhang, W.W.; Song, X.L.; Jiang, J.X.; Wang, K. Enhancement of bioethanol production from Moso bamboo pretreated with biodiesel crude glycerol: Substrate digestibility, cellulase absorption and fermentability. Bioresour. Technol. 2019, 276, 300–309. [Google Scholar] [CrossRef]
- Chandel, A.K.; Gonçalves, B.C.M.; Strap, J.L.; da Silva, S.S. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Crit. Rev. Biotechnol. 2015, 35, 281–293. [Google Scholar] [CrossRef]
- Gao, H.R.; Wang, Y.T.; Yang, Q.M.; Peng, H.; Li, Y.Q.; Zhan, D.; Wei, H.T.; Lu, H.W.; Bakr, M.M.A.; Ei-Sheekh, M.M.; et al. Combined steam explosion and optimized green-liquor pretreatments are effective for complete saccharification to maximize bioethanol production by reducing lignocellulose recalcitrance in one-year-old bamboo. Renew. Energ. 2021, 175, 1069. [Google Scholar] [CrossRef]
- Huang, C.; Zhan, Y.N.; Du, X.H.; Zhou, Y.; Yu, L.X.; Meng, X.Z.; Jiao, J.; Fang, G.G.; Ragauskas, A.J. Modified alkaline peroxide pretreatment: An efficient path forward for bioethanol production from bamboo. Energy Convers. Manag. 2020, 224, 113365. [Google Scholar] [CrossRef]
- Meng, F.Y.; Fan, J.; Cui, F.; Yang, H.Y.; Shi, Z.J.; Wang, D.W.; Yang, J. An innovative and efficient hydrogen peroxide-citric acid pretreatment of bamboo residues to enhance enzymatic hydrolysis and ethanol production. Bioresour. Technol. 2023, 383, 129230. [Google Scholar] [CrossRef]
- Tri, C.L.; Khuong, L.D.; Kamei, I. The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. Int. Biodeterior. Biodegrad. 2018, 133, 86–92. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M.Z.; Shah, N.; Anthony, E.J.; Fennell, P.S. An overview of advances in biomass gasification. Energy Environ. Sci. 2016, 9, 2939–2977. [Google Scholar] [CrossRef]
- Chen, W.H.; Chen, C.J.; Hung, C.I.; Shen, C.H.; Hsu, H.W. A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor. Appl. Energy 2013, 112, 421–430. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Chen, C.; Ying, Z.; Wang, B. Experimental study on gasification performance of bamboo and PE from municipal solid waste in a bench-scale fixed bed reactor. Energy Convers. Manag. 2016, 117, 393–399. [Google Scholar] [CrossRef]
- Kakati, U.; Sakhiya, A.K.; Baghel, P.; Trada, A.; Mahapatra, S.; Upadhyay, D.; Kaushal, P. Sustainable utilization of bamboo through air-steam gasification in downdraft gasifier: Experimental and simulation approach. Energy 2022, 252, 124055. [Google Scholar] [CrossRef]
- Sheng, C.D.; Azevedo, J.L.T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Hu, W.H.; Feng, Z.X.; Yang, J.F.; Gao, Q.; Ni, L.M.; Hou, Y.M.; He, Y.Y.; Liu, Z.J. Combustion behaviors of molded bamboo charcoal: Influence of pyrolysis temperatures. Energy 2021, 226, 120253. [Google Scholar] [CrossRef]
- Hu, J.W.; Yan, Y.P.; Evrendilek, F.; Buyukada, M.; Liu, J.Y. Combustion behaviors of three bamboo residues: Gas emission, kinetic, reaction mechanism and optimization patterns. J. Clean. Prod. 2019, 235, 549–561. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energ. 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Liu, Z.J.; Liu, X.E.; Fei, B.H.; Jiang, Z.H.; Cai, Z.Y.; Yu, Y. The properties of pellets from mixing bamboo and rice straw. Renew. Energ. 2013, 55, 1–5. [Google Scholar] [CrossRef]
- Montero, G.; Coronado, M.A.; Torres, R.; Jaramillo, B.E.; García, C.; Stoytcheva, M.; Vázquez, A.M.; León, J.A.; Lambert, A.A.; Valenzuela, E. Higher heating value determination of wheat straw from Baja California, Mexico. Energy 2016, 109, 612–619. [Google Scholar] [CrossRef]
- Demirbas, A. Relationships between lignin contents and heating values of biomass. Energy Convers. Manag. 2001, 42, 183–188. [Google Scholar] [CrossRef]
- Demirbas, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
- Naik, S.; Goud, V.V.; Rout, P.K.; Jacobson, K.; Dalai, A.K. Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energ. 2010, 35, 1624–1631. [Google Scholar] [CrossRef]
- Chandrasekaran, S.R.; Hopke, P.K.; Hurlbut, A.; Newtown, M. Characterization of Emissions from Grass Pellet Combustion. Energy Fuels 2013, 27, 5298–5306. [Google Scholar] [CrossRef]
- Shah, I.A.; Gou, X.; Zhang, Q.Y.; Wu, J.X.; Wang, E.Y.; Liu, Y.F. Experimental study on NOx emission characteristics of oxy-biomass combustion. J. Clean. Prod. 2018, 199, 400–410. [Google Scholar] [CrossRef]
- Liu, Z.J.; Fei, B.H.; Jiang, Z.H.; Cai, Z.Y.; Liu, X.E. Important properties of bamboo pellets to be used as commercial solid fuel in China. Wood Sci. Technol. 2014, 48, 903–917. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Kumar, R.; Chandrashekar, N. Fuel properties and combustion characteristics of some promising bamboo species in India. J. For. Res. 2014, 25, 471–476. [Google Scholar] [CrossRef]
- Yan, W.; Perez, S.; Sheng, K.C. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: Dry torrefaction and hydrothermal carbonization. Fuel 2017, 196, 473–480. [Google Scholar] [CrossRef]
- Rousset, P.; Aguiar, C.; Labbé, N.; Commandré, J.M. Enhancing the combustible properties of bamboo by torrefaction. Bioresour. Technol. 2011, 102, 8225–8231. [Google Scholar] [CrossRef]
- Uslu, A.; Faaij, A.P.C.; Bergman, P.C.A. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 2008, 33, 1206–1223. [Google Scholar] [CrossRef]
- Yan, W.; Acharjee, T.C.; Coronella, C.J.; Vásquez, V.R. Thermal pretreatment of lignocellulosic biomass. Environ. Prog. Sustain. Energy 2009, 28, 435–440. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef]
- Phanphanich, M.; Mani, S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef]
- Repellin, V.; Govin, A.; Rolland, M.; Guyonnet, R. Energy requirement for fine grinding of torrefied wood. Biomass Bioenergy 2010, 34, 923–930. [Google Scholar] [CrossRef]
- Rousset, P.; Lapierre, C.; Pollet, B.; Quirino, W.; Perre, P. Effect of severe thermal treatment on spruce and beech wood lignins. Ann. Forest Sci. 2009, 66, 110. [Google Scholar] [CrossRef]
- Mi, B.B.; Liu, Z.J.; Hu, W.H.; Wei, P.L.; Jiang, Z.H.; Fei, B.H. Investigating pyrolysis and combustion characteristics of torrefied bamboo, torrefied wood and their blends. Bioresour. Technol. 2016, 209, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Liu, R.L. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhang, T.; Feng, Z.X.; Yang, J.F.; Ni, L.M.; Hu, W.H.; Liu, Z.J. Energy performances of molded charcoals from bamboo and Chinese fir blends: Influence of pyrolysis temperatures and residence times. Ind. Crops Prod. 2022, 177, 114500. [Google Scholar] [CrossRef]
- Liu, Z.J.; Fei, B.H.; Jiang, Z.H.; Liu, X.E. Combustion characteristics of bamboo-biochars. Bioresour. Technol. 2014, 167, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.H.; Jhan, J.W.; Cheng, Y.M.; Cheng, H.H. Effects of carbonization parameters of moso-bamboo-based porous charcoal on capturing carbon dioxide. Sci. World J. 2014, 2014, 937867. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Hsu, L.Y.; Chou, C.S.; Jhang, J.W.; Wu, P. Carbonization process of Moso bamboo (Phyllostachys pubescens) charcoal and its governing thermodynamics. J. Anal. Appl. Pyrolysis 2014, 107, 9–16. [Google Scholar] [CrossRef]
- Yamashita, N.; Machida, M. Carbonization of bamboo and consecutive low temperature air activation. Wood Sci. Technol. 2011, 45, 801–808. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.H.; Wang, J.; Li, X.P.; Cheng, J.J.; Yang, H.P.; Chen, H.P. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 2013, 58, 376–383. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Matias, J.C.O.; Catalao, J.P.S. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renew. Sustain. Energy Rev. 2016, 53, 235–242. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Kim, K.H. Sampling, pretreatment, and analysis of particulate matter and trace metals emitted through charcoal combustion in cooking activities. Trends Analyt. Chem. 2016, 76, 52–59. [Google Scholar] [CrossRef]
- Gautam, N.; Chaurasia, A. Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy 2020, 190, 116434. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Principles and practice of biomass fast pyrolysis processes for liquids. J. Anal. Appl. Pyrolysis 1999, 51, 3–22. [Google Scholar] [CrossRef]
- Shafizadeh, F. Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrolysis 1982, 3, 283–305. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A.; Goldberg, N.M.; Lima, I.M.; Laird, D.A.; Hicks, K.B. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 2010, 34, 67–74. [Google Scholar] [CrossRef]
- Chouhan, A.; Sarma, A. Critical Analysis of Process Parameters for Bio-oil Production via Pyrolysis of Biomass: A Review. Recent Pat. Eng. 2013, 7, 98–114. [Google Scholar] [CrossRef]
- Cheng, L.; Adhikari, S.; Wang, Z.H.; Ding, Y.L. Characterization of bamboo species at different ages and bio-oil production. J. Anal. Appl. Pyrolysis 2015, 116, 215–222. [Google Scholar] [CrossRef]
- Dong, Q.; Li, H.J.; Niu, M.M.; Luo, C.P.; Zhang, J.F.; Qi, B.; Li, X.Q.; Zhong, W. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst. Bioresour. Technol. 2018, 266, 284–290. [Google Scholar] [CrossRef]
- Liu, C.J.; Wang, H.M.; Karim, A.M.; Sun, J.M.; Wang, Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chem. Soc. Rev. 2014, 43, 7594–7623. [Google Scholar] [CrossRef]
- Mullen, C.A.; Tarves, P.C.; Boateng, A.A. Role of ootassium exchange in catalytic pyrolysis of biomass over ZSM-5: Formation of alkyl phenols and furans. ACS Sustain. Chem. Eng. 2017, 5, 2154–2162. [Google Scholar] [CrossRef]
- Zhang, M.J.; Qi, W.; Liu, R.; Su, R.X.; Wu, S.M.; He, Z.M. Fractionating lignocellulose by formic acid: Characterization of major components. Biomass Bioenergy 2010, 34, 525–532. [Google Scholar] [CrossRef]
- Dai, L.L.; Wang, Y.P.; Liu, Y.H.; Ruan, R. Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production. Environ. Res. 2020, 182, 108988. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Chen, P.; Liu, S.Y.; Peng, P.; Min, M.; Cheng, Y.L.; Anderson, E.; Zhou, N.; Fan, L.L.; Liu, C.H.; et al. Effects of feedstock characteristics on microwave-assisted pyrolysis—A review. Bioresour. Technol. 2017, 230, 143–151. [Google Scholar] [CrossRef]
- De la Hoz, A.; Díaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis.: Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005, 34, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.; Lei, H.W.; Ren, S.J.; Wang, L.; Zhang, Q.; Tang, J.; Ruan, R.G. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2012, 108, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Chen, W.R.; Luo, X.; Pang, C.H.; Lester, E.; Wu, T. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production. Bioresour. Technol. 2017, 237, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Giorcelli, M.; Das, O.; Sas, G.; Försth, M.; Bartoli, M. A review of bio-oil production through microwave-assisted pyrolysis. Processes 2021, 9, 561. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Z.P.; Ding, K.; Deng, A.D.; Hao, N.J.; Meng, X.Z.; Ben, H.X.; Ruan, R.; Ragauskas, A.J. Catalytic fast pyrolysis of bamboo sawdust via a two-step bench scale bubbling fluidized bed/fixed bed reactor: Study on synergistic effect of alkali metal oxides and HZSM-5. Energy Convers. Manag. 2018, 176, 287–298. [Google Scholar] [CrossRef]
- Ly, H.V.; Park, J.W.; Kim, S.S.; Hwang, H.T.; Kim, J.; Woo, H.C. Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil. Renew. Energy 2020, 149, 1434–1445. [Google Scholar] [CrossRef]
- Qiu, B.B.; Yang, C.H.; Shao, Q.N.; Liu, Y.; Chu, H.Q. Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: A review. Fuel 2022, 315, 123218. [Google Scholar] [CrossRef]
- Graca, I.; Ribeiro, F.R.; Cerqueira, H.S.; Lam, Y.L.; de Almeida, M.B.B. Catalytic cracking of mixtures of model bio-oil compounds and gasoil. Appl. Catal. 2009, 90, 556–563. [Google Scholar] [CrossRef]
- Zhang, X.H.; Chen, L.G.; Kong, W.; Wang, T.J.; Zhang, Q.; Long, J.X.; Xu, Y.; Ma, L.L. Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process. Energy 2015, 84, 83–90. [Google Scholar] [CrossRef]
- Wang, Y.P.; Dai, L.L.; Fan, L.L.; Duan, D.L.; Liu, Y.H.; Ruan, R.; Yu, Z.T.; Liu, Y.Z.; Jiang, L. Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production. J. Anal. Appl. Pyrolysis 2017, 123, 224–228. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Wang, Y.P.; Duan, D.; Ruan, R.; Fan, L.L.; Zhou, Y.; Dai, L.L.; Lv, J.Q.; Liu, Y.H. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production. Bioresour. Technol. 2018, 249, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, W.J.; Li, H.; Zhan, S.Y.; Wang, X.M.; Ma, C.P.; Qiu, Z.M. Polyethyleneimine-impregnated alkali treated waste bamboo powder for effective dye removal. Water Sci. Technol. 2021, 83, 1183–1197. [Google Scholar] [CrossRef]
- Masanizan, A.; Lim, C.M.; Kooh, M.R.R.; Mahadi, A.H.; Thotagamuge, R. The removal of ruthenium-based complexes N3 dye from DSSC wastewater using copper impregnated KOH-activated bamboo charcoal. Water Air Soil Pollut. 2021, 232, 388. [Google Scholar] [CrossRef]
- Chen, Y.T.; Huang, Y.P.; Wang, C.; Deng, J.G.; Hsi, H.C. Comprehending adsorption of methylethylketone and toluene and microwave regeneration effectiveness for beaded activated carbon derived from recycled waste bamboo tar. J. Air Waste Manag. Assoc. 2020, 70, 616–628. [Google Scholar] [CrossRef]
- Qiu, C.P.; Tang, Q.; Zhang, X.L.; Li, M.C.; Zhang, X.F.; Xie, J.L.; Zhang, S.B.; Su, Z.P.; Qi, J.Q.; Xiao, H.; et al. High-efficient double-cross-linked biohybrid aerogel biosorbent prepared from waste bamboo paper and chitosan for wastewater purification. J. Clean. Prod. 2022, 338, 130550. [Google Scholar] [CrossRef]
- Li, Z.H.; Xing, B.; Ding, Y.; Li, Y.C.; Wang, S.R. A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue. Chin. J. Chem. Eng. 2020, 28, 2872–2880. [Google Scholar] [CrossRef]
- Liu, H.; Xu, C.; Wei, X.L.; Ren, Y.M.; Tang, D.X.; Zhang, C.G.; Zhang, R.L.; Li, F.; Huo, C.F. 3D hierarchical porous activated carbon derived from bamboo and its application for textile dye removal: Kinetics, isotherms, and thermodynamic studies. Water Air Soil Pollut. 2020, 231, 504. [Google Scholar] [CrossRef]
- Lv, B.W.; Xu, H.; Guo, J.Z.; Bai, L.Q.; Li, B. Efficient adsorption of methylene blue on carboxylate-rich hydrochar prepared by one-step hydrothermal carbonization of bamboo and acrylic acid with ammonium persulphate. J. Hazard. Mater. 2022, 421, 126741. [Google Scholar] [CrossRef]
- Guellati, A.; Maachi, R.; Chaabane, T.; Darchen, A.; Danish, M. Aluminum dispersed bamboo activated carbon production for effective removal of Ciprofloxacin hydrochloride antibiotics: Optimization and mechanism study. J. Environ. Manag. 2022, 301, 113765. [Google Scholar] [CrossRef]
- Hu, H.; Lv, C.G.; Hu, A.Q.; Wang, T.; Lu, H.J. Influence of torrefaction intensities on bamboo (Acidosasa longiligula) shoot shell-derived biochar and its application for Tc(VII) reductive immobilization. J. Taiwan Inst. Chem. Eng. 2020, 116, 266–271. [Google Scholar] [CrossRef]
- Tejada-Tovar, C.; Bonilla-Mancilla, H.; Cáceres-López, J.; Villabona-Ortíz, A.; Ortega-Toro, R. Elimination of cadmium(II) in aqueous solution using bamboo waste (Bambusa vulgaris). Desalination Water Treat. 2021, 215, 108–118. [Google Scholar] [CrossRef]
- Shao, Y.A.; Li, J.M.; Fang, X.Y.; Yang, Z.E.; Qu, Y.L.; Yang, M.; Tan, W.; Li, G.Z.; Wang, H.B. Chemical modification of bamboo activated carbon surface and its adsorption property of simultaneous removal of phosphate and nitrate. Chemosphere 2022, 287, 132118. [Google Scholar] [CrossRef]
- Fan, R.M.; Chen, C.L.; Lin, J.Y.; Tzeng, J.H.; Huang, C.P.; Dong, C.D.; Huang, C.P. Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresour. Technol. 2019, 272, 465–472. [Google Scholar] [CrossRef]
- Ismail, I.S.; Rashidi, N.A.; Yusup, S. Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture. Environ. Sci. Pollut. Res. 2022, 29, 12434–12440. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.L.; Zhao, R.; Peng, M.Q.; Wang, D. Experimental study on NO removal by surface activated bamboo charcoal. Atmospheric Pollut. Res. 2019, 10, 474–479. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Z.; Ding, D.N.; He, T.H.; Wang, B.Y.; Rong, S.P. Tunnel structured manganese dioxides for the gaseous ammonia adsorption and its regeneration performance. Sep. Purif. Technol. 2022, 284, 120252. [Google Scholar] [CrossRef]
- Hou, C.L.; Wu, Y.S.; Wang, T.; Wang, X.R.; Gao, X. Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2. Energy Fuels 2019, 33, 1745–1752. [Google Scholar] [CrossRef]
- Ying, W.J.; Tian, S.; Liu, H.; Zhou, Z.A.; Kapeso, G.; Zhong, J.H.; Zhang, W.B. In situ dry chemical synthesis of nitrogen-doped activated carbon from bamboo charcoal for carbon dioxide adsorption. Materials 2022, 15, 763. [Google Scholar] [CrossRef]
- Su, C.Q.; Guo, Y.; Chen, H.Y.; Zou, J.W.; Zeng, Z.; Li, L.Q. VOCs adsorption of resin-based activated carbon and bamboo char: Porous characterization and nitrogen-doped effect. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124983. [Google Scholar] [CrossRef]
- Maksoud, M.; Fahim, R.A.; Shalan, A.E.; Abd Elkodous, M.; Olojede, S.O.; Osman, A.I.; Farrell, C.; Al-Muhtaseb, A.H.; Awed, A.S.; Ashour, A.H.; et al. Advanced materials and technologies for supercapacitors used in energy conversion and storage: A review. Environ. Chem. Lett. 2021, 19, 375–439. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, J.Y.; Li, Q.Q.; Zhang, S.; Song, H.H.; Jia, D.Z. Carbon materials for high mass-loading supercapacitors: Filling the gap between new materials and practical applications. J. Mater. Chem. A 2020, 8, 21930–21946. [Google Scholar] [CrossRef]
- Wang, J.; Nie, P.; Ding, B.; Dong, S.Y.; Hao, X.D.; Dou, H.; Zhang, X.G. Biomass derived carbon for energy storage devices. J. Mater. Chem. A 2017, 5, 2411–2428. [Google Scholar] [CrossRef]
- Li, J.F.; Wu, Q.S. Water bamboo-derived porous carbons as electrode materials for supercapacitors. New J. Chem. 2015, 39, 3859–3864. [Google Scholar] [CrossRef]
- Han, J.Z.; Ping, Y.J.; Yang, S.J.; Zhang, Y.M.; Qian, L.B.; Li, J.J.; Liu, L.; Xiong, B.Y.; Fang, P.F.; He, C.Q. High specific power/energy, ultralong life supercapacitors enabled by cross-cutting bamboo-derived porous carbons. Diam. Relat. Mater. 2020, 109, 108044. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Yoon, B.; Nguyen, T.D.; Oh, E.; Ma, Y.F.; Wang, M.; Suhr, J. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon 2023, 206, 383–391. [Google Scholar] [CrossRef]
- Abbas, S.C.; Lin, C.M.; Hua, Z.F.; Deng, Q.D.; Huang, H.; Ni, Y.H.; Cao, S.L.; Ma, X.J. Bamboo-derived carbon material inherently doped with SiC and nitrogen for flexible supercapacitors. Chem. Eng. J. 2022, 433, 133738. [Google Scholar] [CrossRef]
- Qiu, G.F.; Miao, Z.K.; Guo, Y.; Xu, J.; Jia, W.K.; Zhang, Y.X.; Guo, F.H.; Wu, J.J. Bamboo-based hierarchical porous carbon for high-performance supercapacitors: The role of different components. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129575. [Google Scholar] [CrossRef]
- Yan, D.X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P.G.; Wang, J.H.; Li, Z.M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566. [Google Scholar] [CrossRef]
- Wen, B.; Cao, M.S.; Lu, M.M.; Cao, W.Q.; Shi, H.L.; Liu, J.; Wang, X.X.; Jin, H.B.; Fang, X.Y.; Wang, W.Z.; et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489. [Google Scholar] [CrossRef]
- Huang, Q.; Bao, C.Z.; Wang, Q.Y.; Dong, C.J.; Guan, H.T. Tuning the microwave absorption capacity of TiP2O7 by composited with biomass carbon. Appl. Surf. Sci. 2020, 515, 145974. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Ding, X.D.; Yu, D. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic. Chem. Eng. J. 2020, 380, 122553. [Google Scholar] [CrossRef]
- Zhang, J.J.; Li, J.W.; Tan, G.G.; Hu, R.C.; Wang, J.Q.; Chang, C.T.; Wang, X.M. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2017, 9, 42192–42199. [Google Scholar] [CrossRef]
- Abdalla, I.; Shen, J.L.; Yu, J.Y.; Li, Z.L.; Ding, B. Co3O4/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption. Sci. Rep. 2018, 8, 12402. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.C.; Wang, Q.Y.; Kara, U.I.; Mamtani, R.S.; Zhou, X.D.; Bian, H.Y.; Yang, Z.H.; Li, Y.J.; Lv, H.L.; Adera, S.; et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 2022, 14, 11. [Google Scholar] [CrossRef]
- Yan, H.; Lou, Z.C.; Xu, L.; Lv, H.L. Pore-regulation in 2D biochar-based flakes towards wideband microwave absorption. Chem. Eng. J. 2023, 464, 142568. [Google Scholar] [CrossRef]
- Sun, W.; Lou, Z.C.; Xu, L.; Ma, Q.L.; Han, H.; Chen, M.L.; Wang, Q.Y.; Han, J.Q.; Li, Y.J. Bioinspired Carbon Superstructures for Efficient Electromagnetic Shielding. ACS Appl. Mater. Interfaces 2023, 15, 4358–4370. [Google Scholar] [CrossRef]
- Cai, S.X.; Han, H.; Lou, Z.C.; Yan, H.; Wang, Q.Y.; Li, R.; Han, J.Q.; Li, Y.J. Preparation of a biomass-derived electromagnetic wave absorber with potential EM shielding application in interior decoration surface coating. Appl. Surf. Sci. 2023, 607, 155037. [Google Scholar] [CrossRef]
- Cai, S.X.; Yan, H.; Wang, Q.Y.; Han, H.; Li, R.; Lou, Z.C. Top-down strategy for bamboo lignocellulose-derived carbon heterostructure with enhanced electromagnetic wave dissipation. Chin. J. Chem. Eng. 2022, 43, 360–369. [Google Scholar] [CrossRef]
- Lou, Z.C.; Wang, Q.Y.; Sun, W.; Liu, J.; Yan, H.; Han, H.; Bian, H.Y.; Li, Y.J. Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability. Chem. Eng. J. 2022, 430, 133178. [Google Scholar] [CrossRef]
- Lou, Z.C.; Wang, Q.Y.; Zhang, Y.; Zhou, X.D.; Li, R.; Liu, J.; Li, Y.J.; Lv, H.L. In-situ formation of low-dimensional, magnetic core-shell nanocrystal for electromagnetic dissipation. Compos. B Eng. 2021, 214, 108744. [Google Scholar] [CrossRef]
Application | Raw Materials | Methods | Performance | Ref. |
---|---|---|---|---|
Building materials | Raw bamboo | In situ lignin bonding | Shear strength: ∼4.4 MPa Tensile strength: ∼300 MPa | [23] |
Cross-laminated bamboo | Planed and bonded with polyurethane adhesive | Compressive strength: 38.9 MPa, Compressive modulus: 8056.6 MPa | [29] | |
Bamboo stems | Delignification followed by water-assisted air drying | Tensile strength: 1.90 ± 0.32 GPa Young’s modulus: 91.3 ± 29.7 GPa Toughness: 25.4 ± 4.5 MJ m−3 | [37] | |
Furniture | Bamboo fiber | Hot pressing | Modulus: 9.66 ± 1.14 GPa Improved fire and water resistance | [41] |
Bamboo powders | Self-bonding technology | Thickness swelling: 12.8% Internal bonding strength: 0.71 MPa Exhibited good paint film adhesion | [3] | |
Moso bamboo | Non-notched-flattening technology | Cell wall modulus of elasticity: 20.1 GPa Hardness: 0.89 GPa | [2] | |
Biofuel/-energy | Bambusa balcooa | Subjected to SO2-impregnated steam pretreatment prior to enzymatic hydrolysis | Yield: 292 L of ethanol per dry ton of giant bamboo | [51] |
Neosino calamus affinis | Alkaline liquid hot water treatment | Yield: 30.9 g/100 g reducing sugars yielded; 9.6 g ethanol produced from 100 g of bamboo | [53] | |
Moso bamboo | Dry torrefaction and hydrothermal carbonization | Calorific value: 28.29 MJ/kg Energy yield: 59.77% Fixed carbon content: 63.08% | [80] | |
Adsorption materials | Bamboo | In situ pyrolysis with KHCO3 | Adsorption capacity for phenol: 169.0 mg g−1 Adsorption capacity for MB: 499.3 mg g−1 | [126] |
Bamboo pieces | Activation with AlCl3 and (KOH/K2CO3) solution followed by carbonization | CIP adsorption efficiency: 13.36 mg/g | [129] | |
Bamboo shoot shells | Torrefied at different intensities | Adsorption capacity for Cr (VI): 63.11 mg/g | [130] | |
Electrode materials | Water bamboo | Carbonized in N2 atmosphere at 800 °C after KOH pretreatment | Specific capacitance: 268 F g−1 at a current density of 1 A g−1 in 6 M KOH electrolyte Capacity retention: 97.28% over 5000 cycles at current density of 10 A g−1 | [143] |
Bamboo powder | Combustion between 2-methylimidazole and sodium nitrate | Specific capacity: 51.4 mA h g–1 Energy density: 48.3 Wh kg–1 Cycle stability: 96% capacity retention after 90,000 cycles | [15] | |
Bamboo flakes | Carbonized and KOH-treated | Specific energy: 10.4 Wh kg−1 Cycle stability: no capacitance loss after 30,000 cycles at 50 A g−1 | [144] | |
Electromagnetic-shielding materials | Bamboo pulp | Pyrolysis followed by chemical etching | Minimum reflection loss value: 15.8 dB Absorption bandwidth: 3.8 GHz | [155] |
Bamboo slices | Bamboo transverse splitting technology and carbonized | Average SE/rho values in the vertical direction: 123.7 dB cm3 g−1 Average SE/rho values in the parallel direction: 144.5 dB cm3 g−1 | [156] | |
Bamboo-derived lignin | In situ pyrolytic modification of Fe3O4 | EM absorption spectrum: 8.4 to 18.0 GHz Minimum RL value: 47.11 dB | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, Z.; Zheng, Z.; Yan, N.; Jiang, X.; Zhang, X.; Chen, S.; Xu, R.; Liu, C.; Xu, L. Modification and Application of Bamboo-Based Materials: A Review—Part II: Application of Bamboo-Based Materials. Forests 2023, 14, 2266. https://doi.org/10.3390/f14112266
Lou Z, Zheng Z, Yan N, Jiang X, Zhang X, Chen S, Xu R, Liu C, Xu L. Modification and Application of Bamboo-Based Materials: A Review—Part II: Application of Bamboo-Based Materials. Forests. 2023; 14(11):2266. https://doi.org/10.3390/f14112266
Chicago/Turabian StyleLou, Zhichao, Zhiyu Zheng, Nina Yan, Xizhi Jiang, Xiaomei Zhang, Shan Chen, Rui Xu, Chun Liu, and Lei Xu. 2023. "Modification and Application of Bamboo-Based Materials: A Review—Part II: Application of Bamboo-Based Materials" Forests 14, no. 11: 2266. https://doi.org/10.3390/f14112266
APA StyleLou, Z., Zheng, Z., Yan, N., Jiang, X., Zhang, X., Chen, S., Xu, R., Liu, C., & Xu, L. (2023). Modification and Application of Bamboo-Based Materials: A Review—Part II: Application of Bamboo-Based Materials. Forests, 14(11), 2266. https://doi.org/10.3390/f14112266