Studies on the Correlation between δ13C and Nutrient Elements in Two Desert Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection and Measurement
2.2.1. Sample Survey
2.2.2. Sample Collection
2.3. Sample Determination
2.3.1. Sample Processing
2.3.2. Stable Carbon Isotope Composition Determination (δ13C)
2.3.3. Plant Nutrient Element Determination
2.3.4. Determination of Physical and Chemical Properties of Soil Samples
2.4. Data Processing
3. Results and Analysis
3.1. Characteristics of δ13C and Major Nutrient Elements in Alhagi sparsifolia and Karelinia caspia
3.2. Characteristics of δ13C and Major Nutrient Elements in Different Organs of Alhagi sparsifolia and Karelinia caspia
3.3. Correlation between δ13C and Major Nutrient Elements in Different Organs of Alhagi sparsifolia and Karelinia caspia
3.4. Relationships among δ13C, Major Nutrient Elements, and Soil Physicochemical Factors in Alhagi sparsifolia and Karelinia caspia
4. Discussion
4.1. Variation in δ13C Characteristics among Organs of Alhagi sparsifolia and Karelinia caspia
4.2. Variation in Major Nutrient Element Content and Stoichiometric Ratio among Organs of Alhagi sparsifolia and Karelinia caspia
4.3. Relationships among δ13C, Major Nutrient Elements, and Soil Physicochemical Factors in Alhagi sparsifolia and Karelinia caspia
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, R.L.; Zhang, Q.F.; Li, M.; Li, Q.Q.; Zhang, M.M. Application of Plant Carbon Isotope Fractionation in the Study of Water Use Efficiency. Chin. Agric. Sci. Bull. 2022, 38, 15–20. [Google Scholar] [CrossRef]
- Gavito, M.E.; Jakobsen, I.; Mikkelsen, T.N.; Mora, F. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol. 2019, 223, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhang, J.S.; Meng, P.; He, C.X.; Jia, C.X.; Li, J.Z. Feasibility analysis on the determination of WUE by stable carbon isotope: Cassia obtusifolia L. as an example. Acta Ecol. Sin. 2014, 34, 5453–5459. [Google Scholar] [CrossRef]
- Deng, X.X.; Shi, Z.; Zeng, L.X.; Lei, L.; Pei, X.X.; Wu, S.; Xiao, W.F. Effects of drought and shading on instantaneous water use efficiency and δ13C of Pinus massoniana seedlings. Chin. J. Ecol. 2023, 40, 2735–2742. [Google Scholar]
- Warren, C.R.; Adams, M.A.; Chen, Z.L. Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants? Funct. Plant Biol. 2000, 27, 407–416. [Google Scholar] [CrossRef]
- Ma, F.; Liang, W.Y.; Zhou, Z.N.; Xiao, G.J.; Liu, J.L.; He, J.; Jiao, B.Z.; Xu, T.T. Spatial Variation in Leaf Stable Carbon Isotope Composition of Three Caragana Species in Northern China. Forests 2018, 9, 297. [Google Scholar] [CrossRef]
- Walker, A.P.; Beckerman, A.P.; Gu, L.H.; Kattge, J.; Cernusak, L.A.; Domingues, T.F.; Scales, J.C.; Wohlfahrt, G.; Wullschleger, S.D.; Woodward, F.I. The relationship of leaf photosynthetic traits—Vcmax and Jmax—To leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecol. Evol. 2014, 4, 3218–3235. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, F.A.; Carrillo, Y.; Aspinwall, M.J.; Maier, C.; Canarini, A.; Tahaei, H.; Choat, B.; Tissue, D.T. Water, nitrogen and phosphorus use efficiencies of four tree species in response to variable water and nutrient supply. Plant Soil 2016, 406, 187–199. [Google Scholar] [CrossRef]
- Xia, D.J.; Liu, Q.R.; Zou, L.L.; Ge, Z.W.; Xue, X.H.; Peng, S.L. Foliar δ13C correlates with elemental stoichiometey in halophytes of coastal wetlands. Acta Ecol. Sin. 2020, 40, 2215–2224. [Google Scholar]
- Knelman, J.E.; Schmidt, S.K.; Lynch, R.C.; Darcy, J.L.; Castle, S.C.; Cleveland, C.C.; Nemergut, D.R.; Anthony, G.J. Nutrient Addition Dramatically Accelerates Microbial Community Succession. PLoS ONE 2014, 9, e102609. [Google Scholar] [CrossRef]
- Castle, S.C.; Sullivan, B.W.; Knelman, J.; Hood, E.; Nemergut, D.R.; Schmidt, S.K.; Cleveland, C.C. Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development. Oecologia 2017, 185, 429–511. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.H.; Song, X.Q.; Zheng, J.W.; Zhang, Z.H.; Tang, Z.H. Ecological Stoichiometric Characteristics of C, N and P and Their Relationship with Soil Factors from Different Organs of the Halophytic Chenopodiaceae Plants in Hulunbuir. Bull. Bot. Res. 2022, 42, 910–920. [Google Scholar] [CrossRef]
- Li, W.Z.; Gao, Y.; Yang, L.; Jiang, Z.Y.; Wang, X.W. Carbon, nitrogen, and phosphorus stoichiometry of recently senesced larch leaves in response to environmental factors across an entire growing season. Chin. J. Ecol. 2020, 39, 2832–2841. [Google Scholar] [CrossRef]
- Wang, R.Z.; Luo, L.Y.; Sun, J.W.; Gu, H.B.; Wang, G.J. Seasonal dynamics of leaf, branch and root C:N:P ecological stoichiometry of mature Cunninghamia lanceolata in Huitong. J. Cent. South Univ. For. Technol. 2020, 40, 64–71. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B.R.; An, S.S. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena 2018, 166, 328–338. [Google Scholar] [CrossRef]
- Liu, Y.; Li, P.; Shen, B.; Feng, C.H.; Liu, Q.; Zhang, Y. Effects of drought stress on Bothriochloa ischaemum water-use efficiency based on stable carbon isotope. Acta Ecol. Sin. 2017, 37, 3055–3064. [Google Scholar] [CrossRef]
- Zhou, C.L.; Li, Y.K.; Cao, G.M.; Peng, C.J.; Song, M.H.; Xu, X.L.; Zhou, H.K.; Lin, L. Carbon and nitrogen stable isotopes technology in the researches on alpine meadow ecosystem in Qinghai-Tibet Plateau: Progress and prospect. Chin. J. Appl. Ecol. 2020, 31, 3568–3578. [Google Scholar] [CrossRef]
- Li, J.Z. Stable Carbon Isotope Compositions in C3, C4 Herbaceous Plants and Their Responce to Changing Temperature. Master’s Thesis, Ludong University, Yantai, China, 2009. [Google Scholar]
- Yang, S.Y.; Zhao, X.N.; Gao, X.D.; Yu, L.Y. Difference of Water Use Efficiency Between Ecological and Economic Forest and Its Response to Environment Using Carbon Isotopeithe Loess Plateau of China. J. Soil Water Conserv. 2022, 36, 7. [Google Scholar] [CrossRef]
- Haliguli, A.; Yiliminuer; Guan, W.K.; Abudourexii, R. Resposeof Leaf δ13C and δ15N Environmental Factorsin Different Habitats of Populus euphraticai. Acta Bot. Boreal. Occident. Sin. 2020, 40, 1031–1042. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zhong, Q.L.; Jin, B.J.; Lu, H.D.; Guo, B.Q.; Zheng, Y.; Li, M.; Cheng, D.L. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China. Chin. J. Plant Ecol. 2015, 39, 159–166. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Niklas, K.J.; Han, W.X.; Kattge, J.; Reich, P.B.; Luo, Y.K.; Chen, Y.H.; Tang, Z.Y.; Hu, H.F. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl. Sci. Rev. 2017, 5, 728–739. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Fang, J.Y. Review on characteristics and main hypotheses of plant ecological stoichiometry. Chin. J. Plant Ecol. 2021, 45, 682–713. [Google Scholar] [CrossRef]
- Iii, F.; Mooney, S. The Ecology and Economics of Storage in Plants—Annual Review of Ecology and Systematics. Annu. Rev. Ecol. Syst. 1990, 21, 423–447. [Google Scholar]
- Jiang, G.F.; Li, S.Y.; Li, Y.C.; Roddy, A.B. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. Plant Physiol. 2023, 4, 4. [Google Scholar] [CrossRef]
- Badeck, F.W.; Tcherkez, G.; Salvador, N.; Clément, P.; Ghashghaie, J. Post-photosynthetic fractionation of stable carbon isotopes between plant organs—A widespread phenomenon. Rapid Commun. Mass Spectrom. 2005, 19, 1381–1391. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Xu, W.T.; Zhou, G.Y.; Bai, Y.F.; Li, J.X.; Tang, X.L.; Chen, D.M.; Liu, Q.; Ma, W.H.; Xiong, G.M.; et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2018, 115, 4033. [Google Scholar] [CrossRef]
- Zhao, N.; Yu, G.R.; He, N.P.; Xia, F.C.; Wang, Q.F.; Wang, R.L.; Xu, Z.W.; Jia, Y.L. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. J. Plant Res. 2016, 129, 647–657. [Google Scholar] [CrossRef]
- He, M.Z.; Dijkstra, F.A.; Zhang, K.; Li, X.R.; Tan, H.J.; Gao, Y.H.; Li, G. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability. Sci. Rep. 2014, 4, 6932. [Google Scholar] [CrossRef]
- Xing, R.X.; Zhang, B.; Guo, P.L.; Zhang, Z.H.; Huang, C.B.; Zeng, F.J. The ecological stoichiometric characteristics of Alhagi sparsifolia and Karelinia caspia in different habitats. Chin. J. Ecol. 2020, 39, 733–740. [Google Scholar] [CrossRef]
- Guo, P.L.; Liu, B.; Zhang, Z.H.; Xing, R.X.; Zhang, B.; Zeng, F.J. Effects of interaction between Alhagi sparsifolia and Karelinia caspia on nitrogen fixation and rhizosphere microorganisms. Acta Ecol. Sin. 2020, 40, 6632–6643. [Google Scholar]
- Zhang, L. Mechanism of the effects of typical temperate desert plant diversity on ecosystem function. Master’s Thesis, Xingjiang University, Urumqi, China, 2019. [Google Scholar]
- Gang, C.; Sheng, L. Plant Physiology Lab; Higher Education Press (HEP): Beijing, China, 2016. [Google Scholar]
- Dong, M. Observation and Analysis of Terrestrial Biocommunities; Standards Press of China: Beijing, China, 1997. [Google Scholar]
- Lin, Z.; Xing, X. Review on influential factors of plant water use efficiency. Agric. Res. Arid Areas 2005, 23, 208–213. [Google Scholar] [CrossRef]
- Zhou, R.C.; Zhang, W.B.; Cheng, X.L.; Xu, X.Y. A Review on the Responses of Plant and Soil Carbon Stable Isotope. Composition to Environmental Change. Environ. Sci. 2019, 32, 565–572. [Google Scholar] [CrossRef]
- Ge, T.D.; Wang, D.D.; Zhu, Z.K.; Wei, L.; Wei, X.M.; Wu, J.S. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem. Chin. J. Plant Ecol. 2020, 44, 360–372. [Google Scholar] [CrossRef]
- Feng, Q.H.; Shi, Z.M.; Dong, L.L. Response of Plant Functional Traits to Environment and Its Application. Acta Ecol. Sin. 2008, 44, 125–131. [Google Scholar] [CrossRef]
- Feng, H.Y.; Chen, T.; Xu, S.J.; An, L.Z.; Wang, X.L. Effect of enhanced UV-B radiation on growth, yield and stable carbon isotope composition in Glycine max cultivars (SCI). Acta Bot. Sin. 2001, 43, 709–713. [Google Scholar] [CrossRef]
- Fang, X.J.; Li, J.Y.; Nie, L.B.; Shen, Y.B.; Zhang, Z.Y. The characteristics of stable carbon isotope and water use efficiency for Populus tomentosa hybrid clones. Ecol. Environ. Ences 2009, 18, 2267–2271. [Google Scholar] [CrossRef]
- Greitner, C.S.; Winner, W.E. Increases in δ13 values of radish and soybean plants caused by ozone. New Phytol. 2010, 108, 489–494. [Google Scholar] [CrossRef]
- Li, Y.Y. Application of carbon isotope technique on the study of water water use efficiency of crops. Acta Agric. Nucl. Sin. 2000, 14, 115–121. [Google Scholar] [CrossRef]
- Quan, X.L.; Duan, Z.H.; Qiao, Y.M.; Pei, H.K.; Chen, M.C.; He, G.F. Variations in soil carbon and nitrogen stable isotopes and densitu among different alpine meadows. Acta Pratac. Sin. 2016, 25, 27–34. [Google Scholar] [CrossRef]
- Li, M.C.; Liu, H.H.; Yi, X.F.; Li, L.X. Characterization of photosynthetic pathway of plant species growing in the eastern Tibetan plateau using stable carbon isotope composition. Photosynthetica 2006, 44, 102–108. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Sun, X.Y.; Zhang, L.; Li, S.Y. A Study on the Characteristics of Soil Stable Carbon Isotope Composition in Different Types of Grassland in Northwest China. Chin. J. Soil Sci. 2013, 44, 348–354. [Google Scholar] [CrossRef]
- Sun, L.; Gong, L.; Zhu, M.L.; Xie, L.N.; Li, H.L.; Luo, Y. Leaf stoichiometric characteristics of typical desert plants and their relationships to soil environmental factors in the northern margin of the Tarin Basin. Chin. J. Ecol. 2017, 36, 1208–1214. [Google Scholar] [CrossRef]
- Wang, Z.N.; Yang, H.M. Response of ecological stoichiometry of carbon, nitrigen and phosphorus in plants to abiotic envrionmental factors. Pratac. Sci. 2013, 30, 927–934. [Google Scholar]
- Abliz, A.; Lü, G.H.; Zhang, X.N.; Gong, Y.M. Carbon, nitrogen and phosphorus stoichiometry of photosynthetic organs across Ebinur Lake Wetland Natural Reserve of Xinjiang. Chin. J. Ecol. 2015, 34, 2123–2130. [Google Scholar] [CrossRef]
- Wang, S.Q.; Yu, G.R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecol. Sin. 2008, 28, 3937–3947. [Google Scholar] [CrossRef]
- Drenovsky, R.E.; James, J.J.; Richards, J.H. Variation in nutrient resorption by desert shrubs. J. Arid. Environ. 2010, 74, 1564–1568. [Google Scholar] [CrossRef]
- Xiang, X.M.; De, K.J.; Feng, T.X.; Lin, W.S.; Qian, S.W.; Wei, X.J.; Wang, W.; Xu, C.T.; Zhang, L.; Geng, X.P. Effect of Exogenous Nitrogen Addition on inter-monthly Variation of Plant-soil Nutrients in Alpine Meadow. Acta Agrestia Sin. 2022, 30, 1836–1845. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhang, X.D.; Zhou, J.X.; Franz, M. Effects of salinity stress on poplars seedling growth and soil enzyme activity. Chin. J. Appl. Ecol. 2005, 16, 426–430. [Google Scholar]
- Zhang, J.X.; Ge, S.F.; Wu, Y.H.; Yang, Y.F.; Xu, G.D.; Liu, P. Effects of Drought Stress on Carbon and Nitrogen Metabolism of Ardisia japonical Leaves. J. Soil Water Conserv. 2015, 29, 278–282. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, X.X.; Liu, D.; Zhao, H.Y.; Xie, H.J.; Cao, J.J. Stoichiometric responses of Phragmites australis organs to soil factors in a wetland from arid area. Chin. J. Ecol. 2021, 40, 701–711. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441. [Google Scholar] [CrossRef]
- Li, H.L.; Gong, L.; Hong, Y. Seasonal variations in C, N, and P stoichiometry of roots, stems, and leaves of Phragmites australis in the Keriya Oasis. Acta Ecol. Sin. 2016, 36, 6547–6555. [Google Scholar] [CrossRef]
- Su, Y.H.; Song, X.Q.; Zheng, J.W.; Zhang, Z.H.; Tang, Z.H. Comparison of stoichiometric characteristics of main nutrient elements in different organs from four Chenopodiaceae species. Chin. J. Ecol. 2022, 42, 1–12. [Google Scholar] [CrossRef]
- Li, M.M.; Petrie, M.D.; Tariq, A.; Zeng, F.J. Response of nodulation, nitrogen fixation to salt stress in a desert legume Alhagi sparsifolia. Environ. Exp. Botany 2021, 183, 104348. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Cheng, X.L.; Fan, J.W.; Harris, W. Relationships between foliar carbon isotope composition and elements of C-3 species in grasslands of Inner Mongolia, China. Plant Ecol. 2016, 217, 883–897. [Google Scholar] [CrossRef]
- Chen, K.L. Soil phosphorus levels in relation to crop stable carbon isotope fractionation and biological yield. For. Pract. Technol. 2003, 6, 15–16. [Google Scholar] [CrossRef]
- Wang, W.W. Summary on Relationship Between Stable Carbon Isotope Composition of Plants and Soil Salinity. J. Anhui Agric. Sci. 2012, 40, 431–436. [Google Scholar] [CrossRef]
Height (cm) | Crown Width (cm) | Basal Diameter (mm) | Density (No/m2) | |
---|---|---|---|---|
Alhagi sparsifolia | 34.91 ± 11.85 | 22.67 ± 10.90 | 17.56 ± 9.00 | 5.18 ± 0.51 |
Karelinia caspia | 28.63 ± 8.71 | 22.83 ± 11.13 | 17.86 ± 9.22 | 3.47 ± 0.41 |
Index | Maximum | Minimum | Average | Standard Error | Coefficient of Variation (%) | |
---|---|---|---|---|---|---|
Alhagi sparsifolia | δ13C (‰) | −24.77 | −28.76 | −26.49 | 1.24 | 1.09 |
C (g·kg−1) | 467.06 | 416.83 | 445.78 | 1.55 | 2.71 | |
N (g·kg−1) | 20.66 | 5.67 | 12.23 | 1.13 | 39.00 | |
P (g·kg−1) | 1.05 | 0.43 | 0.72 | 0.05 | 28.54 | |
C:N | 73.49 | 20.92 | 42.19 | 3.91 | 39.34 | |
C:P | 1039.09 | 413.17 | 676.11 | 48.36 | 30.34 | |
N:P | 24.73 | 8.08 | 17.36 | 1.27 | 29.95 | |
Karelinia caspia | δ13C (‰) | −25.51 | −30.27 | −27.98 | 1.39 | 1.18 |
C (g·kg−1) | 455.69 | 371.80 | 412.57 | 12.78 | 5.65 | |
N (g·kg−1) | 14.46 | 3.01 | 7.51 | 0.93 | 52.34 | |
P (g·kg−1) | 1.64 | 0.74 | 1.24 | 0.07 | 22.35 | |
C:N | 143.46 | 27.90 | 73.18 | 9.39 | 54.45 | |
C:P | 596.76 | 259.17 | 352.38 | 22.73 | 27.37 | |
N:P | 10.83 | 2.18 | 6.40 | 0.78 | 51.71 |
Organ | Index | δ13C (‰) | C (g·kg−1) | N (g·kg−1) | P (g·kg−1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|---|---|
Root | δ13C (‰) | 1.00 | ||||||
C (g·kg−1) | −0.09 | 1.00 | ||||||
N (g·kg−1) | 0.69 | 0.02 | 1.00 | |||||
P (g·kg−1) | 0.46 | −0.39 | 0.16 | 1.00 | ||||
C:N | −0.71 | 0.14 | −0.99 ** | −0.24 | 1.00 | |||
C:P | −0.60 | 0.37 | −0.31 | −0.99 ** | 0.39 | 1.00 | ||
N:P | −0.42 | 0.35 | −0.02 | −0.99 ** | 0.10 | 0.96 ** | 1.00 | |
Stem | δ13C (‰) | 1.00 | ||||||
C (g·kg−1) | 0.05 | 1.00 | ||||||
N (g·kg−1) | −0.32 | 0.46 | 1.00 | |||||
P (g·kg−1) | 0.05 | −0.29 | 0.05 | 1.00 | ||||
C:N | 0.45 | −0.29 | −0.98 ** | −0.16 | 1.00 | |||
C:P | −0.01 | 0.55 | −0.01 | −0.95 ** | 0.16 | 1.00 | ||
N:P | −0.26 | 0.60 | 0.63 | 0.74 | −0.52 | 0.76 | 1.00 | |
Leaf | δ13C (‰) | 1.00 | ||||||
C (g·kg−1) | 0.88 * | 1.00 | ||||||
N (g·kg−1) | −0.32 | −0.55 | 1.00 | |||||
P (g·kg−1) | 0.04 | −0.30 | 0.58 | 1.00 | ||||
C:N | 0.47 | 0.69 | −0.98 ** | −0.53 | 1.00 | |||
C:P | 0.10 | 0.47 | −0.60 | −0.98 ** | 0.58 | 1.00 | ||
N:P | −0.39 | −0.24 | 0.43 | −0.48 | −0.46 | 0.45 | 1.00 |
Organ | Index | δ13C (‰) | C (g·kg−1) | N (g·kg−1) | P (g·kg−1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|---|---|
Root | δ13C (‰) | 1.00 | ||||||
C (g·kg−1) | 0.01 | 1.00 | ||||||
N (g·kg−1) | 0.28 | 0.36 | 1.00 | |||||
P (g·kg−1) | 0.67 | −0.56 | −0.28 | 1.00 | ||||
C:N | −0.24 | −0.21 | −0.99 ** | 0.26 | 1.00 | |||
C:P | −0.58 | 0.71 | 0.34 | −0.98 ** | −0.29 | 1.00 | ||
N:P | −0.13 | 0.57 | 0.88 * | −0.70 | −0.85 * | 0.75 | 1.00 | |
Stem | δ13C (‰) | 1.00 | ||||||
C (g·kg−1) | −0.36 | 1.00 | ||||||
N (g·kg−1) | 0.92 ** | −0.15 | 1.00 | |||||
P (g·kg−1) | 0.64 | 0.42 | −0.75 | 1.00 | ||||
C:N | −0.93 ** | 0.44 | −0.95 ** | −0.57 | 1.00 | |||
C:P | −0.78 | −0.15 | −0.87 * | −0.96 ** | 0.76 | 1.00 | ||
N:P | −0.06 | −0.75 | −0.14 | −0.75 | −0.08 | 0.58 | 1.00 | |
Leaf | δ13C (‰) | 1.00 | ||||||
C (g·kg−1) | −0.275 | 1.00 | ||||||
N (g·kg−1) | −0.192 | 0.726 | 1.00 | |||||
P (g·kg−1) | −0.405 | 0.354 | 0.041 | 1.00 | ||||
C:N | 0.097 | −0.511 | −0.959 ** | 0.081 | 1.00 | |||
C:P | −0.546 | 0.160 | 0.342 | −0.866* | −0.357 | 1.00 | ||
N:P | −0.343 | 0.551 | 0.924 ** | −0.344 | −0.929 ** | 0.654 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Wu, X.; Gong, L.; Li, R.; Zhang, X.; Li, Z.; Luo, Y. Studies on the Correlation between δ13C and Nutrient Elements in Two Desert Plants. Forests 2023, 14, 2394. https://doi.org/10.3390/f14122394
Zheng Z, Wu X, Gong L, Li R, Zhang X, Li Z, Luo Y. Studies on the Correlation between δ13C and Nutrient Elements in Two Desert Plants. Forests. 2023; 14(12):2394. https://doi.org/10.3390/f14122394
Chicago/Turabian StyleZheng, Zhou, Xue Wu, Lu Gong, Ruixi Li, Xuan Zhang, Zehou Li, and Yan Luo. 2023. "Studies on the Correlation between δ13C and Nutrient Elements in Two Desert Plants" Forests 14, no. 12: 2394. https://doi.org/10.3390/f14122394
APA StyleZheng, Z., Wu, X., Gong, L., Li, R., Zhang, X., Li, Z., & Luo, Y. (2023). Studies on the Correlation between δ13C and Nutrient Elements in Two Desert Plants. Forests, 14(12), 2394. https://doi.org/10.3390/f14122394