Quantitative Assessment of Deforestation and Forest Degradation in Margalla Hills National Park (MHNP): Employing Landsat Data and Socio-Economic Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Supervised Classification
2.3. Vegetation Condition Index (VCI)
2.4. Socio-Economic Survey and Structured Interviews
3. Results
3.1. Supervised Classification
3.2. Vegetation Condition Index (VCI)
3.3. Regression Analysis the Results Show No Correlation between the Variables and Vegetation Trend
3.4. Survey Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haque, A.E.; Murty, M.N.; Shyamsundar, P. Environmental Valuation in South Asia; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Peh, K.S.-H.; Sonké, B.; Séné, O.; Djuikouo, M.-N.K.; Nguembou, C.K.; Taedoumg, H.; Begne, S.K.; Lewis, S.L. Mixed-Forest Species Establishment in a Monodominant Forest in Central Africa: Implications for Tropical Forest Invasibility. PLoS ONE 2014, 9, e97585. [Google Scholar] [CrossRef]
- Jenkins, M.; Schaap, B. Forest ecosystem services. In Proceedings of the 13th Session of United Nations Forum on Forests (UNFF13), New York, NY, USA, 7–11 May 2018. [Google Scholar]
- Olander, L.P.; Gibbs, H.K.; Steininger, M.; Swenson, J.J.; Murray, B.C. Reference Scenarios for Deforestation and Forest Degradation in Support of REDD: A Review of Data and Methods. Environ. Res. Lett. 2008, 3, 025011. [Google Scholar] [CrossRef]
- Khalid, N.; Ahmad, S.S.; Erum, S.; Butt, A. Monitoring Forest Cover Change of Margalla Hills Over a Period of Two Decades (1992-2011): A Spatiotemporal Perspective. J. Ecosys. Ecograph. 2015, 6, 2. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO State of the World’s Forests 2012. Available online: http://www.fao.org/docrep/016/i3010e/i3010e00.htm (accessed on 18 May 2018).
- Allen, J.C.; Barnes, D.F. The Causes of Deforestation in Developing Countries. Ann. Assoc. Am. Geogr. 1985, 75, 163–184. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An Assessment of Deforestation and Forest Degradation Drivers in Developing Countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Munawar, S.; Khokhar, M.F.; Atif, S. Reducing Emissions from Deforestation and Forest Degradation Implementation in Northern Pakistan. Int. Biodeterior. Biodegrad. 2015, 102, 316–323. [Google Scholar] [CrossRef]
- Jallat, H.; Khokhar, M.F.; Kudus, K.A.; Nazre, M.; Saqib, N.; Tahir, U.; Khan, W.R. Monitoring Carbon Stock and Land-Use Change in 5000-Year-Old Juniper Forest Stand of Ziarat, Balochistan, through a Synergistic Approach. Forests 2021, 12, 51. [Google Scholar] [CrossRef]
- Khalid, N.; Ullah, S. Tracking Forest Cover Change of Margalla Hills over a Period of Two Decades (1992–2011): A Remote Sensing Perspective. In Proceedings of the 41st COSPAR Scientific Assembly, Istanbul, Turkey, 30 July–7 August 2016; Volume 41. [Google Scholar]
- Khuc, Q.V.; Tran, B.Q.; Meyfroidt, P.; Paschke, M.W. Drivers of Deforestation and Forest Degradation in Vietnam: An Exploratory Analysis at the National Level. For. Policy Econ. 2018, 90, 128–141. [Google Scholar] [CrossRef]
- Singh, S.P.; Thadani, R. Complexities and Controversies in Himalayan Research: A Call for Collaboration and Rigor for Better Data. Mt. Res. Dev. 2015, 35, 401–409. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Rashid, I. Assessing the Impacts of Changing Land Cover and Climate on Hokersar Wetland in Indian Himalayas. Arab. J. Geosci. 2014, 7, 143–160. [Google Scholar] [CrossRef]
- Singh, S.P.; Gumber, S. Climate Change in Himalayas: Research Findings and Complexities. Int. J. Plant Environ. 2018, 4, 1–13. [Google Scholar] [CrossRef]
- Khalid, N.; Ullah, S.; Ahmad, S.S.; Ali, A.; Chishtie, F. A Remotely Sensed Tracking of Forest Cover and Associated Temperature Change in Margalla Hills. Int. J. Digit. Earth 2019, 12, 1133–1150. [Google Scholar] [CrossRef]
- UNDP Forests and Bio Diversity–Information/Data Report. Available online: http://www.pk.undp.org/content/pakistan/en/home/library/environment_energy/publication_2.html (accessed on 18 May 2018).
- Ahmad, S.S. Ordination and Classification of Herbaceous Vegetation in Margalla Hills National Park Islamabad Pakistan. Biol. Divers. Conserv. 2009, 2, 38–44. [Google Scholar]
- Ali, S.; Khan, S.M.; Siddiq, Z.; Ahmad, Z.; Ahmad, K.S.; Abdullah, A.; Hashem, A.; Al-Arjani, A.-B.F.; Abd_Allah, E.F. Carbon sequestration potential of reserve forests present in the protected Margalla Hills National Park. J. King Saud Univ. Sci. 2022, 34, 101978. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Sexton, J.O.; Noojipady, P.; Huang, C.; Anand, A.; Channan, S.; Feng, M.; Townshend, J.R. Global, Landsat-Based Forest-Cover Change from 1990 to 2000. Remote Sens. Environ. 2014, 155, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary Forest Cover Loss in Indonesia over 2000–2012. Nat. Clim. Change 2014, 4, 730. [Google Scholar] [CrossRef]
- Potapov, P.V.; Turubanova, S.A.; Hansen, M.C.; Adusei, B.; Broich, M.; Altstatt, A.; Mane, L.; Justice, C.O. Quantifying Forest Cover Loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ Data. Remote Sens. Environ. 2012, 122, 106–116. [Google Scholar] [CrossRef]
- Potapov, P.V.; Turubanova, S.A.; Tyukavina, A.; Krylov, A.M.; McCarty, J.L.; Radeloff, V.C.; Hansen, M.C. Eastern Europe’s Forest Cover Dynamics from 1985 to 2012 Quantified from the Full Landsat Archive. Remote Sens. Environ. 2015, 159, 28–43. [Google Scholar] [CrossRef]
- Zeb, A. Spatial and Temporal Trends of Forest Cover as a Response to Policy Interventions in the District Chitral, Pakistan. Appl. Geogr. 2019, 102, 39–46. [Google Scholar] [CrossRef]
- Xu, H. Extraction of Urban Built-up Land Features from Landsat Imagery Using a Thematicoriented Index Combination Technique. Photogramm. Eng. Remote Sens. 2007, 73, 1381–1391. [Google Scholar] [CrossRef] [Green Version]
- Mwakapuja, F.; Liwa, E.; Kashaigili, J. Usage of Indices for Extraction of Built-up Areas and Vegetation Features from Landsat TM Image: A Case of Dar Es Salaam and Kisarawe Peri-Urban Areas, Tanzania. Int. J. Agric. For. 2013, 3, 273–283. [Google Scholar]
- Li, X.; Gong, P.; Liang, L. A 30-Year (1984–2013) Record of Annual Urban Dynamics of Beijing City Derived from Landsat Data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; Leeuwen, T.T. van Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A. Carbon Emissions and the Drivers of Deforestation and Forest Degradation in the Tropics. Curr. Opin. Environ. Sustain. 2012, 4, 597–603. [Google Scholar] [CrossRef]
- Lambin, E.F. Monitoring Forest Degradation in Tropical Regions by Remote Sensing: Some Methodological Issues. Glob. Ecol. Biogeogr. 1999, 8, 191–198. [Google Scholar] [CrossRef]
- Miettinen, J.; Stibig, H.-J.; Achard, F. Remote Sensing of Forest Degradation in Southeast Asia—Aiming for a Regional View through 5–30 m Satellite Data. Glob. Ecol. Conserv. 2014, 2, 24–36. [Google Scholar] [CrossRef]
- Kogan, F.N. Remote Sensing of Weather Impacts on Vegetation in Non-Homogeneous Areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Vilanova, R.S.; Delgado, R.C.; da Silva Abel, E.L.; Teodoro, P.E.; Silva Junior, C.A.; Wanderley, H.S.; Capristo-Silva, G.F. Past and Future Assessment of Vegetation Activity for the State of Amazonas-Brazil. Remote Sens. Appl. Soc. Environ. 2020, 17, 100278. [Google Scholar] [CrossRef]
- Amalo, L.F.; Hidayat, R. Comparison between Remote-Sensing-Based Drought Indices in East Java. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 25–26 October 2016; IOP Publishing: Bristol, UK; Volume 54, p. 012009. [Google Scholar]
- Liang, L.; Sun, Q.; Luo, X.; Wang, J.; Zhang, L.; Deng, M.; Di, L.; Liu, Z. Long-Term Spatial and Temporal Variations of Vegetative Drought Based on Vegetation Condition Index in China. Ecosphere 2017, 8, e01919. [Google Scholar] [CrossRef]
- Brandalise, M.; Prandel, J.; Quadros, F.; Rovani, I.; Malysz, M.; Decian, V. Influence of Urbanization on the Dynamics of the Urban Vegetation Coverage Index (VCI) in Erechim (RS). Floresta E Ambiente 2019, 26, 2. [Google Scholar] [CrossRef]
- Chan, S.; Sasaki, N. Assessment of Drivers of Deforestation and Forest Degradation in Phnom Tbeng Forest Based on Socio-Economic Surveys. J. Environ. Prot. 2014, 5, 1641. [Google Scholar] [CrossRef] [Green Version]
- Kessy, J.F.; Nsokko, E.; Kaswamila, A.; Kimaro, F. Analysis of Drivers and Agents of Deforestation and Forest Degradation in Masito Forests, Kigoma, Tanzania. Int. J. Asian Soc. Sci. 2016, 6, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Zeb, A.; Armstrong, G.W.; Hamann, A. Forest Conversion by the Indigenous Kalasha of Pakistan: A Household Level Analysis of Socioeconomic Drivers. Glob. Environ. Change 2019, 59, 102004. [Google Scholar] [CrossRef]
- Zeb, A.; Hamann, A.; Armstrong, G.W.; Acuna-Castellanos, D. Identifying Local Actors of Deforestation and Forest Degradation in the Kalasha Valleys of Pakistan. For. Policy Econ. 2019, 104, 56–64. [Google Scholar] [CrossRef]
- Kreft, S.; Eckstein, D.; Melchior, I. Who Suffers Most From Extreme Weather Events? Weather-Related Loss Events in 2015 and 1996 to 2015. In Global Climate Risk Index; Germanwatch e.V.: Bonn, Germany, 2016. [Google Scholar]
- Shah, A.; Ali, K.; Nizami, S.M. Spatio-temporal analysis of urban sprawl in Islamabad, Pakistan during 1979–2019, using remote sensing. GeoJournal 2021, 87, 2935–2948. [Google Scholar] [CrossRef]
- AdYasmin, N.; Khokhar, M.F.; Tanveer, S.; Saqib, Z.; Khan, W.R. Dynamical Assessment of Vegetation Trends over Margalla Hills National Park by Using MODIS Vegetation Indices. Pak. J. Agric. Sci. 2016, 53, 777–786. [Google Scholar]
- WWF. Boundary Dilineation of Margalla Hills National Park; GIS Laboratory, WWF Pakistan: Islamabad, Pakistan, 2009. [Google Scholar]
- Yearbook 2018-2019; Ministry of Climate Change, Government of Pakistan: Islamabad Pakistan, 2019.
- UNEP Course: REDD+ Academy e-Course. Available online: https://unccelearn.org/course/view.php?id=16# (accessed on 18 May 2018).
- Masud, R.M. Master Plan for the Margalla Hills National Park, Islamabad Pakistan, 1979–1984; Ministry of Food, Agriculture and CooperativesPakistan, National Council for Conservation of Wildlife (NCCW): Islamabad, Pakistan, 1979. [Google Scholar]
- Himalayan Wildlife Foundation. Margalla Hills National Park Ecological Baseline; Himalayan Wildlife Foundation: Islamabad, Pakistan, 2007. [Google Scholar]
- Margalla Hills National Park. Pakistan. HWF Himal. Wildl. Found. 2021. Available online: http://hwf.org.pk/ (accessed on 3 July 2021).
- Khalid, F.; Taj, M.B.; Jamil, A.; Raheel, A.; Sharif, M.; Kamal, H.; Afzal, T.; Khan, T.; Iqbal, M.J.; Ashiq, M. Micro-Level Study of Deforestation in the Capital Terrotory of Pakistan. Pak. J. Sci. Ind. Res. Ser. Phys. Sci. 2021, 64, 222–232. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhu, Z.; Liang, L.; Yu, B.; Cao, W. Mapping Annual Urban Dynamics (1985–2015) Using Time Series of Landsat Data. Remote Sens. Environ. 2018, 216, 674–683. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 Reflective Wavelength and Normalized Difference Vegetation Index Continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.; Stark, R.; Gitelson, A.; Jargalsaikhan, L.; Dugrajav, C.; Tsooj, S. Derivation of Pasture Biomass in Mongolia from AVHRR-Based Vegetation Health Indices. Int. J. Remote Sens. 2004, 25, 2889–2896. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Vegetation Stress: An Introduction to the Stress Concept in Plants. J. Plant Physiol. 1996, 148, 4–14. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.P.; Kogan, F.N. Monitoring Drought Dynamics in the Aravalli Region (India) Using Different Indices Based on Ground and Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Yagci, A.L.; Di, L.; Deng, M. The Effect of Land-Cover Change on Vegetation Greenness-Based Satellite Agricultural Drought Indicators: A Case Study in the Southwest Climate Division of Indiana, USA. Int. J. Remote Sens. 2013, 34, 6947–6968. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend Analysis of MODIS NDVI Time Series for Detecting Land Degradation and Regeneration in Mongolia. J. Arid Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Khalid, F.; Taj, M.B.; Jamil, A.; Kamal, H.; Afzal, T.; Iqbal, M.J.; Khan, T.; Ashiq, M.; Raheel, A.; Sharif, M. Deforestation Dynamics in Pakistan: A Critical Review: Deforestation Dynamics. Proc. Pak. Acad. Sci. B Life Environ. Sci. 2020, 57, 27–34. [Google Scholar]
VCI Value | Vegetation Condition |
---|---|
0%–25% | Extreme degradation |
26%–50% | Moderate degradation |
51%–100% | No degradation–Improved vegetation |
1988 | 2000 | 2010 | 2020 | |
---|---|---|---|---|
Vegetation | 413.81 | 413.98 | 446.617 | 444.844 |
Urban | 59.931 | 78.3747 | 105.935 | 118.627 |
Water | 2.1978 | 1.4562 | 2.4192 | 2.7288 |
Barren | 165.179 | 147.454 | 85.9734 | 75.0969 |
Urban Area Truth | Vegetation/Forest Truth | Barren Land/Soil Truth | Water Truth | Classification Overall | Producer Accuracy Precision | |
---|---|---|---|---|---|---|
Urban Area | 17 | 0 | 2 | 3 | 22 | 0.78 |
Vegetation/Forest | 0 | 15 | 1 | 0 | 16 | 0.94 |
Barren Land/Soil | 2 | 1 | 17 | 0 | 20 | 0.85 |
Water | 0 | 2 | 0 | 7 | 9 | 0.78 |
Truth Overall | 19 | 18 | 20 | 10 | 67 | |
User Accuracy (Recall) | 0.89 | 0.83 | 0.85 | 0.7 | ||
Overall Accuracy | 0.84 | |||||
Kappa Coefficient | 0.78 |
Trails/Restaurants | Year of Establishment |
---|---|
Trail 1 | 2003 |
Trail 2 | 2003 |
Trail 3 | 1990 |
Trail 4 | 2009 |
Trail 5 | 2009 |
Trail 6 | 2007 |
The Monal Restaurant | 2005 |
La Montana Restaurant | 2014 |
VCI—Slope | Moderate Degradation VCI (%) | Forest Area (Supervised Classification) | |
---|---|---|---|
Distance of vegetation cover from Roads | R2 = 0.005 (p-value 0.001) | ||
Distance of vegetation cover from settlements | R2 = 0.001 (p-value 0.001) | ||
Distance of vegetation cover from water ways | R2 = 0.030 (p-value 0.001) | ||
Forest Fires (Burnt Area) | R2 = 0.044 (p-value 0.001) | R2 = 0.014 (p-value 0.001) |
No. of Fires | Total Burnt Area (Acre) | |
---|---|---|
1991–1995 | 68 | 188.45 |
1996–2000 | 183 | 1933 |
2001–2005 | 220 | 1442.8 |
2006–2010 | 134 | 851.5 |
2011–2015 | 93 | 364.1 |
2016–2017 | 69 | 143 |
Reason of Fire | Consensus of People (%) |
---|---|
Community (Intentional) | 28 |
Tourists (BBQ/grilling) | 54 |
Cigarettes | 71 |
Fire Fighters (Intentional) | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.; Jallat, H.; Hussain, E.; Saqib, N.u.; Saqib, Z.; Khokhar, M.F.; Khan, W.R. Quantitative Assessment of Deforestation and Forest Degradation in Margalla Hills National Park (MHNP): Employing Landsat Data and Socio-Economic Survey. Forests 2023, 14, 201. https://doi.org/10.3390/f14020201
Ahmed H, Jallat H, Hussain E, Saqib Nu, Saqib Z, Khokhar MF, Khan WR. Quantitative Assessment of Deforestation and Forest Degradation in Margalla Hills National Park (MHNP): Employing Landsat Data and Socio-Economic Survey. Forests. 2023; 14(2):201. https://doi.org/10.3390/f14020201
Chicago/Turabian StyleAhmed, Hiba, Hamayoon Jallat, Ejaz Hussain, Najam u Saqib, Zafeer Saqib, Muhammad Fahim Khokhar, and Waseem Razzaq Khan. 2023. "Quantitative Assessment of Deforestation and Forest Degradation in Margalla Hills National Park (MHNP): Employing Landsat Data and Socio-Economic Survey" Forests 14, no. 2: 201. https://doi.org/10.3390/f14020201
APA StyleAhmed, H., Jallat, H., Hussain, E., Saqib, N. u., Saqib, Z., Khokhar, M. F., & Khan, W. R. (2023). Quantitative Assessment of Deforestation and Forest Degradation in Margalla Hills National Park (MHNP): Employing Landsat Data and Socio-Economic Survey. Forests, 14(2), 201. https://doi.org/10.3390/f14020201