Pest Risk Assessment of Aeolesthes sarta (Coleoptera: Cerambycidae) in Pakistan under Climate Change Scenario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. CLIMEX Model
2.3. Climatic Data
2.4. Collection of A. sarta Distribution Data in Pakistan
2.5. Parameters Fitting
2.5.1. Temperature Index (TI) and Population Degree Days (PDD)
2.5.2. Moisture Index (MI)
2.5.3. Diapause Index
2.5.4. Stress Index (SI)
3. Results
3.1. Potential Distribution of A. sarta in Pakistan under Historic Climatic Conditions (HCC)
3.2. Potential Distribution of A. sarta in Pakistan under Future Climatic Condition (FCC)
3.3. Administrative Area-Wise Distribution under Historic and Future Climatic Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCS | Climate change scenario |
HCC | Historic climatic condition |
FCC | Future climatic condition |
References
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Khan, I.; Hayat, U.; Mujahid, A.; Majid, A.; Chaudhary, A.; Badshah, M.T.; Huang, J. Evaluation of growing stock, biomass and soil carbons and their association with a diameter: A case study from planted chir pine (Pinus roxburghii) forest. Appl. Ecol. Environ. Res. 2021, 19, 1457–1472. [Google Scholar] [CrossRef]
- Hayat, U.; Khan, I.; Roman, M. A response of tropical tree Terminalia arjuna (Arjun) [Combretaceae-Myrtales] seeds and seedlings towards the presowing seed treatment in forest nursery of Sargodha, Pakistan. Int. J. Biosci. 2020, 16, 495–505. [Google Scholar] [CrossRef]
- Farooqi, T.J.A.; Hayat, U.; Roman, M.; Abbas, H.; Hussain, S. Comparative study determining the impacts of broadleaved and Needle leaved forest harvesting on hydrology and water yield: State of knowledge and research outlook. Int. J. Biosci. 2020, 16, 231–240. [Google Scholar] [CrossRef]
- Balla, A.; Silini, A.; Cherif-Silini, H.; ChenariBouket, A.; Moser, W.K.; Nowakowska, J.A.; Oszako, T.; Benia, F.; Belbahri, L. TheThreat of Pests and Pathogens andthe Potential for Biological Control in Forest Ecosystems. Forests 2021, 12, 1579. [Google Scholar] [CrossRef]
- Rossa, R.; Goczał, J. Global diversity and distribution of longhorn beetles (Coleoptera: Cerambycidae). Eur. Zool. J. 2021, 88, 289–302. [Google Scholar] [CrossRef]
- Hayat, U. City longhorn beetle (Aeolesthes sarta): A review of the species, its morphology, distribution, damage, prevention and control. J. For. Sci. 2022, 68, 199–212. [Google Scholar] [CrossRef]
- Ślipiński, A.; Escalona, H. Australian Longhorn Beetles (Coleoptera: Cerambycidae). Vol. 2, Subfamily Cerambycinae; CSIRO Publishing: Clayton, CA, USA, 2016; p. 640. [Google Scholar] [CrossRef]
- Khan, S.A.; Bhatia, S.; Tripathi, N. Entomological investigation on Aeolesthes sarta (Solsky), a major pest on walnut trees (Juglans regia L.) in Kashmir valley. J. Acad. Ind. Res. 2013, 2, 325. [Google Scholar]
- Mazaheri, A.; Khajehali, J.; Marzieh, K.; Hatami, B. Laboratory and field evaluation of insecticides for the control of Aeolesthes sarta Solsky (Col.: Cerambycidae). J. Crop Prot. 2015, 4, 257–266. [Google Scholar]
- Morewood, W.D.; Hoover, K.; Neiner, P.R.; McNeil, J.R.; Sellmer, J.C. Host tree resistance against the polyphagous wood-boring beetle Anoplophora glabripennis. Entomol. Et Appl. 2004, 110, 79–86. [Google Scholar] [CrossRef]
- Poland, T.M.; Haack, R.A.; Petrice, T.R.; Miller, D.L.; Bauer, L.S.; Gao, R. Field evaluations of systemic insecticides for control of Anoplophora glabripennis (Coleoptera: Cerambycidae) in China. J. Econ. Entomol. 2006, 99, 383–392. [Google Scholar] [CrossRef]
- Farashiani, M.E.; Shamohammadi, D.; Sadeghi, S.E. Biological study of Sart long horn beetle, Aeolesthes sarta Solsky (Coleoptera: Cerambycidae) in the laboratory. J. Entomol. Soc. Iran 2000, 20, 77–90. [Google Scholar]
- Orlinskii, A.D. Outcomes of the EPPO project on quarantine pests for forestry 1. Eppo. Bull. 2006, 36, 497–511. [Google Scholar] [CrossRef]
- Hayat, U.; Qin, H.; Zhao, J.; Akram, M.; Shi, J.; Ya, Z. Variation in the potential distribution of Agrotis ipsilon (Hufnagel) globally and in Pakistan under current and future climatic conditions. Plant Prot. Sci. 2021, 57, 148–158. [Google Scholar] [CrossRef]
- CABI. Forestry Compendium. 2006. Available online: https://www.cabi.org/fc (accessed on 15 November 2022).
- Farashiani, M.E.; Sadeghi, S.E.; Abaii, M. Geographic distribution and hosts of Sart longhorn beetle, Aeolesthes sarta Solsky (Col.: Cerambycidae) in Iran. J. Entomol. Soc. Iran 2001, 20, 81–96. [Google Scholar]
- Arshad, M.; Hafiz, I.A. Microbial trials of a pathogenic fungus, Beauveria bassiana (Bals.) Vuill. against the adults of Aeolesthes sartus Solsky (Cerambycidae: Coleoptera). Pak. J. Zool. 1983, 15, 213–215. [Google Scholar]
- Krivosheina, N.P.; Tokgaev, T.B. The formation of trunk-insect complexes on irrigated areas in the Kopet-dag foothills. Izv. Akad. Nauk. Turkm. SSR Biol. Nauk. 1985, 5, 34–40. [Google Scholar]
- Stebbing, E.P. Indian Forest Insects of Economic Importance: Coleoptera; Eyre & Spottiswoode: London, UK, 1914; p. 648. [Google Scholar]
- Ahmad, M.I.; Hafiz, I.A.; Chaudhry, M.I. Biological studies on Aeolesthes sarta Solsky attacking poplars in Pakistan. Pak. J. For. 1977, 27, 123–129. [Google Scholar]
- Gul, H.; Chaudhry, M.I. Some observations on natural enemies of poplar borers in Pakistan. Pak. J. For. 1992, 42, 214–222. [Google Scholar]
- EFSA Panel on Plant Health (PLH); Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Grégoire, J.C.; Jaques Miret, J.A.; MacLeod, A.; et al. Guidance on quantitative pest risk assessment. Efsa J. 2018, 16, e05350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO (Food and Agriculture Organization of the United Nations). ISPM (International Standards for Phytosanitary Measures) No. 11. Pest Risk Analysis for Quarantine Pests; FAO: Rome, Italy, 2017; 36p, Available online: https://www.ippc.int/en/publications/639/ (accessed on 28 November 2022).
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhao, Q.; Wei, J.; Zhang, H. Study on the Potential Distribution of Leptinotarsa decemlineata and Its Natural Enemy Picromerusbidens Under Climate Change. Front. Ecol. Evol. 2022, 9, 786436. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Pöyry, J.; Luoto, M.; Heikkinen, R.K.; Kuussaari, M.; Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 2009, 15, 732–743. [Google Scholar] [CrossRef]
- Wei, J.; Peng, L.; He, Z.; Lu, Y.; Wang, F. Potential distribution of two invasive pineapple pests under climate change. Pest Manag. Sci. 2020, 76, 1652–1663. [Google Scholar] [CrossRef]
- Ge, X.Z.; He, S.Y.; Zhu, C.Y.; Wang, T.; Xu, Z.C.; Zong, S.X. Projecting the current and future potential global distribution of Hyphantriacunea (Lepidoptera: Arctiidae) using CLIMEX. Pest Manag. Sci. 2019, 75, 160–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriticos, D.J.; Maywald, G.F.; Yonow, T.; Zurcher, E.J.; Herrmann, N.I.; Sutherst, R. Exploring the effects of climate on plants, animals and diseases. CLIMEX Version 2015, 4, 184. [Google Scholar]
- Early, R.; Rwomushana, I.; Chipabika, G.; Day, R. Comparing, evaluating and combining statistical species distribution models and CLIMEX to forecast the distributions of emerging crop pests. Pest Manag. Sci. 2022, 78, 671–683. [Google Scholar] [CrossRef]
- Kamran, K.; Kakar, A.; Arif, S.; Iqbal, A. Evaluation of insect repellent and insecticide implantation techniques against Aeolesthes sarta Solsky in Quetta district of Baluchistan province, Pakistan. Pak. J. Entomol. Zool. Stud. 2017, 5, 273–276. [Google Scholar]
- Sutherst, R.W.; Maywald, G.F.; Kriticos, D.J. CLIMEX Version 3: User’s Guide; Hearne Scientific Software: South Yarra, Australia, 2007; p. 47. [Google Scholar]
- Sutherst, R.W.; Maywald, G.F.; Bourne, A.S. Including species interactions in risk assessments for global change. Glob. Change Biol. 2007, 13, 1843–1859. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Solhjouy-fard, S. Variances in the projections, resultingfrom CLIMEX, Boosted Regression Trees and Random Forests techniques. Theor. Appl. Climatol. 2017, 129, 801–814. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Watt, M.S.; Potter, K.J.B.; Manning, L.K.; Alexander, N.S.; Tallent-Halsell, N. Managing invasive weeds under climate change: Considering the current and potential future distribution of Buddlejadavidii. Weed Res. 2011, 51, 85–96. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Webber, B.L.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J.K. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 2012, 3, 53–64. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf (accessed on 10 August 2022).
- Vanhanen, H.; Veteli, T.O.; Niemelä, P. Potential distribution ranges in Europe for Aeolesthes sarta, Tetropiumgracilicorne and Xylotrechusaltaicus, a CLIMEX analysis. EPPO Bull. 2008, 38, 239–248. [Google Scholar] [CrossRef]
- Aljaryian, R.; Kumar, L.; Taylor, S. Modelling the current and potential future distributions of the sunn pest Eurygasterintegriceps (Hemiptera: Scutelleridae) using CLIMEX. Pest Manag. Sci. 2016, 72, 1989–2000. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.F.; Zhao, Q.; Zhao, W.Q.; Zhang, H.F. Predicting the potential distributions of the invasive cycad scale Aulacaspisyasumatsui (Hemiptera: Diaspididae) under different climate change scenarios and the implications for management. PeerJ 2018, 6, e4832. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Song, C.; Ma, L.; Yan, X.; Shi, J.; Hao, C. The Impacts of Climate Change on the Potential Distribution of Plodia interpunctella (Hübner)(Lepidoptera: Pyralidae) in China. Insects 2022, 13, 636. [Google Scholar] [CrossRef]
- Ding, W.C.; Li, H.Y.; Wen, J.B. Climate Change Impacts on the Potential Distribution of Apocheimacinerarius (Erschoff) (Lepidoptera:Geometridae). Insects 2022, 13, 59. [Google Scholar] [CrossRef]
- Farooq, S.; Maqbool, M.M.; Bashir, M.A.; Ullah, M.I.; Shah, R.U.; Ali, H.M.; Al Farraj, D.A.; Elshikh, M.S.; Hatamleh, A.A.; Bashir, S.; et al. Production suitability of date palm under changing climate in a semi-arid region predicted by CLIMEX model. J. King Saud Univ. Sci. 2021, 33, 101394. [Google Scholar] [CrossRef]
- Mazaheri, A.; Khajehali, J.; Hatami, B. Oviposition preference and larval performance of Aeolesthes sarta (Coleoptera: Cerambycidae) in six hardwood tree species. J. Pest Sci. 2011, 84, 355–361. [Google Scholar] [CrossRef]
- Bhatti, S.I. An over View of Forests in Pakistan. World Environmental Day 16th June 2011. pp. 88–97. Available online: https://pecongress.org.pk/images/upload/books/(9)%20An%20Overview%20of%20Forests%20in%20Pakistan%20By%20Engr.%20Saeed%20Iqbal%20.pdf (accessed on 18 August 2022).
- EPPO. Aeolesthessarta. Datasheets on quarantine pests. EPPO Bull. 2005, 35, 387–389. [Google Scholar]
- Chaudhry, Q.; Rasul, G.; Kamal, A.; Ahmad, M.; Mahmood, S. Technical Report on Karachi Heat Wave June 2015. Government of Pakistan Ministry of Climate Change 2015. Available online: http://www.ndma.gov.pk/files/heatwave.pdf (accessed on 18 August 2022).
- Caesar, J.; Alexander, L.; Vose, R. Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res. Atmos. 2006, 111, D05101. [Google Scholar] [CrossRef]
- Tebaldi, C.; Hayhoe, K.; Arblaster, J.M.; Meehl, G.A. Going to the extremes. Clim. Change 2006, 79, 185–211. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Z.; Régnière, J.; Vasseur, L.; Lin, J.; Huang, S.; Ke, F.; Chen, S.; Li, J.; Huang, J.; et al. Large-scale genome-wide study reveals climate adaptive variability in a cosmopolitan pest. Nat. Commun. 2021, 12, 7206. [Google Scholar] [CrossRef]
- Naves, P.; de Sousa, E. Threshold temperatures and degree-day estimates for development of post-dormancy larvae of Monochamusgalloprovincialis (Coleoptera: Cerambycidae). J. Pest Sci. 2009, 82, 1–6. [Google Scholar] [CrossRef]
- Trumbore, S.; Brando, P.; Hartmann, H. Forest health and global change. For. Health 2015, 349, 814–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CABI. Trirachyssartus—Invasive Species Compendium 2022. Available online: https://www.cabi.org/isc/datasheet/3430 (accessed on 15 August 2022).
- Khan, A.A.; Kundoo, A.A. Pests of walnut. In Pests and Their Management; Springer: Singapore, 2018; pp. 605–647. [Google Scholar] [CrossRef]
- Hussain, A.; Muhammad, A.; Hayat, U.; Ahmad, B.; Murtaza, A.M.; Khalid, K.M.B.; Ullah, S. Response of rice cultivars and insecticides against Rice stem borer (Scirpophagaincertulus) in Pakistan (Swat). J. Biodivers. Environ. Sci. 2019, 15, 88–94. [Google Scholar]
Parameters | Code | Settled Values |
---|---|---|
Temperature | ||
Limiting low temperature (°C) | DV0 | 10 |
Lower optimal temperature (°C) | DV1 | 15 |
Upper optimal temperature (°C) | DV2 | 37 |
Limiting high temperature (°C) | DV3 | 40 |
Population degree day | PDD | 700 |
Moisture Index | ||
Limiting low soil moisture | SM0 | 0 |
Lower optimal soil moisture | SM1 | 0.001 |
Upper optimal soil moisture | SM2 | 1.5 |
Limiting high soil moisture | SM3 | 2.5 |
Diapause Index | ||
Diapause induction day length | DPD0 | 12 |
Diapause induction temperature (°C) | DPT0 | 13 |
Diapause termination temperature (°C) | DPT1 | 10 |
Diapause development days | DPD | 90 |
Summer or winter diapause | DPSW | 0 |
Cold Stress | ||
CS temperature threshold (°C) | TTCS | 9 |
CS temperature rate | THCS | −0.00001 |
Heat Stress | ||
HS temperature threshold (°C) | TTHS | 41 |
HS temperature rate | THHS | 0.005 |
Location | Area (10,000 Km2) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EI = 0 | 0 < EI = 15 | EI > 15 | |||||||||||||
1990 | 2030 | 2070 | 2100 | 1990 | 2030 | 2070 | 2100 | 1990 | 2030 | 2070 | 2100 | ||||
PB | 0 | A1B scenario | 1.70 | 15.98 | 19.77 | 0 | A1B scenario | 5.59 | 1.61 | 0.58 | 20.62 | A1B scenario | 13.34 | 3.03 | 0.27 |
KPK | 0.62 | 0.58 | 1.76 | 2.61 | 1.57 | 1.45 | 1.50 | 2.28 | 7.85 | 8.01 | 6.78 | 5.14 | |||
AJK | 0.26 | 0.25 | 0.25 | 0.28 | 0.18 | 0.17 | 0.28 | 0.30 | 0.93 | 0.95 | 0.85 | 0.78 | |||
BLC | 2.39 | 6.18 | 14.41 | 19.15 | 4.27 | 7.23 | 4.07 | 6.39 | 27.65 | 20.91 | 15.83 | 8.77 | |||
SD | 5.99 | 12.95 | 13.63 | 13.74 | 2.71 | 0.61 | 0.24 | 0.17 | 5.21 | 0.35 | 0.04 | 0 | |||
GB | 5.02 | 4.65 | 3.96 | 1.37 | 1.53 | 1.59 | 1.69 | 2.97 | 0.24 | 0.54 | 1.14 | 2.45 | |||
PB | 0 | A2 scenario | 0.98 | 16.56 | 19.77 | 0 | A2 scenario | 5.46 | 1.37 | 0.58 | 20.62 | A2 scenario | 14.18 | 2.69 | 0.27 |
KPK | 0.62 | 0.69 | 1.78 | 2.62 | 1.57 | 1.32 | 1.62 | 2.28 | 7.85 | 8.03 | 6.64 | 5.14 | |||
AJK | 0.26 | 0.26 | 0.30 | 0.28 | 0.18 | 0.17 | 0.28 | 0.31 | 0.93 | 0.94 | 0.80 | 0.78 | |||
BLC | 2.39 | 5.64 | 14.64 | 19.15 | 4.27 | 7.20 | 4.36 | 6.40 | 27.65 | 21.47 | 15.32 | 8.77 | |||
SD | 5.99 | 12.94 | 13.61 | 13.74 | 2.71 | 0.60 | 0.27 | 0.17 | 5.21 | 0.37 | 0.04 | 0 | |||
GB | 5.02 | 4.67 | 3.77 | 1.37 | 1.53 | 1.61 | 1.84 | 2.97 | 0.24 | 0.51 | 1.18 | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, U.; Akram, M.; Kour, S.; Arif, T.; Shi, J. Pest Risk Assessment of Aeolesthes sarta (Coleoptera: Cerambycidae) in Pakistan under Climate Change Scenario. Forests 2023, 14, 253. https://doi.org/10.3390/f14020253
Hayat U, Akram M, Kour S, Arif T, Shi J. Pest Risk Assessment of Aeolesthes sarta (Coleoptera: Cerambycidae) in Pakistan under Climate Change Scenario. Forests. 2023; 14(2):253. https://doi.org/10.3390/f14020253
Chicago/Turabian StyleHayat, Umer, Muhammad Akram, Sumeet Kour, Tahreem Arif, and Juan Shi. 2023. "Pest Risk Assessment of Aeolesthes sarta (Coleoptera: Cerambycidae) in Pakistan under Climate Change Scenario" Forests 14, no. 2: 253. https://doi.org/10.3390/f14020253
APA StyleHayat, U., Akram, M., Kour, S., Arif, T., & Shi, J. (2023). Pest Risk Assessment of Aeolesthes sarta (Coleoptera: Cerambycidae) in Pakistan under Climate Change Scenario. Forests, 14(2), 253. https://doi.org/10.3390/f14020253