Transgenerational Effects of Water Limitation on Reproductive Mother Plants in a Common Garden of the Shrub Frangula alnus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Germination of the Stones
2.3. Statistical Analysis
3. Results
3.1. Germination Percentage
3.2. Timing of Seedling Emergence
3.3. Analysis of the Variance Components
4. Discussion
4.1. Germination Traits Affected by the Maternal Environment
4.2. Population Differentiation in the Common Garden
4.3. Variance Components
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.S.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.S.; Iverson, L.; Woodall, C.W.; Allen, C.D.; Bell, D.M.; Bragg, D.C.; D’Amato, A.W.; Davis, F.W.; Hersh, M.H.; Ibanez, I.; et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 2016, 22, 2329–2352. [Google Scholar] [CrossRef] [PubMed]
- Hampe, A.; Petit, R.J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 2005, 8, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- Breda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolstrom, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A. Pervasive shifts in forest dynamics in a changing world. Science 2020, 368, eaaz9463. [Google Scholar] [CrossRef]
- Seidl, R.; Honkaniemi, J.; Aakala, T.; Aleinikov, A.; Angelstam, P.; Bouchard, M.; Boulanger, Y.; Burton, P.J.; De Grandpré, L.; Gauthier, S. Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems. Ecography 2020, 43, 967–978. [Google Scholar] [CrossRef]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.L.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Donohue, K.; Rubio de Casas, R.; Burghardt, L.; Kovach, K.; Willis, C.G. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 293–319. [Google Scholar] [CrossRef]
- Carta, A.; Fernández-Pascual, E.; Gioria, M.; Müller, J.V.; Rivière, S.; Rosbakh, S.; Saatkamp, A.; Vandelook, F.; Mattana, E. Climate shapes the seed germination niche of temperate flowering plants: A meta-analysis of European seed conservation data. Ann. Bot. 2022, 129, 775–786. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Donohue, K. Completing the cycle: Maternal effects as the missing link in plant life histories. Phil. Trans. R. Soc. B 2009, 364, 1059–1074. [Google Scholar] [CrossRef]
- Sáenz-Romero, C.; Lamy, J.-B.; Ducousso, A.; Musch, B.; Ehrenmann, F.; Delzon, S.; Cavers, S.; Chałupka, W.; Dağdaş, S.; Hansen, J.K.; et al. Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Glob. Change Biol. 2017, 23, 2831–2847. [Google Scholar] [CrossRef]
- Alberto, F.J.; Aitken, S.N.; Alia, R.; Gonzalez-Martinez, S.C.; Hanninen, H.; Kremer, A.; Lefevre, F.; Lenormand, T.; Yeaman, S.; Whetten, R.; et al. Potential for evolutionary responses to climate change—Evidence from tree populations. Glob. Chang. Biol. 2013, 19, 1645–1661. [Google Scholar] [CrossRef] [PubMed]
- Zas, R.; Sampedro, L.; Solla, A.; Vivas, M.; Lombardero, M.J.; Alía, R.; Rozas, V. Dendroecology in common gardens: Population differentiation and plasticity in resistance, recovery and resilience to extreme drought events in Pinus pinaster. Agric. For. Meteorol. 2020, 291, 108060. [Google Scholar] [CrossRef]
- Hacket-Pain, A.; Bogdziewicz, M. Climate change and plant reproduction: Trends and drivers of mast seeding change. Philos. Trans. R. Soc. B: Biol. Sci. 2021, 376, 20200379. [Google Scholar] [CrossRef]
- Bonduriansky, R.; Day, T. Nongenetic Inheritance and Its Evolutionary Implications. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 103–125. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.; Sultan, S. Adaptive Transgenerational Plasticity in Plants: Case Studies, Mechanisms, and Implications for Natural Populations. Front. Plant Sci. 2011, 2, 102. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, K.J.; vonHoldt, B.M.; Sork, V.L. Epigenetics in ecology and evolution: What we know and what we need to know. Mol Ecol 2016, 25, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Ono, A.; Kinoshita, T. Epigenetics and plant reproduction: Multiple steps for responsibly handling succession. Curr. Opin. Plant Biol. 2021, 61, 102032. [Google Scholar] [CrossRef] [PubMed]
- Fenner, M. The effects of the parent environment on seed germinability. Seed Sci. Res. 1991, 1, 75–84. [Google Scholar] [CrossRef]
- Boyko, A.; Blevins, T.; Yao, Y.; Golubov, A.; Bilichak, A.; Ilnytskyy, Y.; Hollander, J.; Meins Jr, F.; Kovalchuk, I. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS ONE 2010, 5, e9514. [Google Scholar] [CrossRef]
- Dewan, S.; Vander Mijnsbrugge, K.; De Frenne, P.; Steenackers, M.; Michiels, B.; Verheyen, K. Maternal temperature during seed maturation affects seed germination and timing of bud set in seedlings of European black poplar. For. Ecol. Manag. 2018, 410, 126–135. [Google Scholar] [CrossRef]
- Vander Mijnsbrugge, K.; Moreels, S.; Aguas Guerreiro, Y.; Beeckman, S. Temperature during Seed Maturation Influences Timing of Bud Burst in Seedlings and Saplings of Prunus padus. Forests 2022, 13, 1362. [Google Scholar] [CrossRef]
- Skrøppa, T.; Tollefsrud, M.M.; Sperisen, C.; Johnsen, Ø. Rapid change in adaptive performance from one generation to the next in Picea abies—Central European trees in a Nordic environment. Tree Genet. Genomes 2010, 6, 93–99. [Google Scholar] [CrossRef]
- Yakovlev, I.; Fossdal, C.G.; Skrøppa, T.; Olsen, J.E.; Jahren, A.H.; Johnsen, Ø. An adaptive epigenetic memory in conifers with important implications for seed production. Seed Sci. Res. 2012, 22, 63–76. [Google Scholar] [CrossRef]
- Zecchin, B.; Caudullo, G.; de Rigo, D. Frangula alnus in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Bairlein, F. Habitat Selection and Associations of Species in European Passerine Birds during Southward, Post-Breeding Migrations. Ornis Scand. (Scand. J. Ornithol.) 1983, 14, 239–245. [Google Scholar] [CrossRef]
- Uyttenbroeck, R.; De Vos, B.; Vander Mijnsbrugge, K. Verspreiding en Standplaats van Inheemse Bomen en Struiken in Vlaanderen; Research Institute for Nature and Forest: Brussels, Belgium, 2014; p. 375. [Google Scholar]
- Vander Mijnsbrugge, K.; Schouppe, M.; Moreels, S.; Aguas Guerreiro, Y.; Decorte, L.; Stessens, M. Influence of Water Limitation and Provenance on Reproductive Traits in a Common Garden of Frangula alnus Mill. Forests 2022, 13, 1744. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bates, D.; Machler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Goszka, A.R.; Snell, R.S. Seed quality and seed quantity in red maple depends on weather and individual tree characteristics. Ecol. Evol. 2020, 10, 13109–13121. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, A.M.; Samarah, N.H.; Mullen, R.E. Drought stress effect on crop pollination, seed set, yield and quality. In Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Springer: Berlin/Heidelberg, Germany, 2011; pp. 193–213. [Google Scholar]
- Hatzig, S.V.; Nuppenau, J.-N.; Snowdon, R.J.; Schießl, S.V. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC Plant Biol. 2018, 18, 297. [Google Scholar] [CrossRef] [PubMed]
- Karimmojeni, H.; Bazrafshan, A.H.; Majidi, M.M.; Torabian, S.; Rashidi, B. Effect of maternal nitrogen and drought stress on seed dormancy and germinability of Amaranthus retroflexus. Plant Species Biol. 2014, 29, E1–E8. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Zhang, D.; Liu, H.; Guan, K. Effects of drought stress on the seed germination and early seedling growth of the endemic desert plant Eremosparton songoricum (Fabaceae). EXCLI J. 2013, 12, 89–101. [Google Scholar] [PubMed]
- Hegarty, T.W. The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: A review. Plant Cell Environ. 1978, 1, 101–119. [Google Scholar] [CrossRef]
- Seiwa, K. Effects of seed size and emergence time on tree seedling establishment: Importance of developmental constraints. Oecologia 2000, 123, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Geber, M.A.; Griffen, L.R. Inheritance and natural selection on functional traits. Int. J. Plant Sci. 2003, 164, S21–S42. [Google Scholar] [CrossRef] [Green Version]
- Leiva, M.J.; Fernández-Alés, R.o. Variability in seedling water status during drought within a Quercus ilex subsp. ballota population, and its relation to seedling morphology. For. Ecol. Manag. 1998, 111, 147–156. [Google Scholar] [CrossRef]
- Cendán, C.; Sampedro, L.; Zas, R. The maternal environment determines the timing of germination in Pinus pinaster. Environ. Exp. Bot. 2013, 94, 66–72. [Google Scholar] [CrossRef]
- Rohde, A.; Howe, G.; Olsen, J.; Moritz, T.; Van Montagu, M.; Junttila, O.; Boerjan, W. Molecular aspects of bud dormancy in trees. Mol. Biol. Woody Plants 2000, 1, 89–134. [Google Scholar]
- Hannerz, M.; Ekberg, I.; Norell, L. Variation in Chilling Requirements for Completing Bud Rest between Provenances of Norway Spruce. Silvae Genet. 2003, 52, 161–168. [Google Scholar]
- Blum, B.M. Variation in the phenology of bud flushing in white and red spruce. Can. J. For. Res. 1988, 18, 315–319. [Google Scholar] [CrossRef]
- Vander Mijnsbrugge, K.; Turcsán, A.; Michiels, B. Population differentiation and phenotypic plasticity in temperature response of bud burst in Frangula alnus provenances of different latitude. Plant Syst. Evol. 2016, 302, 205–213. [Google Scholar] [CrossRef]
- Derory, J.; Léger, P.; Garcia, V.; Schaeffer, J.; Hauser, M.-T.; Salin, F.; Luschnig, C.; Plomion, C.; Glössl, J.; Kremer, A. Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol. 2006, 170, 723–738. [Google Scholar] [CrossRef]
- Mátyás, C. Modeling climate change effects with provenance test data. Tree Physiol. 1994, 14, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Donohue, K.; Dorn, L.; Griffith, C.; Kim, E.; Aguilera, A.; Polisetty, C.R.; Schmitt, J. The evolutionary ecology of seed germination of Arabidopsis thaliana: Variable natural selection on germination timing. Evol. Int. J. Org. Evol. 2005, 59, 758–770. [Google Scholar]
Berry Collection Day | Belgian | Italian | Swedish | Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Drought | Control | Drought | Control | Drought | ||||||||
nb° | ns° | nb° | ns° | nb° | ns° | nb° | ns° | nb° | ns° | nb° | ns° | ns° | |
26 June | 0 | 0 | 4 | 40 | 0 | 0 | 2 | 4 | 6 | 59 | 12 | 168 | 271 |
29 June | 4 | 8 | 5 | 35 | 1 | 2 | 4 | 16 | 11 | 96 | 13 | 98 | 255 |
3 July | 7 | 101 | 13 | 131 | 8 | 45 | 9 | 48 | 17 | 159 | 19 | 137 | 621 |
9 July | 16 | 343 | 17 | 253 | 12 | 209 | 11 | 120 | 21 | 466 | 16 | 133 | 1524 |
16 July | 18 | 423 | 17 | 218 | 13 | 153 | 8 | 77 | 15 | 177 | 10 | 62 | 1110 |
23 July | 11 | 70 | 7 | 46 | 7 | 61 | 4 | 22 | 9 | 85 | 3 | 14 | 298 |
6 August | 15 | 209 | 3 | 14 | 12 | 105 | 0 | 15 | 3 | 6 | 1 | 2 | 336 |
21 August | 3 | 11 | 5 | 10 | 3 | 9 | 2 | 15 | 0 | 4 | 2 | 21 | 66 |
27 August | 0 | 0 | 1 | 2 | 0 | 0 | 3 | 4 | 1 | 59 | 0 | 0 | 21 |
Variable | Estimate | Std. Error | DF | t-Value | p-Value |
---|---|---|---|---|---|
(Intercept) | 47.02 | 3.96 | 286 | 11.89 | <0.001 *** |
It | −0.96 | 5.63 | 26 | −0.17 | 0.866 |
Sw | 4.92 | 5.01 | 26 | 0.98 | 0.336 |
C | −174.39 | 47.14 | 286 | −3.70 | <0.001 *** |
C2 | −255.75 | 51.85 | 286 | −4.93 | <0.001 *** |
T | 16.32 | 2.59 | 80 | 6.30 | <0.001 *** |
It:C | 6.79 | 62.05 | 286 | 0.11 | 0.913 |
It:C2 | 18.12 | 66.98 | 286 | 0.27 | 0.787 |
Sw:C | 59.66 | 62.31 | 286 | 0.96 | 0.339 |
Sw:C2 | 171.43 | 60.20 | 286 | 2.85 | 0.005 ** |
T:C | −126.70 | 48.71 | 286 | −2.60 | 0.010 * |
T:C2 | 107.88 | 49.88 | 286 | 2.16 | 0.031 * |
Day of Berry Collection | Variable | Estimate | Std. Error | z-Value | p-Value |
---|---|---|---|---|---|
26 and 29 June 2020 | (Intercept) | −3.80 | 0.64 | −5.91 | <0.001 *** |
It | 0.94 | 0.79 | 1.19 | 0.233 | |
Sw | 0.99 | 0.57 | 1.76 | 0.079 | |
T | 0.24 | 0.46 | 0.52 | 0.600 | |
D | 0.31 | 0.01 | 26.14 | <0.001 *** | |
3 July 2020 | (Intercept) | −2.56 | 0.48 | −5.36 | <0.001 *** |
It | 0.16 | 0.60 | 0.26 | 0.795 | |
Sw | −0.13 | 0.48 | −0.28 | 0.779 | |
T | −0.37 | 0.42 | −0.89 | 0.372 | |
D | 0.31 | 0.01 | 28.84 | <0.001 *** | |
9 July 2020 | (Intercept) | −6.92 | 0.35 | −20.00 | <0.001 *** |
It | 1.18 | 0.41 | 2.86 | 0.004 ** | |
Sw | 1.47 | 0.37 | 4.01 | <0.001 *** | |
T | 0.80 | 0.27 | 2.99 | 0.003 ** | |
D | 0.36 | 0.01 | 40.44 | <0.001 *** | |
16 July 2020 | (Intercept) | −3.71 | 0.22 | −16.57 | <0.001 *** |
It | 0.53 | 0.28 | 1.88 | 0.061 | |
Sw | 1.77 | 0.28 | 6.33 | <0.001 *** | |
T | 1.07 | 0.24 | 4.56 | <0.001 *** | |
D | 0.31 | 0.01 | 35.95 | <0.001 *** | |
23 July 2020 | (Intercept) | −3.24 | 0.34 | −9.53 | <0.001 *** |
It | 0.13 | 0.44 | 0.30 | 0.764 | |
Sw | 0.73 | 0.41 | 1.78 | 0.076 | |
T | 0.35 | 0.32 | 1.09 | 0.274 | |
D | 0.30 | 0.02 | 18.22 | <0.001 *** | |
6 and 21 August 2020 | (Intercept) | −2.94 | 0.43 | −6.78 | <0.001 *** |
It | 0.66 | 0.57 | 1.17 | 0.241 | |
Sw | 2.80 | 1.00 | 2.80 | 0.005 ** | |
T | 0.34 | 0.85 | 0.40 | 0.686 | |
D | 0.37 | 0.03 | 12.46 | <0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vander Mijnsbrugge, K.; Schouppe, M.; Moreels, S.; De Leenheer, S. Transgenerational Effects of Water Limitation on Reproductive Mother Plants in a Common Garden of the Shrub Frangula alnus. Forests 2023, 14, 348. https://doi.org/10.3390/f14020348
Vander Mijnsbrugge K, Schouppe M, Moreels S, De Leenheer S. Transgenerational Effects of Water Limitation on Reproductive Mother Plants in a Common Garden of the Shrub Frangula alnus. Forests. 2023; 14(2):348. https://doi.org/10.3390/f14020348
Chicago/Turabian StyleVander Mijnsbrugge, Kristine, Marc Schouppe, Stefaan Moreels, and Stijn De Leenheer. 2023. "Transgenerational Effects of Water Limitation on Reproductive Mother Plants in a Common Garden of the Shrub Frangula alnus" Forests 14, no. 2: 348. https://doi.org/10.3390/f14020348
APA StyleVander Mijnsbrugge, K., Schouppe, M., Moreels, S., & De Leenheer, S. (2023). Transgenerational Effects of Water Limitation on Reproductive Mother Plants in a Common Garden of the Shrub Frangula alnus. Forests, 14(2), 348. https://doi.org/10.3390/f14020348