Influence of Tree Vegetation and The Associated Environmental Factors on Soil Organic Carbon; Evidence from “Kulon Progo Community Forestry,” Yogyakarta, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Vegetation Sampling and Survey
2.3. Soil Samples Collection and Laboratory Analysis
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Variations in Tree Vegetation Composition and Characteristics
3.1.1. Species Diversity
3.1.2. Structural Characteristics
3.2. SOC Variation and the Influencing Factors
3.2.1. SOC Variation According to Vegetation Types
3.2.2. SOC Variation between Plots
3.2.3. Influencing Factors of SOC
4. Discussion
4.1. Tree Species Diversity and Structural Characteristics
4.2. Variation in SOC
4.2.1. Effect of Different Vegetation Types on SOC
4.2.2. Main Influencing Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tree Layer | Sub-Tree Layer | Shrub Layer | |||
---|---|---|---|---|---|
Species | IV (%) | Species | IV (%) | Species | IV (%) |
PN | |||||
P. merkusii | 70.14 | P. merkusii | 22.16992 | D. latifolia | 16.97593 |
A. camansi | 6.17 | E. cyclocarpum | 20.63984 | A. heterophyllus | 15.3369 |
M. leucadendra | 6.11 | A. camansi | 13.78127 | S. macrophylla | 14.39476 |
T. grandis | 2.80 | G. genemon | 12.60789 | D. zibetinus | 10.27393 |
Swietenia sp | 2.34 | A. Altilis | 8.547447 | P. speciosa | 6.898614 |
E. cyclocarpum | 5.26 | M. Leucadendra | 7.871581 | A. Altilis | 6.42607 |
A. altilis | 2.50 | P. speciosa | 7.871581 | L. leucocephala | 6.318482 |
P. speciosa | 4.70 | A. heterophyllus | 6.51 | S. aromaticum | 5.843828 |
- | - | - | - | S. densiflora | 5.843828 |
- | - | - | - | H. brasiliensis | 5.84 |
- | - | - | - | E. cyclocarpum | 5.843828 |
Total | 100.00 | 100.00 | 100.00 | ||
AS | |||||
A. molucana | 52.39 | S. Macrophylla | 34.40032 | Swietenia sp. | 30.63431 |
Swietenia sp. | 21.49 | M. Leucadendra | 16.24192 | A. mangium | 11.62835 |
A. mangium | 15.05 | T. grandis | 13.48878 | A. heterophyllus | 11.03645 |
Eucalyptus sp. | 5.90 | P. speciosa | 11.92149 | T. cacao | 9.812265 |
P. speciosa | 2.66 | A. heterophyllus | 11.64972 | T. grandis | 6.419125 |
M. Leucadendra | 2.51 | A. camansi | 6.21713 | P. speciosa | 6.419125 |
- | - | A. Auricuiformis | 6.080649 | M. Leucadendra | 5.79059 |
- | - | - | - | J. curcas | 5.245859 |
- | - | - | - | D. zibetinus | 4.784933 |
- | - | - | - | G. genemon | 4.114495 |
- | - | - | - | G.eliptica | 4.114495 |
Total | 100.00 | 100.00 | 100.00 | ||
SA | |||||
A. mangium | 30.78 | S. macrophylla | 26.15 | Swietenia sp. | 28.13 |
S. Macrophylla | 22.86 | A. mangium | 15.29 | D. latifolia | 21.89 |
D. latifolia | 11.52 | D. latifolia | 14.43 | A. mangium | 10.84 |
T. grandis | 10.89 | M. leucadendra | 13.47 | C. calothyrsus | 7.66 |
M. Leucadendra | 6.45 | T. grandis | 11.83 | M. Leucadendra | 6.21 |
E. cyclocarpum | 3.87 | P. speciosa | 4.93 | P. speciosa | 6.16 |
P. merkusii | 2.80 | A. molucana | 3.14 | A. heterophyllus | 6.13 |
Eucalyptus sp. | 2.54 | P. falcataria | 3.09 | T. grandis | 4.82 |
P. speciosa | 1.91 | A. heterophyllus | 2.72 | Eucalyptus sp. | 1.55 |
C. nucifera | 1.48 | A. Altilis | 1.36 | M. indica | 1.55 |
S. cumini | 1.46 | Eucalyptus sp. | 1.26 | G. genemon | 1.55 |
A. molucana | 1.05 | A. camansi | 1.26 | A. elliptica | 1.30 |
A. camansi | 0.99 | G. genemon | 1.06 | D. zibetinus | 1.20 |
L. Leucocephala | 0.70 | - | - | J. curcas | 1.01 |
A. heterophyllus | 0.70 | - | - | - | - |
Total | 100.00 | 100.00 | 100.00 | ||
MA | |||||
M. Leucadendra | 39.80 | M. Leucadendra | 27.22 | A. mangium | 16.79 |
A. mangium | 24.07 | P. speciosa | 24.91 | P. speciosa | 13.78 |
Eucalyptus sp. | 8.63 | A. mangium | 18.02 | M. indica | 11.19 |
T. grandis | 8.46 | S. Macrophylla | 9.51 | Swietenia sp. | 10.63 |
A. molucana | 6.31 | P. canescens | 6.06 | A. heterophyllus | 10.14 |
D. latifolia | 3.73 | P. falcataria | 2.95 | D. latifolia | 7.64 |
S. Macrophylla | 3.70 | D. latifolia | 2.95 | D. zibetinus | 6.95 |
P. speciosa | 1.77 | Eucalyptus sp. | 2.83 | M. Leucadendra | 6.26 |
P. merkusii | 1.77 | A. molucana | 2.83 | G. genemon | 6.26 |
P. canescen | 1.77 | A. pauciflorum | 2.72 | S. aromaticum | 5.82 |
- | - | - | G. sepium | 4.54 | |
Total | 100 | 100 | 100 | ||
TD | |||||
D. latifolia | 36.89 | D. latifolia | 30.95 | D. latifolia | 50.03 |
T. grandis | 34.95 | S. Macrophylla | 26.98 | Swietenia sp. | 17.14 |
S. Macrophylla | 9.56 | M. Leucadendra | 19.17 | T. grandis | 10.33 |
M. Leucadendra | 6.04 | T. grandis | 15.95 | L. leucocephala | 7.31 |
A. mangium | 3.52 | G. genemon | 1.94 | A. heterophyllus | 4.79 |
E. cyclocarpum | 3.10 | Eucalyptus sp. | 1.87 | G. genemon | 4.46 |
Eucalyptus sp. | 2.83 | A. mangium | 1.57 | G. sepium | 2.57 |
A. molucana | 1.50 | A. molucana | 1.57 | M. Leucadendra | 2.01 |
L. Leucocephala | 0.83 | - | - | P. speciosa | 1.37 |
P. speciosa | 0.78 | - | - | - | - |
Total | 100 | 100 | 100 |
No | Comparison of Sorensen Distance | T | A | p-Value |
---|---|---|---|---|
1 | General Comparison | −28.27 | 0.32 | 0.000 |
2 | Pairwise Comparison: | |||
1 vs. 2 | −15.47 | 0.32 | 0.000 | |
1 vs. 3 | −12.74 | 0.22 | 0.000 | |
1 vs. 4 | −11.48 | 0.20 | 0.000 | |
1 vs. 5 | −13.50 | 0.13 | 0.000 | |
2 vs. 3 | −11.07 | 0.49 | 0.000 | |
2 vs. 4 | −8.85 | 0.46 | 0.000 | |
2 vs. 5 | −16.35 | 0.28 | 0.000 | |
3 vs. 4 | −9.36 | 0.26 | 0.000 | |
3 vs. 5 | −12.54 | 0.15 | 0.000 | |
4 vs. 5 | −9.84 | 0.13 | 0.000 |
References
- Janzen, H.H. The soil carbon dilemma: Shall we hoard it or use it? Soil Biol. Biochem. 2006, 38, 419–424. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.; Lü, Y.; Chen, L. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena 2011, 85, 58–66. [Google Scholar] [CrossRef]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining soil bulk density for carbon stock calculations: A systematic method comparison. Soil Sci. Soc. Am. J. 2016, 80, 579–591. [Google Scholar] [CrossRef]
- Smith, P.; Fang, C.; Dawson, J.J.; Moncrieff, J.B. Impact of global warming on soil organic carbon. Advan. Agron. 2008, 97, 1–43. [Google Scholar]
- Nishina, K.; Ito, A.; Beerling, D.J.; Cadule, P.; Ciais, P.; Clark, D.B.; Faloon, P.; Friend, A.D.; Kahana, R.; Kato, E.; et al. Global soil organic carbon stock projection uncertainties relevant to sensitivity of global mean temperature and precipitation changes. Earth Syst. Dynam. Discuss. 2013, 4, 1035–1064. [Google Scholar]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaachchi, N.; Jenkins, M.; Minasni, B.; McBratney, A.B.; Singgh, K.; Wheeler, I.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- FAO; ITPS. Status of the World’s Soil Resources-Technical Summary; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Calvode, A.R.; Luis, E.; Febrero-Bande, M.; Galinanes, J.; Macias, F.; Ortiz, R.; Casas, F. Soil organic carbon in peninsular Spain: Influence of environmental factors and spatial distribution. Geoderma 2020, 370, 114365. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Change Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef]
- Devi, A.S. Influence of trees and associated variables on soil organic carbon: A review. J. Ecol. Environ. 2021, 45, 5. [Google Scholar] [CrossRef]
- Lv, X.; Jia, G.; Yu, X.; Niu, L. Vegetation and Topographic Factors Affecting SOM, SOC, and N Contents in a Mountainous Watershed in North China. Forests 2022, 13, 742. [Google Scholar] [CrossRef]
- Hu, P.-L.; Liu, S.-J.; Ye, Y.-Y.; Zhang, W.; Wang, K.-L.; Su, Y.-R. Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration. Land Degrad. Dev. 2018, 29, 387–397. [Google Scholar] [CrossRef]
- Shi, Y.; Baumann, F.; Ma, Y.; Song, C.; Uhn, P.K.; Scholten, T.; He, J.-S. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: Pattern, control and implications. Biogeosciences 2012, 9, 2287–2299. [Google Scholar] [CrossRef]
- Saiz, G.; Bird, M.I.; Domingues, T.; Schrodt, F.; Schwarz, M.; Feldpausch, T.R.; Veenendaal, E.; Djagbletey, G.; Hien, F.; Compaore, H.; et al. Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Glob. Change Biol. 2012, 18, 1670–1683. [Google Scholar] [CrossRef]
- Gruba, P.; Socha, J.; Błońska, E.; Lasota, J. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland. Sci. Total. Environ. 2015, 521–522, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 2008, 255, 35–48. [Google Scholar] [CrossRef]
- Batjes, N.H. Harmonized soil profile data for applications at global and continental scales: Updates to the WISE database. Soil Use Manag. 2016, 25, 124–127. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Deng, L.; Wang, K.; Tang, Z.; Shangguan, Z. Soil organic carbon dynamics following natural vegetation restoration: Evidence from stable carbon isotopes (δ13C). Agric. Ecosyst. Environ. 2016, 221, 235–244. [Google Scholar] [CrossRef]
- Dlamini, P.; Chivenge, P.; Manson, A.; Chaplot, V. Land degradation impact on soil organic and nitrogen stocks of sub-tropical humid grassland in South Africa. Geoderma 2014, 235–236, 372–381. [Google Scholar] [CrossRef]
- You, Y.; Wang, J.; Huang, X.; Tang, Z.; Liu, S.; Sun, O.J. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol. Evol. 2014, 4, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Chandra, L.R.; Gupta, S.; Pande, V.; Singh, N. Impact of forest vegetation on soil characteristics: A correlation between soil biological and physic-chemical properties. 3Biotech 2016, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liu, G.; Xue, S.; Sun, C. Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China. Eur. J. Soil Biol. 2013, 54, 16–24. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Zhang, Y.; Bing, M.; Liu, Y.; Wu, J.; Hai, X.; Li, A.; Wong, K.; Wu, P.; et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the Loess Plateau. J. Environ. Manag. 2022, 302, 113985. [Google Scholar] [CrossRef] [PubMed]
- Agus, C.; Pradipa, E.; Wulandari, D.; Supriyo, H.; Agus, D. Peran Revegetasi Terhadap Restorasi Tanah Pada Lahan Rehabilitasi Tambang Batubara Di Daerah Tropika [The Role of Revegetation in Soil Restoration in Coal Mine Rehabilitation Land in the Tropics]. J. Mns. Dan Lingkung. 2014, 21, 60–66. [Google Scholar]
- Gong, L.; Liu, G.; Wang, M.; Ye, X.; Wang, H.; Li, Z. Effects of vegetation restoration on soil organic carbon in China: A me-ta-analysis. Chin. Geogr. Sci. 2017, 27, 188–200. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Liu, Y.; Hai, X.; Li, M.; Wu, J.; Wang, X.; Shangguan, Z.; Zhou, Z. Forestation delivers significantly more effective results in soil C and N sequestrations than natural succession on badly degraded areas: Evidence from the Central Loess Plateau case. Catena 2022, 208 Pt b, 105734. [Google Scholar] [CrossRef]
- Suyana, J.; Tanah, F.P.P.S.I.; Krismonanto, W.; Muliawati, E.S.; Widijanto, H.; Hartati, S. Karakteristik vegetasi, hara nitrogen dan karbon organik tanah pada tegakan hutan taman nasional gunung-merbabu dan tegalan (The Characteristics of Vegetation, Soil Nutrients of Nitrogen and Soil Organik Carbon at Forest Stands of Mount-Merbabu National Park and Dry Field). J. Penelit. Pengelolaan Drh. Aliran Sungai 2022, 6, 141–160. [Google Scholar] [CrossRef]
- Dewi, I.N.; Andayani, W.; Suryanto, P. Pengembangan Ekowisata Kawasan Hutan Dengan Skema Hutan emasyarakatan Di Daerah Istimewa Yogyakarta (Development of Forest Area Ecotourism ith Community Forest Scheme in Special Teritory of Yogyakarta). J. Mns. Lingk. 2017, 24, 95–102. [Google Scholar] [CrossRef]
- Arsalan, A.; Gravitiani, E.; Irianto, H. Biomassa di Atas Tanah dan Penghitungan Simpanan Karbon Hutan Kalibiru Kabu-paten Kulon Progo [Aboveground Biomass and Calculation of Carbon Stores in the Kalibiru Forest, Kulon Progo Regency]. J. Penelit. Biol. 2020, 6, 1–8. [Google Scholar]
- Kim, Y.-S.; Latifah, S.; Afifi, M.; Mulligan, M.; Burke, S.; Fisher, L.; Siwicka, E.; Remoundou, K.; Christie, M.; Lopez, S.M.; et al. Managing forests for global and local ecosystem services: A case study of carbon, water and livelihoods from eastern Indonesia. Ecosyst. Serv. 2018, 31, 153–168. [Google Scholar] [CrossRef]
- Kementerian Lingkungan Hidup dan Kehutanan. Perpres Nilai Ekonomi Karbon Dukung Pencapaian NDC Indonesia [Pres-idential Decree on Carbon Economic Value Supports the achievement of Indonesia’s NDC]. Available online: http://ppid.menlhk.go.id/berita/siaran-pers/6269/perpres-nilai-ekonomi-karbon-dukung-pencapaian-ndc-indonesia (accessed on 3 November 2021).
- Megarani, A. Tata Cara Perdagangan Karbon [Carbon Trade Mechanism]. Forestdigest. Available online: https://www.forestdigest.com/detail/2063/perdagangan-karbon (accessed on 26 October 2022).
- Adalina, Y.; Nurrochmat, D.R. Harvesting of non-timber forest products by the local communities in Mount alimun-Salak National Park, West Java, Indonesia. J. Manaj. Hutan Tropika. 2014, 20, 103–111. [Google Scholar]
- Harbi, J.; Erbaugh, J.T.; Sidiq, M.; Haasler, B.; Nurrochmat, D.R. Making a bridge between livelihoods and forest conservation: Lessons from non-timber forest products’ utilization in South Sumatera, Indonesia. For. Policy Econ. 2018, 94, 1–10. [Google Scholar] [CrossRef]
- Anggraheni, Y.; Hermawan, H.; Sujarwoto, S. Understanding Community Participation within Sustainable Rural Tourism Development (A Single Case Study in alibiru Village, Yogyakarta Special Region, Indonesia). J. Ilm. Adm. Publik 2018, 4, 301–309. [Google Scholar]
- Wiyono, W.; Hidayat, R.; Oktania, S.N. The Community Empowerment trategy in Protected Forest Management through Community-Based Ecotourism Development in alibiru Village, Kulon Progo Regency. Habitat 2020, 1, 11–27. [Google Scholar] [CrossRef]
- Balai KPH Yogyakarta. Ringkasan Eksekutif Rencana Pengelolaan KPH Yogyakarta Jangka Tahun 2014–2023 [Executive Summary of the KPH Yogyakarta Management Plan for the 2014–2023 Term]; Balai Kesatuan Pengelolaan Hutan: Yogyakarta, Indonesia, 2013.
- Siswo; Atmoko, D.A.; Brahmantya, L.; Pahlana, U.W.; Yun, C.W. Overseas Forest Survey; Tree Species Distribution and the Rela-tionship to Environmental Factors in the Protected Forest of Kulon Progo Community Forestry; Report; Kongju National University: Yesan-gun, Republic of Korea, 2022. [Google Scholar]
- Ariyani, R. Kelayakan Potensi Sumber Daya Ekowisata di Kawasan Hutan Kemasyarakatan Kalibiru, Kabupaten Kulon Progo [Feasibility of Potential Ecotourism Resources in the Kalibiru Community Forest Area, Kulon Progo Regency]. Ph.D. Thesis, Universitas Gadjah Mada, Yogyakarta, Indonesia, 31 January 2021. [Google Scholar]
- BPS Kabupaten Kulon Progo. Kabupaten Kulon Progo Dalam Angka Tahun 2021 [Kulon Progo Regency in Figures for 2021]; Biro Pusat Statistik [Central Agency on Statistic]: Yogyakarta, Indonesia, 2022. [Google Scholar]
- Climate Engine. Computing Climate and Remote Sensing Data. Available online: https://app.climateengine.com/climateEngine (accessed on 22 September 2022).
- Wikipedia. Sejarah Terjadinya Hutan Negara di Kulon Progo. Available online: https://id.wikipedia.org/wiki/Kalibiru (accessed on 22 September 2022).
- HKm Mandiri. Profil Kelompok Tani Hutan Kemasyarakatan [Profile of Community Forest Farmer Groups]; HKm Mandiri: Yogyakarta, Indonesia, 2022. [Google Scholar]
- Kementerian Kehutanan. Keputusan Menteri Kehutanan no SK.437/Menhut-II/2007 Tentang Penetapan Areal Kerja Hutan Ke-Masyarakatan di Kabupaten Kulon Progo Provinsi Daerah Istimewa Yogyakarta [Decree of the Minister of Forestry no SK.437/Menhut-II/2007 Regarding the Determination of Community Forestry Areas in Kulon Progo Regency, Special Teritory of Yogya-Karta Province]; Kemeterian Kehutanan [Ministry of Forestry]: Jakarta, Indonesia, 2007. [Google Scholar]
- Kusmana, C. Metode Survey Vegetasi [Vegetation Survey Method]; Institut Pertanian Bogor: Bogor, Indonesia, 1997. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Science: Malden, MA, USA, 2004. [Google Scholar]
- Indriyanto. Ekologi Hutan [Forest Ecology]; Bumi Aksara: Jakarta, Indonesia, 2008. [Google Scholar]
- Thammanu, S.; Marod, D.; Han, H.; Bhusal, N.; Asanok, L.; Ketdee, P.; Gaewsingha, N.; Lee, S.; Chung, J. The influence of environmental factors on species composition and distribution in a community forest in Northern Thailand. J. For. Res. 2020, 32, 649–662. [Google Scholar] [CrossRef]
- Aji, B.D.S.; Wijayanto, N.; Wasis, B. Visual Evaluation of Soil Structure (VESS) Method to Assess Soil Properties of Agroforestry System in Pangalengan, West Java. J. Manaj. Hutan Trop. 2021, 27, 80–88. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- BSN. Pengukuran dan Penghitungan Cadangan Karbon—Pengukuran Lapangan Untuk Penaksiran Cadangan Karbon Hutan [Meas-urement and Calculation of Carbon Stocks—Field Measurements for Estimating Forest Carbon Stocks]; Badan Standardisasi Nasional [National Standardization Agency]: Jakarta, Indonesia, 2011.
- Mandal, G.; Joshi, S.P. Analysis of vegetation dynamics and phytodiversity from three dry deciduous forests of Doon Valley, Western Himalaya, India. J. Asia-Pac. Biodivers. 2014, 7, 292–304. [Google Scholar] [CrossRef]
- Andivia, E.; Rolo, V.; Jonard, M.; Formanek, P.; Ponette, Q. Tree Species Identity mediate mecanisms of top soil carbon se-questration in a norway Spruce and Euripean beech mixed forest. Ann. Forest. Sci. 2016, 73, 437–447. [Google Scholar] [CrossRef]
- Webber, O.B.; DaSilva, M.C.B.; DaSilva, C.F.; DeSouza, J.A.; Taniguch, C.A.K.; Garruti, D.S.; Romero, R.E. Biological and Chemical attribuites of soil under forest species in Northeast Brazil. J. Forest. Res. 2019, 31, 1959–1973. [Google Scholar] [CrossRef]
- Amolikondori, A.; Vajari, K.A.; Feizian, M. Assessing soil organic carbon, N and P stocks and its relation to soil properties in artificial canopy gaps in a managed oriental beech (Fagus orientalis L.) forest. J. Plant Nutr. Soil Sci. 2022, 185, 243–250. [Google Scholar] [CrossRef]
- PPT. Petunjuk Teknis Evaluasi Kesuburan Tanah [Technical Guidelines for Soil Fertility Evaluation]; Pusat Penelitian Tanah [Center for Soil Research]: Bogor, Indonesia, 1995. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MJM Software Design: Corvallis, OR, USA, 2002. [Google Scholar]
- Meijide, A.; Badu, C.S.; Moyano, F.; Tiralla, N.; Gunawan, D.; Knohl, A. Impact of forest conversion to oil palm and rubber plantations on microclimate and the role of the 2015 ENSO event. Agric. For. Meteorol. 2018, 252, 208–219. [Google Scholar] [CrossRef]
- Cleophas, T.J.; Zwinderman, A.H. Non-Parametric Tests for Three or More Samples (Friedman and Kruskal Wallis); Clinical Data Analysis on a Poscket Calculator; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rabbi, S.; Tighe, M.; Cowie, A.; Wilson, B.R.; Schwenke, G.; Mcleod, M.; Badgery, W.; Baldock, J. The relationships between land uses, soil management practices, and soil carbon fractions in South Eastern Australia. Agric. Ecosyst. Environ. 2014, 197, 41–52. [Google Scholar] [CrossRef]
- Peck, J.E. Multivariate Analysis for Community Ecologists; MJM Software Design: Corvallis, OR, USA, 2010. [Google Scholar]
- Makarenkov, V.; Legendre, P. Nonlinier Redundancy Analysis and Cannonical Correspondence Analysis Based on Polynomial Regression. Ecology 2002, 83, 1146–1161. [Google Scholar] [CrossRef]
- Perez, L.V. Principal Component Analysis to Address Multicollinearity; Whitman College: Walla Walla, WA, USA, 2017; p. 99362. [Google Scholar]
- Beaumont, R. An introduction to principal component analysis & factor analysis using SPSS 19 and R (psych package). Factor Anal. Princ. Compon. Anal. (PCA) 2012, 24, 8–9. [Google Scholar]
- Shannon, C.; Weaver, W. The Mathematical Theori of Communication; University of Illonis Press: Champaign/Urbana, IL, USA, 1949. [Google Scholar]
- Backer, C.A.; Van-Den-Bakhuizen, B. Flora of Java (Spermatophytes Only); Wolters-Noordoff N.V: Groningen, Nedherland, 1968. [Google Scholar]
- Yudhoyono, A.; Sukarya, D.G. 3500 Plant Species of the Botanic Gardens of Indonesia; PT. Sukarya dan Sukarya Pendetama: Jakarta, Indonesia, 2013. [Google Scholar]
- Clutter, J.L.; Fortson, J.C.; Pienaar, L.V.; Brister, G.H.; Bailey, R.L. Timber Management: A Quantitative Approach; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1983. [Google Scholar]
- Yekti. Kadar Bahan Organik Tanah [Soil Organic Matter]; Report; UPN “veteran”: Yogyakarta, Indonesia, 2016. [Google Scholar]
- Pinheiro, E.; Pereira, M.; Anjos, L. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil Tillage Res. 2004, 77, 79–84. [Google Scholar] [CrossRef]
- Fajrina, C.; Arabia, T.; Sufardi, S. Distribusi Fe-dan Al-humus serta C organik tanah pada Entisol dan Inceptisol di Lahan Kering Jantho, Kabupaten Aceh Besar [Distribution of Fe-and Al-humus and soil organic carbon in Entisols and Inceptisols in Jantho Dry Land, Aceh Besar District]. J. Ilm. Mhs. Pertan. 2019, 4, 664–676. (In Indonesian) [Google Scholar]
- López-Hernández, D.; Hernández-Hernández, R.M.; Hernández-Valencia, I.; Toro, M. Nutritional stress in dystrophic sa-vanna soils of the Orinoco basin: Biological responses to low nitrogen and phosphorus availabilities. In Emerging Technologies and Management of Crop Stress Tolerance; Academic Press: Cambridge, UK, 2014; pp. 343–375. [Google Scholar]
- Krisnawati, H.; Kallio, M.; Kanninen, M. Aleurites Moluccana (L.) Willd: Ekologi, silvikultur dan produktivitas; CIFOR: Bogor, Indonesia, 2011. (In Indonesian) [Google Scholar]
- Krisnawati, H.; Kallio, M.; Kanninen, M. Swietenia Macrophylla King: Ecology, Silviculture and Productivity; CIFOR: Bogor, Indonesia, 2011. (In Indonesian) [Google Scholar]
- Suyana, J.; Widijanto, H.; Muliawati, E.S.; Melida, O.; Damayanti, R. Penilaian Biomassa Vegetasi, Karbon Vegetasi, Dan Karbon Tanah Pada Beberapa Tipe Tegakan Hutan Rakyat [Assessment of Vegetation Biomass, Vegetation Carbon, and Soil Carbon in Several Types of Community Forest Stands]. In Prosiding Seminar Nasional Fakultas Pertanian UNS; Universitas Sebelas Maret: Solo City, Indonesia, 2021; pp. 1279–1291. (In Indonesian) [Google Scholar]
- Riniarti, M.; Setiawan, A. Status kesuburan tanah pada dua tutupan lahan di Kesatuan Pengelolaan Hutan Lindung (KPHL) Batutegi Lampung [Soil fertility status in two land covers in the Batutegi Lampung Protected Forest Management Unit (KPHL)]. J. Sylva Lestari 2014, 2, 99–104. [Google Scholar] [CrossRef]
- Pham, T.G.; Tran, C.T.M.; Nguyen, H.T.; Trinh, H.N.; Nguyen, N.B.; Nguyen, H.K.N.; Tran, T.T.; Le, H.D.; Le, Q.N.P. Land Evaluation for Acacia (Acacia mangium × Acacia auriculiformis) Plantations in the Mountainous Regions of Central Vietnam. Land 2022, 11, 2184. [Google Scholar] [CrossRef]
- Augusto, L.; De Schrijver, A.; Vesterdal, L.; Smolander, A.; Prescott, C.; Ranger, J. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 2015, 90, 444–466. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Sun, X.; Yu, X. Variations of forest soil organic carbon and its influencing factors in east China. Ann. For. Sci. 2016, 73, 501–511. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, Y.; Saeed, S.; Zhang, B.; Luo, M. The difference of soil properties between pure and mix Chinese fir (Cunning-hamia lanceolata) plantations depends on tree species. Glob. Ecol. Conserv. 2020, 22, e01009. [Google Scholar] [CrossRef]
- Priyono, C.N.; Siswamartana, S. Hutan Pinus dan Hasil Air [Pine Forest and Water Yield]; Pusat Pengembangan Sumber Daya Hutan Perhutani: Cepu, Indonesia, 2002. [Google Scholar]
- Wenjie, L.; Pengju, L.; Hongmei, L.; Weinping, D. Estimation of evaporation rate from soil surface using stable isotopic com-position of throughfall and stream water in a tropical seasonal rain forest of Xishuangbanna, Southwest China. Acta Ecol. Sin. 2016, 26, 1303–1310. [Google Scholar]
- Fan, J.; Ostergaard, K.T.; Guyot, A.; Fujiwara, S.; Lockington, D.A. Estimating groundwater evapotranspiration by a sub-tropical pine plantation using diurnal water table fluctuations: Implication from night-time water use. J. Hydrol. 2016, 542, 679–685. [Google Scholar] [CrossRef]
- Sunanto, H. Budi Daya dan Penyulingan Kayu Putih; Kanisius: Yogyakarta, Indonesia, 2003. (In Indonesian) [Google Scholar]
- Muardimansyah, S.; Akhbar, A.; Arianingsih, I. Cadangan Karbon Tanah Pada Berbagai Tingkat Kerapatan Tajuk Di Hutan Lindung Kebun Kopi Desa Nupabomba Kecamatan Tanantovea Kabupaten Donggala. J. War. Rimba 2016, 4, 125–131. [Google Scholar]
- Lukina, N.V.; Tikhonova, E.V.; Danilova, M.A.; Bakhmet, O.N.; Kryshen, A.M.; Tebenkova, D.N.; Kuznetsova, A.I.; Smirnov, V.E.; Braslavskaya, T.Y.; Gornov, A.V.; et al. Associations between forest vegetation and the fertility of soil organic horizons in northwestern Russia. For. Ecosyst. 2019, 6, 34. [Google Scholar] [CrossRef]
- Siswo; Yun, C.W.; Abdiyani, S. Distribution of tree species around springs and trees-springs interplay possibility in the springs area of Soloraya, Central Java, Indonesia. For. Sci. Technol. 2019, 15, 128–139. [Google Scholar] [CrossRef]
- Roose, E.J.R.; Lal, C.; Feller, B.; Barthes; Stewart, B.A. Advances in Soil Science: Soil Erosion and Carbon Dynamics; CRC Press; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2006; Volume 352, p. 88. [Google Scholar]
No | Stand Type | Species Dominant | Canopy Cover (%) |
---|---|---|---|
1 | PN | Pinus Merkusii | 68.43 |
2 | AS | Aleurites miolucana, Swietenia macrophylla | 75.50 |
3 | SA | Swietenia macrophylla, Acacia auriculiformis, Tectona grandis, Dalbergia latifolia | 74.29 |
4 | MA | Melaleuca Leucadendra, Acacia auriculiformis | 59.71 |
5 | TD | Dalbergia latifolia, Tectona grandis | 85.43 |
No | Survey Variables | Description | Method/Tools |
---|---|---|---|
1 | Existing information on vegetation classification [40] | ||
| Aerial photography | Drone | |
| Seventy-two quadratic plots (20 × 20 m single quadratic plot), determined and placed randomly on the map | Stratified random sampling | |
| Tree species identification and coverage estimation as a field check for the forest cover visually investigated on the map (72 plots). | Map-based visual investigation and field qualitative survey | |
| Canopy density was measured as a field check for the percentage of forest cover. | Spherical densiometer | |
| General environmental factors (altitude, slope position and aspect) | Global positioning system (GPS) and topographic map | |
2 | Tree vegetation, more detail environmental factors and SOC investigation (current Study) | ||
| |||
| 72 existing plots determined by Siswo et al. [40]: PN = 7 plots, AS = 8 plots, SA = 24 plots, MA = 11 plots and TD = 22 plots Seven selected plots from each stand type | Purposive sampling Purposive sampling | |
| Species identification, density, diameter, height (tree layer, sub-tree layer and shrub layer) | Quantitative survey | |
| Soil analysis (SOC, SOM, bulk density and soil depth) | Soil sampling | |
| |||
| Altitude, slope and aspect | Siswo et al. [40] | |
| Bare rock, soil pH, bulk density and soil texture | Observation and soil sampling | |
| Below-stand utilization, distance from road and distance from river | Observation and desk study |
Tree Characteristics | Mean/Mean Rank | F/p | Test | ||||
---|---|---|---|---|---|---|---|
PN | AS | SA | MA | TD | Value | Used | |
N | 7 | 7 | 7 | 7 | 7 | ||
Diversity index (T) | 0.48/10.14 a | 0.54/13.86 b | 1.11/24.43 b | 1.07/27.14 b | 0.75/14.43 b | 0.006 | KW |
Diversity index (ST) | 0.39/12.07 a | 0.72/19.71 a | 0.84/23.36 a | 0.79/17.93 a | 0.67/16.93 a | 0.326 | KW |
Diversity index (S) | 0.59/20.29 a | 0.40/16.57 a | 0.82/24.14 a | 0.34/13.86 a | 0.37/15.14 a | 0.284 | KW |
Basal Area (T) | 27.61 a | 17.56 a | 15.94 a | 19.91 a | 23.55 a | 0.422 | AN |
Basal Area (ST) | 3.98/11.64 a | 6.45/18.43 a | 7.26/21.57 a | 5.06/17.50 a | 5.68/20.86 a | 0.39 | KW |
Basal Area (S) | 0.73/7.71 a | 2.76/18.57 b | 4.89/26.29 b | 2.83/18.50 ab | 2.97/18.93 b | 0.019 | KW |
Density (T) | 375 a | 204 b | 232 b | 154 b | 211 b | 0.001 | AN |
Density (ST) | 2007.79 a | 343/16.71 b | 528/22.57 b | 400/21.07 b | 429/21.86 ab | 0.004 | KW |
Density (S) | 886/15.07 a | 1028/16.21 a | 1842/27.14 a | 1142/16.07 a | 971/15.50 a | 0.179 | KW |
Max height | 28.14 a | 19.29 b | 21.29 ab | 21 ab | 27.14 a | 0.005 | AN |
Canopy coverage | 68.43/12.79 a | 75.5/19.21 abc | 74.29/19.21 abc | 59.71/11.43 ab | 85.43/27.36 c | 0.029 | KW |
NO | Variables | PCA Component | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
1 | Density | −0.130 | 0.878 | 0.161 | 0.075 | −0.112 | −0.199 |
2 | Basal Area | 0.106 | 0.785 | −0.181 | 0.224 | 0.076 | 0.253 |
3 | Canopy cover (%) | 0.319 | 0.468 | 0.212 | 0.490 | −0.105 | 0.157 |
4 | Canopy height (m) | −0.489 | 0.070 | −0.104 | 0.694 | 0.016 | 0.053 |
5 | Diversity index | 0.531 | −0.292 | 0.272 | 0.141 | 0.372 | 0.364 |
6 | Altitude (masl) | 0.829 | 0.117 | −0.077 | −0.094 | −0.110 | −0.066 |
7 | Slope (%) | 0.179 | 0.044 | −0.195 | −0.141 | 0.734 | −0.051 |
8 | Slope position (Topography) | 0.681 | −0.356 | −0.196 | −0.137 | 0.215 | −0.191 |
9 | Bare Rock (%) | −0.342 | 0.372 | 0.085 | −0.430 | 0.151 | 0.477 |
10 | Distance from road (m) | −0.393 | −0.142 | 0.190 | 0.213 | 0.602 | 0.298 |
11 | Distance from river (m) | 0.767 | 0.107 | −0.279 | 0.045 | 0.310 | 0.167 |
12 | Below-stand utilization | 0.037 | −0.210 | −0.039 | −0.827 | −0.173 | 0.029 |
13 | Soil Texture (Silt) | −0.163 | 0.412 | 0.710 | 0.342 | −0.012 | −0.202 |
14 | Soil Texture (Clay) | 0.159 | −0.030 | −0.963 | 0.030 | −0.057 | −0.005 |
15 | Soil Texture (Sand) | −0.054 | −0.399 | 0.628 | −0.412 | 0.095 | 0.225 |
16 | pH | 0.015 | 0.003 | −0.043 | 0.019 | 0.001 | 0.906 |
17 | BD | 0.107 | −0.039 | 0.171 | 0.141 | 0.711 | 0.006 |
Eigenvalue | 3.527 | 2.732 | 2.333 | 1.688 | 1.529 | 1.014 | |
% of Variance explained | 20.75 | 16.07 | 13.72 | 9.93 | 8.99 | ||
Cumulative % of variance explained | 20.75 | 36.82 | 50.54 | 60.47 | 69.46 |
Axis1 | Axis2 | Axis3 | Partial Variation (%) | |
---|---|---|---|---|
Summary statistic: | ||||
Eigenvalues | 0.229 | 0.002 | 0.000 | - |
Variance Explained (%) | 28.500 | 0.200 | 0.000 | - |
Cumulative explained (%) | 28.500 | 28.700 | 28.800 | - |
Pearson correlation | 0.519 | 0.517 | 0.652 | - |
Inter-set correlation: | ||||
Component 1 | 0.123 | 0.300 | −0.142 | 1.60 |
Component 2 | 0.210 | 0.214 | −0.115 | 4.40 |
Component 3 | 0.215 | −0.294 | 0.288 | 4.70 |
Component 4 | 0.365 | 0.01 | 0.081 | 13.20 |
Component 5 | −0.067 | 0.290 | 0.524 | 0.50 |
Component 6 | 0.211 | 0.002 | −0.069 | 4.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siswo; Kim, H.; Lee, J.; Yun, C.-W. Influence of Tree Vegetation and The Associated Environmental Factors on Soil Organic Carbon; Evidence from “Kulon Progo Community Forestry,” Yogyakarta, Indonesia. Forests 2023, 14, 365. https://doi.org/10.3390/f14020365
Siswo, Kim H, Lee J, Yun C-W. Influence of Tree Vegetation and The Associated Environmental Factors on Soil Organic Carbon; Evidence from “Kulon Progo Community Forestry,” Yogyakarta, Indonesia. Forests. 2023; 14(2):365. https://doi.org/10.3390/f14020365
Chicago/Turabian StyleSiswo, Hojin Kim, Jeongeun Lee, and Chung-Weon Yun. 2023. "Influence of Tree Vegetation and The Associated Environmental Factors on Soil Organic Carbon; Evidence from “Kulon Progo Community Forestry,” Yogyakarta, Indonesia" Forests 14, no. 2: 365. https://doi.org/10.3390/f14020365
APA StyleSiswo, Kim, H., Lee, J., & Yun, C.-W. (2023). Influence of Tree Vegetation and The Associated Environmental Factors on Soil Organic Carbon; Evidence from “Kulon Progo Community Forestry,” Yogyakarta, Indonesia. Forests, 14(2), 365. https://doi.org/10.3390/f14020365