De Novo SNP Discovery and Genotyping of Masson Pine (Pinus massoniana Lamb.) via Genotyping-by-Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Extraction
2.2. GBS Library Preparation and Sequencing
2.3. Sequence Quality Analysis and Filtering
2.4. De Novo Assembly, Read Alignment, and SNP Calling
2.5. SNP Filtering
2.6. SNP-Associated Contig Validation
2.7. Diversity Analyses
3. Results
3.1. High Throughput Sequencing and Assembly
3.2. SNP Calling and Filtering
3.3. Characterization of Identified SNPs
3.4. Functional Analysis of SNP-Associated Contigs
3.5. Patterns of Genetic Relationship in Obtained SNP Sets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, G.; Zhou, Z.; Wang, Z. Cultivation and Utilization of Masson Pine Pulpwood Forest; China Forestry Publishing House: Beijing, China, 2006; pp. 1–10. [Google Scholar]
- Grattapaglia, D. Twelve years into genomic selection in forest trees: Climbing the slope of enlightenment of marker assisted tree breeding. Forests 2022, 13, 1554. [Google Scholar] [CrossRef]
- Grattapaglia, D.; Silva-Junior, O.B.; Resende, R.T.; Cappa, E.P.; Müller, B.S.F.; Tan, B.; Isik, F.; Ratcliffe, B.; El-Kassaby, Y.A. Quantitative genetics and genomics converge to accelerate forest tree breeding. Front. Plant Sci. 2018, 9, 1693. [Google Scholar] [CrossRef]
- De La Torre, A.R.; Birol, I.; Bousquet, J.; Ingvarsson, P.K.; Jansson, S.; Jones, S.J.M.; Keeling, C.I.; MacKay, J.; Nilsson, O.; Ritland, K.; et al. Insights into conifer giga-genomes. Plant Physiol. 2014, 166, 1724–1732. [Google Scholar] [CrossRef]
- Neale, D.B.; Wegrzyn, J.L.; A Stevens, K.; Zimin, A.V.; Puiu, D.; Crepeau, M.W.; Cardeno, C.; Koriabine, M.; E Holtz-Morris, A.; Liechty, J.D.; et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014, 15, R59. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Li, J.; Bo, W.; Yang, W.; Zuccolo, A.; Giacomello, S.; Chen, X.; Han, F.; Yang, J.; Song, Y.; et al. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 2022, 185, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xie, Y.; Liu, B.; Zhou, Z.; Feng, Z.; Chen, Y. A transcriptomic variation map provides insights into the genetic basis of Pinus massoniana Lamb. evolution and the association with oleoresin yield. BMC Plant Biol. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Bai, Q.; Cai, Y.; He, B.; Liu, W.; Pan, Q.; Zhang, Q. Core set construction and association analysis of Pinus massoniana from Guangdong province in southern China using SLAF-seq. Sci. Rep. 2019, 9, 13157. [Google Scholar] [CrossRef]
- Kastally, C.; Niskanen, A.K.; Perry, A.; Kujala, S.T.; Avia, K.; Cervantes, S.; Haapanen, M.; Kesälahti, R.; Kumpula, T.A.; Mattila, T.M.; et al. Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research. Plant. J. 2022, 109, 1337–1350. [Google Scholar] [CrossRef]
- Miller, M.R.; Dunham, J.P.; Amores, A.; Cresko, W.A.; Johnson, E.A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007, 17, 240–248. [Google Scholar] [CrossRef]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 123, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [PubMed]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Parchman, T.L.; Jahner, J.P.; Uckele, K.A.; Galland, L.M.; Eckert, A.J. RADseq approaches and applications for forest tree genetics. Tree Genet. Genomes 2018, 14, 39. [Google Scholar] [CrossRef]
- Karam, M.J.; Lefèvre, F.; Dagher-Kharrat, M.B.; Pinosio, S.; Vendramin, G. Genomic exploration and molecular marker development in a large and complex conifer genome using RADseq and mRNAseq. Mol. Ecol. Resour. 2015, 15, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Clugston, J.A.; Kenicer, G.J.; Milne, R.; Overcast, I.; Wilson, T.C.; Nagalingum, N.S. RADseq as a valuable tool for plants with large genomes—A case study in cycads. Mol. Ecol. Resour. 2019, 19, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.; Zhao, W.; Wennström, U.; Gull, B.A.; Wang, X.-R. Parentage and relatedness reconstruction in Pinus sylvestris using genotyping-by-sequencing. Heredity 2020, 124, 633–646. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, X.; Ling, S.; Fu, Y.-X.; Hungate, E.; Shi, S.; Wu, C.-I. Estimating DNA polymorphism from next generation sequencing data with high error rate by dual sequencing applications. BMC Genom. 2013, 14, 1–9. [Google Scholar] [CrossRef]
- O'Leary, S.J.; Puritz, J.B.; Willis, S.C.; Hollenbeck, C.M.; Portnoy, D.S. These aren’t the loci you’e looking for: Principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 2018, 27, 3193–3206. [Google Scholar] [CrossRef] [PubMed]
- Treangen, T.J.; Salzberg, S.L. Repetitive DNA and next-generation sequencing: Computational challenges and solutions. Nat. Rev. Genet. 2012, 13, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, C.A.; Pettersson, F.H.; Clarke, G.M.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Data quality control in genetic case-control association studies. Nat. Protoc. 2010, 5, 1564–1573. [Google Scholar] [CrossRef]
- Pavan, S.; Delvento, C.; Ricciardi, L.; Lotti, C.; Ciani, E.; D’Agostino, N. Recommendations for choosing the genotyping method and best practices for quality control in crop genome-wide association studies. Front. Genet. 2020, 11, 447. [Google Scholar] [CrossRef]
- Mastretta-Yanes, A.; Arrigo, N.; Alvarez, N.; Jorgensen, T.H.; Piñero, D.; Emerson, B.C. Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol. Ecol. Resour. 2015, 15, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-B.; Cober, E.R.; Morrison, M.J.; Marsolais, F.; Peterson, G.W.; Horbach, C. Patterns of genetic variation in a soybean germplasm collection as characterized with genotyping-by-sequencing. Plants 2021, 10, 1611. [Google Scholar] [CrossRef] [PubMed]
- Ulaszewski, B.; Meger, J.; Burczyk, J. Comparative analysis of SNP discovery and genotyping in Fagus sylvatica L. and Quercus robur L. using RADseq, GB.S.; and ddRAD methods. Forests 2021, 12, 222. [Google Scholar] [CrossRef]
- Yang, M.-H.; Li, Z.; Zhang, D.; Tang, X.; Zhang, B.; Zhang, D. DNA Isolation from Pinus massoniana Needles. J. Central South Univ. For. Tech. 2008, 28, 39–44. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Zimin, A.V.; Stevens, K.A.; Crepeau, M.; Puiu, D.; Wegrzyn, J.; Yorke, J.A.; Langley, C.H.; Neale, D.B.; Salzberg, S.L. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience 2017, 6, giw016. [Google Scholar]
- Ye, J.; McGinnis, S.; Madden, T.L. BLAST: Improvements for better sequence analysis. Nucleic. Acids. Res. 2006, 34, W6–W9. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie. Nat. Methods 2012, 9, 357–359. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Korneliussen, T.S.; Albrechtsen, A.; Nielsen, R. ANGSD: Analysis of next generation sequencing data. BMC Bioinform. 2014, 15, 1–13. [Google Scholar] [CrossRef]
- Peterson, G.W.; Dong, Y.; Horbach, C.; Fu, Y.-B. Genotyping-by-sequencing for plant genetic diversity analysis: A lab guide for SNP genotyping. Diversity 2014, 6, 665–680. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 27, 29–34. [Google Scholar] [CrossRef]
- Yang, M.-H.; Fu, Y.B. AveDissR: An R function for assessing genetic distinctness and genetic redundancy. Appl. Plant Sci. 2017, 5, 1700018. [Google Scholar] [CrossRef]
- Core, R.; Rdct, R.; Team, R.; Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: http://www.R-project.org/ (accessed on 3 March 2022).
- Chen, C.; Mitchell, S.E.; Elshire, R.J.; Buckler, E.S.; El-Kassaby, Y.A. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet. Genomes. 2013, 9, 1537–1544. [Google Scholar] [CrossRef]
- Pan, J.; Wang, B.; Pei, Z.Y.; Zhao, W.; Gao, J.; Mao, J.F.; Wang, X.R. Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers. Mol. Ecol. Resour. 2015, 15, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.; Christie, N.; Reynolds, S.M.; Marais, G.C.; Tii-Kuzu, Y.; Caballero, M.; Kampman, T.; Visser, E.A.; Naidoo, S.; Kain, D.; et al. A genome-wide SNP genotyping resource for tropical pine tree species. Mol. Ecol. Resour. 2022, 22, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Wegrzyn, J.L.; Liechty, J.D.; Stevens, K.A.; Wu, L.S.; Loopstra, C.A.; Vasquez-Gross, H.A.; Dougherty, W.M.; Lin, B.Y.; Zieve, J.J.; Martínez-García, P.J.; et al. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 2014, 196, 891–909. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, O.; Burke, P.; Arkhipov, A.; Kuchma, N.; James, S.J.; Kovalchuk, I.; Pogribny, I. Genome hypermethylation in Pinus silvestris of Chernobyl: A mechanism for radiation adaptation? Mutat Res-Fund Mol. M. 2003, 529, 13–20. [Google Scholar] [CrossRef]
- Borthakur, D.; Busov, V.; Cao, X.H.; Du, Q.; Gailing, O.; Isik, F. Current status and trends in forest genomics. For. Res. 2022, 2, 11. [Google Scholar] [CrossRef]
- Bresadola, L.; Link, V.; Buerkle, C.A.; Lexer, C.; Wegmann, D. Estimating and accounting for genotyping errors in RAD-seq experiments. Mol. Ecol. Resour. 2020, 20, 856–870. [Google Scholar] [CrossRef]
- Pompanon, F.; Bonin, A.; Bellemain, E.; Taberlet, P. Genotyping errors: Causes, consequences and solutions. Nat. Rev. Genet. 2005, 6, 847–859. [Google Scholar] [CrossRef]
- Sork, V.L.; Fitz-Gibbon, S.T.; Puiu, D.; Crepeau, M.; Gugger, P.F.; Sherman, R.; Stevens, K.; Langley, C.H.; Pellegrini, M.; Salzberg, S.L. First draft assembly and annotation of the genome of a California endemic oak Quercus lobata Née (Fagaceae). G3 Genes Genomes Genet. 2016, 6, 3485–3495. [Google Scholar] [CrossRef] [Green Version]
Indicator | Description | Examples * |
---|---|---|
Good loci (GL) | Genotypes in both replicates are the same. | R1 T|T—R2 T|T |
Missing allele (MA) | A variant of one genotype partially fits the other. | R1 T|T—R2 T|G |
Locus error (LE) | Both genotypes differ with no common alleles. | R1 T|T—R2 G|G |
Missing loci (ML) | One genotype is available, second is absent. | R1 T|T—R2 N|N |
Missing data (MD) | Both genotypes of paired replicates are absent. | R1 N|N—R2 N|N |
No. | Filtering Steps | Description | rep01 SNP a | rep11SNP | rep61SNP b |
---|---|---|---|---|---|
1 | Original obtained | ANGSD in SNP calling | 28,980,482 (485,423) c | --- | --- |
2 | npGeno duplication removal and missing < 30% | Remove the singletons, duplicated and homogenous loci, and missing < 30% | 23,931,187 (482,785) | --- | --- |
3 | PLINK formatted and filtering | M10F01 d | 6,739,240 (265,525) | --- | --- |
4 | Genotyping error type label | SNP locus labelled with a genotyping error label | 6,739,240 (265,525) | 6,739,240 (265,525) | 6,739,240 (265,525) |
5 | Missing, MAF filtering | M10F01 | 6,739,240 (265,525) | 5,420,678 (256,986) | 2,626,541 (204,433) |
M5F01 | 4,339,365 (263,822) | 3,778,051 (255,740) | 2,169,377 (203,903) | ||
M0F01 | 426,521 (179,434) | 395,496 (171,910) | 243,046 (126,069) | ||
6 | Blasted e | M10F01 | 4,516,768 (159,155) | 3,624,053 (154,599) | 1,749,472 (125,784) |
M5F01 | 2,889,778 (158,339) | 2,512,235 (153,998) | 1,441,670 (125,515) | ||
M0F01 | 262,048 (107,151) | 243,695 (102,953) | 152,212 (76,910) | ||
7 | Annotated | M10F01 | 2,199,317 (60,642) | 1,746,690 (59,326) | 844,311 (50,447) |
M5F01 | 1,412,471 (60,418) | 1,217,369 (59,156) | 700,159 (50,368) | ||
M0F01 | 110,939 (41,140) | 103,721 (39,757) | 66,800 (30,958) | ||
8 | Missing, MAF, mC filtering | M10F05C4 | 627,362 (20,554) | 396,176 (19,986) | 95,115 (16,793) |
M5F05C4 | 244,948 (15,434) | 177,901 (14,952) | 60,143 (12,819) | ||
M0F05C4 | 6787 (2312) | 6185 (2192) | 2532 (1385) | ||
9 | Excluded all SNPs within 35 bp distance | M10F05C4 | 9780 (6736) | 15,354 (9,913) | 26,680 (13,707) |
M5F05C4 | 14,612 (9132) | 17,317 (10,322) | 20,055 (10,712) | ||
M0F05C4 | 2942 (1990) | 2789 (1892) | 1641 (1225) |
Chromosome | Number of Markers (SNP-Associated Contigs) | Percentage of Mapped Markers (SNP-Associated Contigs) |
---|---|---|
Chr01 | 980 (525) | 4.89% (4.91%) |
Chr02 | 1387 (757) | 6.92% (7.07%) |
Chr03 | 1490 (773) | 7.43% (7.22%) |
Chr04 | 1176 (628) | 5.86% (5.87%) |
Chr05 | 1952 (1044) | 9.73% (9.75%) |
Chr06 | 2030 (1070) | 10.12% (10.00%) |
Chr07 | 0 (0) | 0.00% (0.00%) |
Chr08 | 1688 (888) | 8.42% (8.30%) |
Chr09 | 1831 (985) | 9.13% (9.20%) |
Chr10 | 2049 (1104) | 10.22% (10.31%) |
Chr11 | 1606 (861) | 8.01% (8.04%) |
Chr12 | 1734 (942) | 8.65% (8.80%) |
Contigs | 2132 (1126) | 10.63% (10.52%) |
Total | 20,055 (10,703) | 100% (100.00%) |
Missing < 10% MAF > 0.01 | MAF > 0.05 and mC ≧ 4 | |||
---|---|---|---|---|
Missing (0) | Missing < 5% | Missing < 10% | ||
Initial total SNPs * | 6,739,240 | 16,496 | 604,520 | 1,693,704 |
Number of rep01SNP ** after filtering out the missing SNPs in rep0 | 16,496 | 435,039 | 901,225 | |
% of rep01SNP after filtering out the missing SNPs in six samples | 100.00% | 71.96% | 53.21% | |
Number of good loci (GL) after filtering out the genotyping errors in rep6 filtering | 6277 | 153,942 | 259,314 | |
% of rep61SNP GL in rep01SNP | 38.05% | 26.72% | 28.77% | |
Blasted SNP-associated contigs against the Chinese pine genome and selected the GL of rep6sSNPblast *** | 5535 | 134,611 | 226,558 | |
% of rep6sSNPblast in rep01SNP | 33.55% | 23.37% | 14.89% | |
Annotated SNP-associated contigs and selected the GL of rep6sSNPblastAnnot | 2532 | 60,143 | 95,115 | |
% of rep6sSNPblastAnnot in rep01SNP | 15.35% | 13.82% | 10.55% | |
Excluded all SNPs within 35 bp distance from each SNP-associated contigs for the GL of rep6sSNPblastAnnot35bp | 1641 | 20,055 | 26,680 | |
% of rep6sSNPblastAnnot50bp in rep01SNP | 9.95% | 4.61% | 2.96% | |
Key indicators of the filtered SNPs (rep0SNP) | GL a | 6277 (38.05%) | 153,942 (25.47%) | 259,314 (15.31%) |
MA | 9741 (59.05%) | 281,090 (46.50%) | 641,897 (37.90%) | |
LE | 0 (0.00%) | 7 (0.00%) | 14 (0.00%) | |
ML | 478 (2.90%) | 164,874 (27.27%) | 749,796 (44.27%) | |
MD | 0 (0.00%) | 4,607 (0.76%) | 42,683 (2.52%) | |
Total | 16,496 | 604,520 | 1,693,704 | |
Key indicators of the filtered SNPs (rep0SNPblast) | GL | 5535 (37.91%) | 134,611 (25.11%) | 226,558 (15.11%) |
MA | 8647 (59.22%) | 249,711 (46.58%) | 566,803 (37.81%) | |
LE | 0 (0.00%) | 5 (0.00%) | 10 (0.00%) | |
ML | 420 (2.88%) | 147,585 (27.53%) | 667,651 (44.53%) | |
MD | 0 (0.00%) | 4122 (0.76%) | 38,167 (2.54%) | |
Total | 14,602 | 536,034 | 1,499,189 | |
Key indicators of the filtered SNPs (rep0SNPblastAnnotating) | GL | 2532 (37.31%) | 60,143 (24.55%) | 95,115 (15.16%) |
MA | 4080 (60.11%) | 115,458 (47.14%) | 242,003 (38.57%) | |
LE | 0 (0.00%) | 2 (0.00%) | 3 (0.00%) | |
ML | 175 (2.58%) | 67,527 (27.57%) | 274,939 (43.82%) | |
MD | 0 (0.00%) | 1818 (0.74%) | 15,302 (2.44%) | |
Total | 6787 | 244,948 | 627,362 | |
The filtered rep6 GL SNPs within distance interval larger than 35 bp (rep6GL-SNPblastAnnotating35bp) | GL35 | 1641 | 20,055 | 26,680 |
Total GL | 2532 | 60,143 | 95,115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.-L.; Yang, M.-H.; Jiang, X.-L.; Xiong, H.; Duan, H.-L.; Zou, F.-L.; Xu, Q.-Y.; Wang, W.; Hong, Y.-H.; Lin, N.-Q. De Novo SNP Discovery and Genotyping of Masson Pine (Pinus massoniana Lamb.) via Genotyping-by-Sequencing. Forests 2023, 14, 387. https://doi.org/10.3390/f14020387
Li P-L, Yang M-H, Jiang X-L, Xiong H, Duan H-L, Zou F-L, Xu Q-Y, Wang W, Hong Y-H, Lin N-Q. De Novo SNP Discovery and Genotyping of Masson Pine (Pinus massoniana Lamb.) via Genotyping-by-Sequencing. Forests. 2023; 14(2):387. https://doi.org/10.3390/f14020387
Chicago/Turabian StyleLi, Peng-Le, Mo-Hua Yang, Xiao-Long Jiang, Huan Xiong, Hui-Liang Duan, Feng-Lan Zou, Qian-Yu Xu, Wei Wang, Yong-Hui Hong, and Neng-Qing Lin. 2023. "De Novo SNP Discovery and Genotyping of Masson Pine (Pinus massoniana Lamb.) via Genotyping-by-Sequencing" Forests 14, no. 2: 387. https://doi.org/10.3390/f14020387