Citizen Willingness to Pay for the Implementation of Urban Green Infrastructure in the Pilot Sponge Cities in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case City Selection
2.2. Data Collection
2.2.1. Questionnaire Design
2.2.2. Field Trip and Socio-Demographic Information of Respondents
2.3. Data Analysis
3. Results
3.1. Responders’ WTP and Results of Correlation Analysis
3.2. Results of Binary Logistic Regression
4. Discussion
4.1. Influence of Socio-Demographic Information towards WTP for Urban Green Infrastructure in Each City
4.2. Influence of Previous Knowledge of the Sponge City Concept on WTP for Urban Green Infrastructure
4.3. Suggestions to Improve Citizens’ WTP for Urban Green Infrastructure
4.4. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schütze, A.A.; Banning, A.; Bender, S. Kartierung und Simulation von Überschwemmungsflächen in urbanen Räumen nach Starkregenereignissen. Grundwasser 2021, 26, 87–97. [Google Scholar] [CrossRef]
- D’Aniello, A.; Cimorelli, L.; Cozzolino, L. The Influence of Soil Stochastic Heterogeneity and Facility Dimensions on Stormwater Infiltration Facilities Performance. Water Resour. Manag. 2019, 33, 2399–2415. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Multiobjective optimization of low impact development stormwater controls. J. Hydrol. 2018, 562, 564–576. [Google Scholar] [CrossRef]
- Kimambo, O.N.; Chikoore, H.; Gumbo, J.R. Understanding the Effects of Changing Weather: A Case of Flash Flood in Morogoro on January 11, 2018. Adv. Meteorol. 2019, 2019, 8505903. [Google Scholar] [CrossRef]
- Anker, Y.; Mirlas, V.; Gimburg, A.; Zilberbrand, M.; Nakonechny, F.; Meir, I.; Inbar, M. Effect of rapid urbanization on Mediterranean karstic mountainous drainage basins. Sustain. Cities Soc. 2019, 51, 101704. [Google Scholar] [CrossRef]
- Berndtsson, R.; Becker, P.; Persson, A.; Aspegren, H.; Haghighatafshar, S.; Jonsson, K.; Larsson, R.; Mobini, S.; Mottaghi, M.; Nilsson, J.; et al. Drivers of changing urban flood risk: A framework for action. J Environ. Manag. 2019, 240, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-B. A study on stormwater fee imposition for sustainable rainwater management. J. Korean Soc. Water Wastewater 2019, 33, 103–110. [Google Scholar] [CrossRef]
- Chuang, W.K.; Lin, Z.E.; Lin, T.C.; Lo, S.L.; Chang, C.L.; Chiueh, P.T. Spatial allocation of LID practices with a water footprint approach. Sci. Total Environ. 2023, 859, 160201. [Google Scholar] [CrossRef] [PubMed]
- Frosi, M.H.; Kargar, M.; Jutras, P.; Prasher, S.O.; Clark, O.G. Street Tree Pits as Bioretention Units: Effects of Soil Organic Matter and Area Permeability on the Volume and Quality of Urban Runoff. Water Air Soil Pollut. 2019, 230, 152. [Google Scholar] [CrossRef]
- Sinakou, E.; Boeve-de Pauw, J.; Goossens, M.; Van Petegem, P. Academics in the field of Education for Sustainable Development: Their conceptions of sustainable development. J. Clean. Prod. 2018, 184, 321–332. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef] [PubMed]
- Nousheen, A.; Yousuf Zai, S.A.; Waseem, M.; Khan, S.A. Education for sustainable development (ESD): Effects of sustainability education on pre-service teachers’ attitude towards sustainable development (SD). J. Clean. Prod. 2020, 250, 119537. [Google Scholar] [CrossRef]
- Guerrero, P.; Haase, D.; Albert, C. Identifying Spatial Patterns and Ecosystem Service Delivery of Nature-Based Solutions. Environ. Manag. 2022, 69, 735–751. [Google Scholar] [CrossRef] [PubMed]
- Van der Jagt, A.P.N.; Buijs, A.; Dobbs, C.; van Lierop, M.; Pauleit, S.; Randrup, T.B.; Wild, T. An action framework for the participatory assessment of nature-based solutions in cities. Ambio 2023, 52, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Woroniecki, S.; Wendo, H.; Brink, E.; Islar, M.; Krause, T.; Vargas, A.-M.; Mahmoud, Y. Nature unsettled: How knowledge and power shape ‘nature-based’ approaches to societal challenges. Glob. Environ. Change 2020, 65, 102132. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Qi, Y.; Chan, F.K.S.; Thorne, C.; O’Donnell, E.; Quagliolo, C.; Comino, E.; Pezzoli, A.; Li, L.; Griffiths, J.; Sang, Y.; et al. Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water 2020, 12, 2788. [Google Scholar] [CrossRef]
- Randrup, T.B.; Buijs, A.; Konijnendijk, C.C.; Wild, T. Moving beyond the nature-based solutions discourse: Introducing nature-based thinking. Urban Ecosyst. 2020, 23, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Lafortezza, R.; Chen, J.; van den Bosch, C.K.; Randrup, T.B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 2018, 165, 431–441. [Google Scholar] [CrossRef]
- Rodriguez-Rojas, M.I.; Grindlay Moreno, A.L. A Discussion on the Application of Terminology for Urban Soil Sealing Mitigation Practices. Int. J. Environ. Res. Public Health 2022, 19, 8713. [Google Scholar] [CrossRef]
- Darnthamrongkul, W.; Mozingo, L.A. Toward sustainable stormwater management: Understanding public appreciation and recognition of urban Low Impact Development (LID) in the San Francisco Bay Area. J. Environ. Manag. 2021, 300, 113716. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, A.R.; Ismail, Z.; Niksokhan, M.H.; Dayarian, M.A.; Ramli, A.H.; Yusoff, S. Optimal implementation of low impact development for urban stormwater quantity and quality control using multi-objective optimization. Environ. Monit. Assess. 2021, 193, 241. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Jung, K.; Li, F.; Li, H.; Kim, J.-C. Evaluation of the Main Function of Low Impact Development Based on Rainfall Events. Water 2020, 12, 2231. [Google Scholar] [CrossRef]
- Bahrami, M.; Bozorg-Haddad, O.; Loaiciga, H.A. Optimizing stormwater low-impact development strategies in an urban watershed considering sensitivity and uncertainty. Environ. Monit. Assess. 2019, 191, 340. [Google Scholar] [CrossRef] [PubMed]
- Krauze, K.; Wagner, I. From classical water-ecosystem theories to nature-based solutions—Contextualizing nature-based solutions for sustainable city. Sci. Total Environ. 2019, 655, 697–706. [Google Scholar] [CrossRef]
- Qiao, X.-J.; Kristoffersson, A.; Randrup, T.B. Challenges to implementing urban sustainable stormwater management from a governance perspective: A literature review. J. Clean. Prod. 2018, 196, 943–952. [Google Scholar] [CrossRef]
- Wang, R.; Brent, D.; Wu, H. Willingness to pay for ecosystem benefits of green stormwater infrastructure in Chinese sponge cities. J. Clean. Prod. 2022, 371, 133462. [Google Scholar] [CrossRef]
- Zalejska-Jonsson, A.; Wilkinson, S.J.; Wahlund, R. Willingness to Pay for Green Infrastructure in Residential Development-A Consumer Perspective. Atmosphere 2020, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.G.; Song, H.H.; Wang, J.B.; Friedler, E. Framework, Procedure, and Tools for Comprehensive Evaluation of Sustainable Stormwater Management: A Review. Water 2020, 12, 1231. [Google Scholar] [CrossRef]
- Wilkerson, B.; Romanenko, E.; Barton, D.N. Modeling reverse auction-based subsidies and stormwater fee policies for Low Impact Development (LID) adoption: A system dynamics analysis. Sustain. Cities Soc. 2022, 79, 103602. [Google Scholar] [CrossRef]
- Qiao, X.J.; Randrup, T.B. Willingness to Pay for the Maintenance of Green Infrastructure in Six Chinese Pilot Sponge Cities. Water 2022, 14, 428. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.; Ren, M.; Li, C.; Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Fonseca, C.; Zeerak, R. Stormwater Utility Fees and Credits: A Funding Strategy for Sustainability. Sustainability 2019, 11, 1913. [Google Scholar] [CrossRef] [Green Version]
- Porse, E.; Kerner, M.; Shinneman, J.; Kaplan, J.; Stone, S.; Cadenasso, M.L. Stormwater utility fees and household affordability of urban water services. Water Policy 2022, 24, 998–1013. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, C. A New Methodology for Updating Land Cover Maps in Rapidly Urbanizing Areas of Levying Stormwater Utility Fee. Appl. Sci. 2022, 12, 3254. [Google Scholar] [CrossRef]
- Novaes, C.; Marques, R. Stormwater Utilities: A Sustainable Answer to Many Questions. Sustainability 2022, 14, 6179. [Google Scholar] [CrossRef]
- Yoo, J.; Park, K. Stormwater Utility Fee Estimation Method for Individual Land Use Areas. Sustainability 2022, 14, 211. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Huang, M.; Zuo, J.; Rameezdeen, R. Received vs. given: Willingness to pay for sponge city program from a perceived value perspective. J. Clean. Prod. 2020, 256, 120479. [Google Scholar] [CrossRef]
- Griffiths, J.; Chan, F.K.S.; Shao, M.; Zhu, F.; Higgitt, D.L. Interpretation and application of Sponge City guidelines in China. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190222. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhu, D.; Zhou, L. A game theory analysis of promoting the spongy city construction at the building and community scale. Habitat Int. 2019, 86, 91–100. [Google Scholar] [CrossRef]
- Meng, M.; Dąbrowski, M.; Tai, Y.; Stead, D.; Chan, F. Collaborative spatial planning in the face of flood risk in delta cities: A policy framing perspective. Environ. Sci. Policy 2019, 96, 95–104. [Google Scholar] [CrossRef]
- Zheng, S.; Tang, Y.T.; Chan, F.K.S.; Cao, L.Y.; Song, R.X. The Demographic Implication for Promoting Sponge City Initiatives in the Chinese Megacities: A Case of Wuhan. Water 2022, 14, 883. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.M. The Collective Strategies of Key Stakeholders in Sponge City Construction: A Tripartite Game Analysis of Governments, Developers, and Consumers. Water 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.T.; Sun, M.X.; Song, B.M. Public perceptions of and willingness to pay for sponge city initiatives in China. Resour. Conserv. Recycl. 2017, 122, 11–20. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Xia, J.; Xu, J.; She, D. The Effect of Sponge City Construction for Reducing Directly Connected Impervious Areas on Hydrological Responses at the Urban Catchment Scale. Water 2020, 12, 1163. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Ren, X.Y.; Gu, R.Z.; Che, Y. Implementation of the “sponge city” development plan in China: An evaluation of public willingness to pay for the life-cycle maintenance of its facilities. Cities 2019, 93, 13–30. [Google Scholar] [CrossRef]
- Liang, X.; Liang, Y.; Chen, C.; van Dijk, M.P. Implementing Water Policies in China: A Policy Cycle Analysis of the Sponge City Program Using Two Case Studies. Sustainability 2020, 12, 5261. [Google Scholar] [CrossRef]
- Odonkor, S.T.; Adom, P.K. Environment and health nexus in Ghana: A study on perceived relationship and willingness-to-participate (WTP) in environmental policy design. Urban Clim. 2020, 34, 100689. [Google Scholar] [CrossRef]
- Hwang, K.; Lee, J. Antecedents and Consequences of Ecotourism Behavior: Independent and Interdependent Self-Construals, Ecological Belief, Willingness to Pay for Ecotourism Services and Satisfaction with Life. Sustainability 2018, 10, 789. [Google Scholar] [CrossRef] [Green Version]
- Naz, F.; Oláh, J.; Vasile, D.; Magda, R. Green Purchase Behavior of University Students in Hungary: An Empirical Study. Sustainability 2020, 12, 77. [Google Scholar] [CrossRef]
- Garcia-Cuerva, L.; Berglund, E.Z.; Binder, A.R. Public perceptions of water shortages, conservation behaviors, and support for water reuse in the US. Resour. Conserv. Recycl. 2016, 113, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Liu, X.; Wang, Y.T. Evolutionary game analysis of opportunistic behavior of Sponge City PPP projects: A perceived value perspective. Sci. Rep. 2022, 12, 879810. [Google Scholar] [CrossRef]
- Sato, M.; Ushimaru, A.; Minamoto, T. Effect of different personal histories on valuation for forest ecosystem services in urban areas: A case study of Mt. Rokko, Kobe, Japan. Urban For. Urban Green. 2017, 28, 110–117. [Google Scholar] [CrossRef]
- Luo, P.P.; Zheng, Y.; Wang, Y.Y.; Zhang, S.P.; Yu, W.Q.; Zhu, X.; Huo, A.D.; Wang, Z.H.; He, B.; Nover, D. Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China. Sustainability 2022, 14, 11653. [Google Scholar] [CrossRef]
- Xie, L.J.; Bulkeley, H.; Tozer, L. Mainstreaming sustainable innovation: Unlocking the potential of nature-based solutions for climate change and biodiversity. Environ. Sci. Policy 2022, 132, 119–130. [Google Scholar] [CrossRef]
- Wang, R.; Wu, H.; Chiles, R. Ecosystem Benefits Provision of Green Stormwater Infrastructure in Chinese Sponge Cities. Environ. Manag. 2022, 69, 558–575. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Gallegos, V.M.; My, N.H.D.; Tuan, T.H.; Boerger, T. Valuing ecosystem services and disservices of blue/green infrastructure. Evidence from a choice experiment in Vietnam. Econ. Anal. Policy 2022, 75, 114–128. [Google Scholar] [CrossRef]
- Iftekhar, M.S.; Buurman, J.; Lee, T.K.; He, Q.; Chen, E. Non-market value of Singapore ’s ABC Waters Program. Water Res. 2019, 157, 310–320. [Google Scholar] [CrossRef] [PubMed]
City | Total Respondents | Knowledge of Construction in Communities | Previous Knowledge of Sponge City Concept | Age | Gender | Education Level (Mode) | Family Income (Mode) |
---|---|---|---|---|---|---|---|
No | No | Mean value | Female | per month/RMB | |||
Yes | Yes | Male | |||||
Nanning | 198 | 129 | 108 | 46.5 | 89 | Bachelor | 10,000 |
70 | 81 | 109 | |||||
Pingxiang | 189 | 77 | 30 | 38.52 | 86 | Bachelor | 10,000 |
112 | 159 | 103 | |||||
Xi’xian New City | 259 | 136 | 120 | 35.32 | 149 | Vocational-Technical College | 10,000 |
122 | 139 | 110 | |||||
Zhenjiang | 183 | 119 | 101 | 39.7 | 98 | Vocational-Technical College | 10,000 |
64 | 70 | 85 | |||||
Chongqing | 171 | 111 | 67 | 37.4 | 96 | Vocational-Technical College Bachelor | 10,000 |
60 | 104 | 75 | |||||
Qingdao | 101 | 54 | 50 | 49.2 | 64 | High school | 10,000 |
47 | 51 | 37 |
City | Amount of WTP | WTP |
---|---|---|
per month/RMB | No | |
Yes | ||
Nanning | 0–5 | 70 |
128 | ||
Pingxiang | 0–5 | 50 |
139 | ||
Xi’xian New City | 0–5 | 86 |
173 | ||
Zhenjiang | 0–5 | 49 |
134 | ||
Chongqing | 0–5 | 65 |
106 | ||
Qingdao | 0–5 | 54 |
47 |
City | Age | Gender | Education Level | Family’s Monthly Income | Previous Knowledge of Sponge City Concept | Knowledge of Construction in Communities | ||
---|---|---|---|---|---|---|---|---|
Nanning | WTP | related coefficient | −0.249 ** | 0.037 | 0.364 ** | 0.187 ** | 0.312 ** | 0.142 |
Significance (double tail) | 0.000 | 0.605 | 0.000 | 0.003 | 0.000 | 0.056 | ||
Number of cases | 197 | 183 | ||||||
Pingxiang | WTP | related coefficient | −0.157 ** | −0.018 | 0.165 * | 0.115 | 0.101 | −0.026 |
Significance (double tail) | 0.031 | 0.805 | 0.023 | 0.114 | 0.169 | 0.720 | ||
Number of cases | 189 | 188 | ||||||
Xi’xian New City | WTP | related coefficient | −0.128 * | 0.075 | 0.188 ** | 0.171 ** | −0.030 | 0.011 |
Significance (double tail) | 0.013 | 0.228 | 0.001 | 0.002 | 0.626 | 0.860 | ||
Number of cases | 259 | 258 | ||||||
Zhenjiang | WTP | related coefficient | −0.137 | 0.068 | 0.148 * | 0.142 | 0.049 | 0.159 * |
Significance (double tail) | 0.065 | 0.358 | 0.045 | 0.056 | 0.514 | 0.032 | ||
Number of cases | 183 | |||||||
Chongqing | WTP | related coefficient | −0.273 ** | 0.207 ** | 0.271 ** | 0.173 * | 0.140 | 0.085 |
Significance (double tail) | 0.000 | 0.007 | 0.000 | 0.024 | 0.069 | 0.273 | ||
Number of cases | 169 | |||||||
Qingdao | WTP | related coefficient | −0.0265 ** | 0.027 | 0.199 ** | −0.032 | −0.097 | |
Significance (double tail) | 0.008 | 0.785 | 0.046 | 0.747 | 0.335 | |||
Number of cases | 101 | 101 |
City | B | Std. Err | Wald | p > |z| | Exp (B) | [95% Conf. Interval] | ||
---|---|---|---|---|---|---|---|---|
Nanning | Previous knowledge of the concept | 1.209 | 0.393 | 9.467 | 0.002 | 3.349 | 1.551 | 7.233 |
Zhenjiang | Knowledge of construction in communities | 0.854 | 0.421 | 4.112 | 0.043 | 2.348 | 1.029 | 5.359 |
Chongqing | Age | −0.048 | 0.016 | 8.835 | 0.003 | 0.953 | 0.924 | 0.984 |
Gender | 0.756 | 0.379 | 3.973 | 0.046 | 2.129 | 1.013 | 4.478 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Han, Y.; Qiao, X.-J.; Randrup, T.B. Citizen Willingness to Pay for the Implementation of Urban Green Infrastructure in the Pilot Sponge Cities in China. Forests 2023, 14, 474. https://doi.org/10.3390/f14030474
Zhang J, Han Y, Qiao X-J, Randrup TB. Citizen Willingness to Pay for the Implementation of Urban Green Infrastructure in the Pilot Sponge Cities in China. Forests. 2023; 14(3):474. https://doi.org/10.3390/f14030474
Chicago/Turabian StyleZhang, Jingyi, Yunfan Han, Xiu-Juan Qiao, and Thomas B. Randrup. 2023. "Citizen Willingness to Pay for the Implementation of Urban Green Infrastructure in the Pilot Sponge Cities in China" Forests 14, no. 3: 474. https://doi.org/10.3390/f14030474
APA StyleZhang, J., Han, Y., Qiao, X.-J., & Randrup, T. B. (2023). Citizen Willingness to Pay for the Implementation of Urban Green Infrastructure in the Pilot Sponge Cities in China. Forests, 14(3), 474. https://doi.org/10.3390/f14030474