A Wildfire Detection Algorithm Based on the Dynamic Brightness Temperature Threshold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Fire Points and Remote Sensing Images
2.1.2. Meteorological Information
2.1.3. Normalized Vegetation Index
2.1.4. Elevation Information
2.2. Exporting Fire Point Information
2.2.1. Capturing the Image of the Fire Point
2.2.2. Exporting Each Band DN of Fire Point (Digital Number)
2.3. Fire Point Inversion
2.3.1. Calibration
2.3.2. Planck Algorithm
2.3.3. Gray Level of Brightness Temperature
2.4. Calculating the Brightness Temperature Threshold
2.4.1. Otsu Algorithm
2.4.2. Select the Lowest Brightness Temperature
2.5. Build the Dataset of Wildfire Brightness Temperature Threshold
2.6. Regression
2.6.1. Ridge Regression (RR)
2.6.2. Lasso Regression (LR)
2.6.3. Support Vector Machine Regression (SVR)
2.6.4. Random Forest Regression (RFR)
2.6.5. eXtreme Gradient Boosting (XGR)
2.6.6. Categorical Boosting (CBR)
2.7. Experiment Details
2.7.1. Operating Environment
2.7.2. Model Parameter Settings
2.7.3. Dataset Partitioning
2.7.4. Evaluation Indicators
3. Results
3.1. Evaluation Results of Six Regression Models
3.2. Feature Sorting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dabanli, I. The Relationship between Climate Change and Increasing Wildfires; Forest Fires: Causes, Effects, Monitoring, Precautions and Rehabilitation Activities; Turkish Academy of Science: Ankara, Turkey, 2021; pp. 25–42. [Google Scholar]
- Kountouris, Y. Human activity, daylight saving time and wildfire occurrence. Sci. Total Environ. 2020, 727, 138044. [Google Scholar] [CrossRef] [PubMed]
- Hartter, J.; Hamilton, L.C.; Ducey, M.J.; Boag, A.E.; Salerno, J.D.; Christoffersen, N.D.; Oester, P.T.; Palace, M.W.; Stevens, F.R. Finding common ground: Agreement on increasing wildfire risk crosses political lines. Environ. Res. Lett. 2020, 15, 065002. [Google Scholar] [CrossRef]
- Baker, S.J. Fossil evidence that increased wildfire activity occurs in tandem with periods of global warming in Earth’s past. Earth-Sci. Rev. 2022, 224, 103871. [Google Scholar] [CrossRef]
- Craig, C.A.; Allen, M.W.; Feng, S.; Spialek, M.L. Exploring the impact of resident proximity to wildfires in the northern Rocky Mountains: Perceptions of climate change risks, drought, and policy. Int. J. Disaster Risk Reduct. 2020, 44, 101420. [Google Scholar] [CrossRef]
- Landry, J.-S.; Matthews, H.D.; Ramankutty, N. A global assessment of the carbon cycle and temperature responses to major changes in future fire regime. Clim. Chang. 2015, 133, 179–192. [Google Scholar] [CrossRef]
- Tanentzap, A.J.; Burd, K.; Kuhn, M.; Estop-Aragones, C.; Tank, S.; Olefeldt, D. Aged soils contribute little to contemporary carbon cycling downstream of thawing permafrost peatlands. Glob. Chang. Biol. 2021, 27, 5368–5382. [Google Scholar] [CrossRef]
- Mason, K.E.; Oakley, S.; Street, L.E.; Arróniz-Crespo, M.; Jones, D.L.; DeLuca, T.H.; Ostle, N.J. Boreal Forest Floor Greenhouse Gas Emissions Across a Pleurozium schreberi-Dominated, Wildfire-Disturbed Chronosequence. Ecosystems 2019, 22, 1381–1392. [Google Scholar] [CrossRef] [Green Version]
- Kirdyanov, A.V.; Saurer, M.; Siegwolf, R.; Knorre, A.A.; Prokushkin, A.S.; Churakova, O.V.; Fonti, M.V.; Büntgen, U. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 2020, 15, 034061. [Google Scholar] [CrossRef]
- Nedkov, R. Quantitative Assessment of Forest Degradation after Fire Using Ortogonalized Satellite Images from Sentinel-2. Comptes Rendus l’Acad. Bulg. Sci. 2018, 71, 83–86. [Google Scholar]
- Sitnov, S.A.; Mokhov, I.I. A Comparative Analysis of the Characteristics of Active Fires in the Boreal Forests of Eurasia and North America Based on Satellite Data. Izv. Atmos. Ocean. Phys. 2018, 54, 966–978. [Google Scholar] [CrossRef]
- Jang, E.; Kang, Y.; Im, J.; Lee, D.-W.; Yoon, J.; Kim, S.-K. Detection and Monitoring of Forest Fires Using Himawari-8 Geostationary Satellite Data in South Korea. Remote Sens. 2019, 11, 271. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, X.; Xue, W.; Qin, C.; Wu, Y.; Wang, S.; Qiu, P. Evaluation of forest fire damage based on Sentinel-2 images. In Proceedings of the International Conference on Environmental Remote Sensing and Big Data (ERSBD), Wuhan, China, 9 December 2021. [Google Scholar] [CrossRef]
- Guzel, A.; Bicakli, K.; Bicakli, F.; Kaplan, G. Monitoring the Regeneration Process of Areas Destroyed by Forest Fires Aided by Google Earth Engine. Kast. Univ. J. For. Fac. 2021, 21, 122–130. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Oton, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Ramo, R.; Roketa, E.; Bistinas, I.; van der Werf, G. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. USA 2021, 118, e2011160118. [Google Scholar] [CrossRef]
- Seydi, S.T.; Akhoondzadeh, M.; Amani, M.; Mahdavi, S. Wildfire Damage Assessment over Australia Using Sentinel-2 Imagery and MODIS Land Cover Product within the Google Earth Engine Cloud Platform. Remote Sens. 2021, 13, 220. [Google Scholar] [CrossRef]
- Talucci, A.C.; Loranty, M.M.; Alexander, H.D. Siberian taiga and tundra fire regimes from 2001–2020. Environ. Res. Lett. 2022, 17, 025001. [Google Scholar] [CrossRef]
- Karagianni, A.C.; Lazaridou, M.A. Remote sensing techniques in monitoring areas affected by forest fire. In Proceedings of the 5th International Conference on Remote Sensing and Geoinformation of the Environment (RSCy), Paphos, Cyprus, 6 September 2017. [Google Scholar] [CrossRef]
- Wu, R.; Zhao, J.; Zhang, H.; Guo, X.; Ying, H.; Deng, G.; Li, H. Wildfires on the Mongolian Plateau: Identifying Drivers and Spatial Distributions to Predict Wildfire Probability. Remote Sens. 2019, 11, 2361. [Google Scholar] [CrossRef] [Green Version]
- Adekpedjou, A.; Niang, S.D. Semiparametric estimation with spatially correlated recurrent events. Scand. J. Stat. 2021, 48, 1097–1126. [Google Scholar] [CrossRef]
- Bergonse, R.; Oliveira, S.; Goncalves, A.; Nunes, S.; da Camara, C.; Zezere, J.L. A combined structural and seasonal approach to assess wildfire susceptibility and hazard in summertime. Nat. Hazards 2021, 106, 2545–2573. [Google Scholar] [CrossRef]
- Li, Z.Q.; Cihlar, J.; Moreau, L.; Huang, F.; Lee, B. Monitoring fire activities in the boreal ecosystem. J. Geophys. Res.-Atmos. 1997, 102, 29611–29624. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Otsu, N. Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.; Lee, K.-S.; Choi, S.; Seo, M.; Lee, D.; Kwon, C.; Kim, H.; Lee, E.; Han, K.-S. Determination of dynamic threshold for sea-ice detection through relationship between 11 μm brightness temperature and 11–12 μm brightness temperature difference. Korean J. Remote Sens. 2017, 33, 243–248. [Google Scholar]
- Daxiang, X.; Debao, T.; Xiongfei, W.; Qiao, W. A Dynamic Threshold Cloud Detecting Approach Based On The Brightness Temperature From Fy-2 Vissr Data. In Proceedings of the 36th International Symposium on Remote Sensing of the Environment (ISRSE), Berlin, Germany, 11–15 May 2015. [Google Scholar]
- Deng, Z.; Zhang, G. An Improved Forest Fire Monitoring Algorithm with Three-Dimensional Otsu. IEEE Access 2021, 9, 118367–118378. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Jaafari, A.; Zenner, E.; Panah, M.; Shahabi, H. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric. For. Meteorol. 2019, 266, 198–207. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Milanovic, S.; Markovic, N.; Pamucar, D.; Gigovic, L.; Kostic, P.; Milanovic, S.D. Forest Fire Probability Mapping in Eastern Serbia: Logistic Regression versus Random Forest Method. Forests 2021, 12, 5. [Google Scholar] [CrossRef]
- Huot, F.; Hu, R.L.; Goyal, N.; Sankar, T.; Ihme, M.; Chen, Y.-F. Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4412513. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Moatassime, H.A. Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Ba, R.; Chen, C.; Yuan, J.; Song, W.; Lo, S. SmokeNet: Satellite Smoke Scene Detection Using Convolutional Neural Network with Spatial and Channel-Wise Attention. Remote Sens. 2019, 11, 1702. [Google Scholar] [CrossRef] [Green Version]
- Toulouse, T.; Rossi, L.; Celik, T.; Akhloufi, M. Automatic fire pixel detection using image processing: A comparative analysis of rule-based and machine learning-based methods. Signal Image Video Process. 2016, 10, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Toan, N.T.; Cong, P.T.; Huang, N.Q.V.; Jo, J. A deep learning approach for early wildfire detection from hyperspectral satellite images. In Proceedings of the IEEE 7th International Conference on Robot Intelligence Technology and Applications (RiTA), Daejeon, Republic of Korea, 1–3 November 2019. [Google Scholar]
- Dun-zhu, Z.; Ba, L.; Wang, C. Study on the Application of EOS/MODIS Data under the Support of 3S Technology in the Monitoring of Forest Fire in Tibet. Anhui Agric. Sci. 2010, 38, 15714–15717. [Google Scholar] [CrossRef]
- Jones, P.G.; Thornton, P.K. Representative soil profiles for the Harmonized World Soil Database at different spatial resolutions for agricultural modelling applications. Agric. Syst. 2015, 139, 93–99. [Google Scholar] [CrossRef]
- Avellan, T.; Zabel, F.; Mauser, W. The influence of input data quality in determining areas suitable for crop growth at the global scale—A comparative analysis of two soil and climate datasets. Soil Use Manag. 2012, 28, 249–265. [Google Scholar] [CrossRef]
- Smiatek, G.; Helmert, J.; Gerstner, E.-M. Impact of land use and soil data specifications on COSMO-CLM simulations in the CORDEX-MED area. Meteorol. Z. 2016, 25, 215–230. [Google Scholar] [CrossRef]
- Todd-Brown, K.E.O.; Randerson, J.T.; Post, W.M.; Hoffman, F.M.; Tarnocai, C.; Schuur, E.A.G.; Allison, S.D. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 2013, 10, 1717–1736. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 2000; p. 314. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C.; Comp, M.A. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13 August 2016. [Google Scholar] [CrossRef] [Green Version]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 2–8 December 2018; Volume 31. [Google Scholar]
- Ying, L.; Shen, Z.; Yang, M.; Piao, S. Wildfire Detection Probability of MODIS Fire Products under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records. Remote Sens. 2019, 11, 3031. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, M.R.; Abatzoglou, J.; Luce, C.; Adamowski, J.; Farid, A.; Sadegh, M. Warming enabled upslope advance in western US forest fires. Proc. Natl. Acad. Sci. USA 2021, 118, e2009717118. [Google Scholar] [CrossRef]
- Hally, B.; Wallace, L.; Reinke, K.; Jones, S.; Engel, C.; Skidmore, A. Estimating Fire Background Temperature at a Geostationary Scale-An Evaluation of Contextual Methods for AHI-8. Remote Sens. 2018, 10, 1368. [Google Scholar] [CrossRef] [Green Version]
- Filizzola, C.; Corrado, R.; Marchese, F.; Mazzeo, G.; Paciello, R.; Pergola, N.; Tramutoli, V. RST-FIRES, an exportable algorithm for early-fire detection and monitoring: Description, implementation, and field validation in the case of the MSG-SEVIRI sensor. Remote Sens. Environ. 2016, 186, 196–216. [Google Scholar] [CrossRef]
Name (Unit) | Explanation | Range | |
---|---|---|---|
Location | Longitude (degree) | Longitude of the firepoint pixel | −142.22~39.62 |
Latitude (degree) | Latitude of the firepoint pixel | −14.98~66.05 | |
Weather | Daily Average Temperature (Fahrenheit) | Meteorological information for the nearest weather station to the fire point image element for the nearest date | 31.9~97.8 |
Dewpoint Temperature (Fahrenheit) | −12.4~75.1 | ||
Average Wind Speed (knots) | 0~17.7 | ||
Maximum Sustain Wind Velocity (knots) | 3.9~33 | ||
Daily Maximum Temperature (Fahrenheit) | 39.2~116.2 | ||
Daily Minimum Temperature (Fahrenheit) | 17.1~88.9 | ||
Index of vegetation | Normalized Differential Vegetation Index (no unit) | Index to assess vegetation densities | 0.136~0.865 |
Elevation Information | Altitude (meter) | 0~5356 | |
Brightness temperature threshold | Minimum Brightness Temperature of Ignition Point (centigrade) | The minimum brightness temperature at the ignition point | 7.01~182.48 |
Name | Parameters |
---|---|
Ridge Regression (RR) | Alpha = 0.01, tol = 10−5, max_iter = 10,000 |
Lasso Regression (LR) | Alpha = 0.01, tol = 10−5, max_iter = 10,000 |
Support Vector Machine Regression (SVR) | Kernel = “poly”, degree = 2, epsilon = 0.01, gamma = “scale”, max_iter = 10,000 |
Random Forest Regression (RFR) | n_estimators = 100, criterion = ‘mse’, min_samples_split = 2, min_samples_leaf = 100 |
XGBoost Regression (XGR) | learning_rate = 0.01, n_estimators = 1000, max_depth = 3, early_stopping_rounds = 100, eval_metric = “logloss”, verbose = True |
CatBoost regression (CBR) | learning_rate = 0.001, depth = 10, l2_leaf_reg = 0.01, grow_policy = ‘Lossguide’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Wang, M.; Fu, Y.; Zhang, L.; Wang, X. A Wildfire Detection Algorithm Based on the Dynamic Brightness Temperature Threshold. Forests 2023, 14, 477. https://doi.org/10.3390/f14030477
Ding Y, Wang M, Fu Y, Zhang L, Wang X. A Wildfire Detection Algorithm Based on the Dynamic Brightness Temperature Threshold. Forests. 2023; 14(3):477. https://doi.org/10.3390/f14030477
Chicago/Turabian StyleDing, Yunhong, Mingyang Wang, Yujia Fu, Lin Zhang, and Xianjie Wang. 2023. "A Wildfire Detection Algorithm Based on the Dynamic Brightness Temperature Threshold" Forests 14, no. 3: 477. https://doi.org/10.3390/f14030477
APA StyleDing, Y., Wang, M., Fu, Y., Zhang, L., & Wang, X. (2023). A Wildfire Detection Algorithm Based on the Dynamic Brightness Temperature Threshold. Forests, 14(3), 477. https://doi.org/10.3390/f14030477