Landslide Susceptibility Mapping Based on Information-GRUResNet Model in the Changzhou Town, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Factors
2.3. Process of Regional Landslide Susceptibility Mapping Based on the Information-GRUResNet Model
2.4. Normalization
2.5. Principal Component Analysis
2.6. Information Theory
2.7. GRU Model
2.8. ResNetGRU Model
2.9. Evaluation Index
3. Results
3.1. Landslide Susceptibility Mapping Based on Information Theory
3.2. Landslide Susceptibility Mapping with the Information-GRUResNet Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chao, Z.; Kunlong, Y.; Ying, C.; Bayes, A. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [Google Scholar]
- Yonggang, Z.; Jun, T.; Zhengying, H.; Junkun, T. A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide. Nat. Hazards 2021, 105, 783–813. [Google Scholar]
- Xiuzhen, L.; Shengwei, L. Large-Scale Landslide Displacement Rate Prediction Based on Multi-Factor Support Vector Regression Machine. Appl. Sci. 2021, 11, 1381. [Google Scholar]
- Shaohong, L.; Na, W. A new grey prediction model and its application in landslide displacement prediction. Chaos Solitons Fractals 2021, 147, 110969. [Google Scholar]
- Yong, Z.; Zhengwei, Z.; Wanjie, L.D.G.; Wang, X. Experimental research on a novel optic fiber sensor based on OTDR for landslide monitoring. Measurement 2019, 148, 106926. [Google Scholar]
- Junwei, M.; Huiming, T.; Xiao, L.; Tao, W.; Junrong, Z.; Qinwen, T.; Zhiqiang, F. Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: A case study in the Three Gorges Reservoir area, China. Landslides 2018, 15, 1145–1153. [Google Scholar]
- Shiluo, X.; Ruiqing, N. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China. Comput. Geosci. 2018, 111, 87–96. [Google Scholar]
- Richard, M.; Lanhai, L.; Jean, B.N.; Christophe, M.; Enan, M.N.; Patient, M.K.; Aboubakar, G.; Egide, H. Landslide susceptibility and influencing factors analysis in Rwanda. Environ. Dev. Sustain. 2020, 22, 7985–8012. [Google Scholar]
- Andrea, C.; Federico, R.; Daniela, L.; Filippo, C.; Nicola, C. Landslide susceptibility map refinement using PSInSAR data. Remote Sens. Environ. 2016, 184, 302–315. [Google Scholar]
- Xing, A.-Z.; Yamin, M.; Rongxun, W.; Tongxin, Z.; Yongcui, D.; Junzhi, L.; Lin, Y.; Cheng-Zhi, Q.; Haoyuan, H. A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping. Catena 2018, 166, 317–327. [Google Scholar]
- Rubini, M.; Olsen, J.M. Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping. Geomat. Nat. Hazards Risk 2015, 7, 1835–1855. [Google Scholar]
- Qingfeng, H.; Himan, S.; Ataollah, S.; Shaojun, L.; Wei, C.; Nianqin, W.; Huichan, C.; Huiyuan, B.; Jianquan, M.; Yingtao, C.; et al. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Sci. Total Environ. 2019, 663, 1–15. [Google Scholar]
- Vakhshoori, V.; Zare, M. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomat. Nat. Hazards Risk 2016, 7, 1731–1752. [Google Scholar] [CrossRef]
- Guo-liang, D.; Yong-shuang, Z.; Javed, I.; Zhi-hua, Y.; Xin, Y. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. J. Mt. Sci. 2017, 2, 249–268. [Google Scholar]
- Haoyuan, H.; Paraskevas, T.; Ioanna, I.; Constantinos, L.; Yi, W. Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping. Sci. Total Environ. 2020, 742, 140549. [Google Scholar]
- Qian, W.; Yi, W.; Ruiqing, N.; Ling, P. Integration of Information Theory, K-Means Cluster Analysis and the Logistic Regression Model for Landslide Susceptibility Mapping in the Three Gorges Area, China. Remote Sens. 2017, 9, 938. [Google Scholar]
- Taskin, K.; Emrehan, K.S.; Ismail, C. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: A case study of Duzkoy district. Nat. Hazards 2015, 76, 471–496. [Google Scholar]
- Wenhuan, W.; Qiang, Z.; Vijay, P.S.; Gang, W.; Jiaqi, Z.; Zexi, S.; Shuai, S. A Data-Driven Model on Google Earth Engine for Landslide Susceptibility Assessment in the Hengduan Mountains, the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 4662. [Google Scholar]
- Prakash, N.; Manconi, A.; Loew, S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models. Remote Sens. 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Dalia, B.K. A heuristic approach to global landslide susceptibility mapping. Nat. Hazards 2017, 87, 145–164. [Google Scholar]
- Jie, D.; Ali, P.Y.; Dieu, T.B.; Abdelaziz, M.; Mehebub, S.; Zhongfan, Z.; Chi-Wen, C.; Khabat, K.; Yong, Y.; Binh, T.P. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar]
- Vahid, M.; Yaghoub, N. Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides 2016, 13, 97–114. [Google Scholar]
- Wei, C.; Hamid, R.P.; Zhou, Z. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto Int. 2016, 32, 367–385. [Google Scholar]
- Wei, C.; Wenping, L.; Huichan, C.; Enke, H.; Xiaoqin, L.; Xiao, D. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environ. Earth Sci. 2016, 75, 63. [Google Scholar]
- Xianyu, Y.; Kaixiang, Z.; Yingxu, S.; Weiwei, J.; Jianguo, Z. Study on landslide susceptibility mapping based on rock–soil characteristic factors. Sci. Rep. 2021, 11, 15476. [Google Scholar]
- Paraskevas, T.; Ioanna, I. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size. Catena 2016, 145, 164–179. [Google Scholar]
- Mahdi, P.; Amiya, G.; Hamid, R.P.; Fatemeh, R.; Saro, L. Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Sci. Total Environ. 2020, 741, 139937. [Google Scholar]
- Mohammad, F.; Alireza, V.; Ali, A.A.; Mahdi, M.; Hossein, A. Mapping landslide susceptibility in the Zagros Mountains, Iran: A comparative study of different data mining models. Earth Sci. Inform. 2019, 12, 615–628. [Google Scholar]
- Krzysztof, G.; María, T.R. The importance of input data on landslide susceptibility mapping. Sci. Rep. 2021, 11, 19334. [Google Scholar]
- Abdelaziz, M.; Ali, P.Y.; Jie, D.; Jim, W.; Binh, T.; Dieu, T.B.; Ram, A.; Boumezbeur, A. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar]
- Faming, H.; Jing, Z.; Chuangbing, Z.; Yuhao, W.; Jinsong, H.; Li, Z. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar]
- Yanting, P.; Yaping, H.; Qi, Z.; Xingyuan, Z.; Song, W. Effects of Image Degradation and Degradation Removal to CNN-Based Image Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1239–1253. [Google Scholar]
- Yaning, Y.; Zhijie, Z.; Wanchang, Z.; Huihui, J.; Jianqiang, Z. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. Catena 2020, 195, 104851. [Google Scholar]
- Zhice, F.; Yi, W.; Ling, P.; Haoyuan, H. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput. Geosci. 2020, 139, 104470. [Google Scholar]
- Somnath, B.; Vaibhav, K.U.; Balamurugan, G.; Thomas, O. Landslide inventory and susceptibility models considering the landslide typology using deep learning: Himalayas, India. Nat. Hazards 2021, 108, 1257–1289. [Google Scholar]
- Weidong, W.; Zhuolei, H.; Zheng, H.; Yange, L.; Jie, D.; Jianling, H. Mapping the susceptibility to landslides based on the deep belief network: A case study in Sichuan Province, China. Nat. Hazards 2020, 103, 3239–3261. [Google Scholar]
- Phuong, T.T.; Mahdi, P.; Khabat, K.; Omid, G.; Narges, K.; Artemi, C.; Saro, L. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci. Front. 2021, 12, 505–519. [Google Scholar]
- Maher, I.S.; Biswajeet, P.; Saro, L. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena 2020, 186, 104249. [Google Scholar]
- Faming, H.; Kunlong, Y.; Jinsong, H.; Lei, G.; Peng, W. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar]
- Ping, L.; Ruimao, Z.; Jiamin, R.; Zhanglin, P.; Jingyu, L. Switchable Normalization for Learning-to-Normalize Deep Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 712–728. [Google Scholar]
- Zhaodong, C.; Lei, D.; Guoqi, L.; Jiawei, S. Effective and Efficient Batch Normalization Using a Few Uncorrelated Data for Statistics Estimation. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 348–362. [Google Scholar]
- Furkan, E.; Özgün, Y.; Ali, Y.M. Predictive modeling of biomass gasification with machine learning-based regression methods. Energy 2020, 191, 116541. [Google Scholar]
- Douglas, M.C.; Ana, P.F.; Brivaldo, G.A.; Fernando, J.F.; dos Santos Silva, T.H.; Silva Cavalcante, F.M. Physical soil quality indicators for environmental assessment and agricultural potential of Oxisols under different land uses in the Araripe Plateau, Brazil. Soil Tillage Res. 2021, 209, 104951. [Google Scholar]
- Zhihua, Y.; Hengxing, L.; Xing, G.; Langping, L.; Yunshan, M.; Yuming, W. Urgent landslide susceptibility assessment in the 2013 Lushan earthquake-impacted area, Sichuan Province, China. Nat. Hazards 2015, 75, 2467–2487. [Google Scholar]
- Paraskevas, T.; Ioanna, I.; Haoyuan, H.; Wei, C.; Chong, X. Applying information theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslide 2017, 14, 1091–1111. [Google Scholar]
- Hamid, R.P.; Majid, M.; Biswajeet, P. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 2012, 97, 71–84. [Google Scholar]
- Krishna, C.D.; Amar, D.R.; Hamid, R.P.; Kohki, Y.; Biswajeet, P.; In, C.R.; Megh, R.D.; Omar, F. Althuwaynee. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar]
- Chuxiong, H.; Tiansheng, O.; Yu, Z.; LiMin, Z. GRU-Type LARC Strategy for Precision Motion Control with Accurate Tracking Error Prediction. IEEE Trans. Ind. Electron. 2020, 68, 812–820. [Google Scholar]
- Jin, W.; You, Z.; LiangChih, Y.; Xuejie, Z. Contextual sentiment embeddings via bi-directional GRU language model. Knowl.-Based Syst. 2022, 235, 107663. [Google Scholar]
- Yaxiong, W.; Zhenhang, C.; Wei, Z. Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning. Energy 2022, 244, 123178. [Google Scholar]
- Zhimin, L.; Shaobing, Y.; Yuanzhong, W.; Jinyu, Z. Discrimination of the fruits of Amomum tsao-ko according to geographical origin by 2DCOS image with RGB and Resnet image analysis techniques. Microchem. J. 2021, 169, 106545. [Google Scholar]
- Stephan, F.; Jesse, G. Defining the extent of gene function using ROC curvature. Stephan Fischer. Bioinformatics 2022, 38, 5390–5397. [Google Scholar]
- Sadatsafavi, M.; Saha-Chaudhuri, P.; Petkau, J. Model-Based ROC Curve: Examining the Effect of Case Mix and Model Calibration on the ROC Plot. Med. Decis. Mak. 2022, 42, 487–499. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, X.; Ji, Y. Landslide Displacement Prediction based on Time Series Analysis and Double-BiLSTM Model. Int. J. Enviromental Res. Public Health 2022, 19, 2077. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Lucy, R.W.; Alessandra, M.; Malcolm, H.; Moninya, R.; Craig, R.S. Assessment of surface currents measured with high-frequency phased-array radars in two regions of complex circulation. IEEE J. Ocean. Eng. 2017, 43, 484–505. [Google Scholar]
Landform | Geological Structure | Lithological Class | Human Activity Level | Slope Type | Regional Slope |
---|---|---|---|---|---|
47.43% | 12.76% | 9.36% | 9.85% | 12.2% | 8.4% |
Environmental Factors | Number of Landslide Points | Total Number of Landslide Points | Number of Grids for Each Factor | Grid Area of Each Factor | Total Grid Area | Information Theory Value | Normalized Information Theory Value |
---|---|---|---|---|---|---|---|
Landform | |||||||
High hills | 8 | 65 | 200,519 | 180,467,100 | 309,358,800 | −1.55599245 | 0.073032586 |
Low mountains and shallow-cut terrain | 47 | 65 | 43,898 | 39,508,200 | 309,358,800 | 1.733753855 | 1 |
Undulating mounds | 8 | 65 | 34,353 | 30,917,700 | 309,358,800 | 0.208227205 | 0.570145123 |
Valley terraces | 2 | 65 | 64,962 | 58,465,800 | 309,358,800 | −1.81518028 | 0 |
Geological structure | |||||||
>500 | 50 | 65 | 243,989 | 219,590,100 | 309,358,800 | 0.080374877 | 0.729635056 |
250–500 | 4 | 65 | 48,020 | 43,218,000 | 309,358,800 | −0.81984821 | 0 |
100–250 | 5 | 65 | 30,749 | 27,674,100 | 309,358,800 | −0.15094454 | 0.542149574 |
<100 | 6 | 65 | 20,974 | 18,876,600 | 309,358,800 | 0.413950908 | 1 |
Lithological class | |||||||
Sandstone | 0 | 65 | 4903 | 4,412,700 | 309,358,800 | - | - |
Quaternary system | 7 | 65 | 76,970 | 69,273,000 | 309,358,800 | −0.73203057 | 0 |
Clastic rock | 51 | 65 | 225,559 | 203,003,100 | 309,358,800 | 0.178718881 | 1 |
Granite | 7 | 65 | 36,300 | 32,670,000 | 309,358,800 | 0.019567422 | 0.825252204 |
Human activity level | |||||||
Very weak | 1 | 65 | 86,154 | 77,535,600 | 309,358,800 | −2.79062268 | 0 |
Strong | 16 | 65 | 108,166 | 97,349,400 | 309,358,800 | −0.24560334 | 0.531037444 |
Moderate | 36 | 65 | 25,715 | 23,143,500 | 309,358,800 | 2.001919473 | 1 |
Weak | 12 | 65 | 123,697 | 111,327,300 | 309,358,800 | −0.66745336 | 0.443015263 |
Slope type | |||||||
Transverse slope | 26 | 65 | 108,546 | 97,691,400 | 309,358,800 | 0.236397506 | 0.705986485 |
Reverse slope | 6 | 65 | 38,431 | 34,587,900 | 309,358,800 | −0.19162994 | 0.347459581 |
Oblique slope | 15 | 65 | 80,151 | 72,135,900 | 309,358,800 | −0.01038714 | 0.499273258 |
Forward slope | 1 | 65 | 4397 | 3,957,300 | 309,358,800 | 0.184552524 | 0.662559782 |
Soil layer thickness <2 m | 5 | 65 | 48,490 | 43,641,000 | 309,358,800 | −0.60644466 | 0 |
Soil layer thickness 2–4 m | 6 | 65 | 44,161 | 39,744,900 | 309,358,800 | −0.33060756 | 0.231048318 |
Soil layer thickness 4–6 m | 0 | 65 | 1922 | 1,729,800 | 309,358,800 | - | - |
Soil layer thickness >6 m | 6 | 65 | 17,634 | 15,870,600 | 309,358,800 | 0.587405627 | 1 |
Regional slope | |||||||
<15 | 15 | 65 | 100,225 | 90,202,500 | 309,358,800 | −0.23389244 | 0.583159479 |
25–35 | 5 | 65 | 75,284 | 67,755,600 | 309,358,800 | −1.04635470 | 0 |
>=35 | 45 | 65 | 168,222 | 151,399,800 | 309,358,800 | 0.346852968 | 1 |
15–25 | 0 | 65 | 0 | 900 | 309,358,800 | - | - |
Susceptibility Level | Number of Grids in the Region | Proportion of Grids (%) | Number of Landslides | Proportion of Landslides (%) |
---|---|---|---|---|
Very high | 74,118 | 21.56 | 39 | 60 |
High | 101,529 | 29.54 | 14 | 21.54 |
Moderate | 76,771 | 22.33 | 7 | 10.77 |
Low | 70,866 | 20.62 | 4 | 6.15 |
Very low | 20,448 | 5.95 | 1 | 1.54 |
Susceptibility Level | Number of Grids in the Region | Proportion of Grids (%) | Number of Landslides | Proportion of Landslides (%) |
---|---|---|---|---|
Very high | 74,118 | 21.56 | 39 | 60 |
High | 101,529 | 29.54 | 14 | 21.54 |
Moderate | 76,771 | 22.33 | 7 | 10.77 |
Low | 70,866 | 20.62 | 4 | 6.15 |
Very low | 20,448 | 5.95 | 1 | 1.54 |
Susceptibility Level | Information-GRUResNet | GRU | RF | LR |
---|---|---|---|---|
Very high | 39 | 13 | 24 | 15 |
High | 14 | 33 | 14 | 34 |
Moderate | 7 | 11 | 17 | 7 |
Low | 4 | 6 | 6 | 8 |
Very low | 1 | 2 | 0 | 1 |
Model | MSE | MAE | RMSE |
---|---|---|---|
Information-GRUResNet | 1.32307692 | 0.83076923 | 1.15025081 |
GRU | 1.67692308 | 1.01 | 1.29496065 |
RF | 2.13846154 | 1.09230769 | 1.46234795 |
LR | 1.89230769 | 1.03076923 | 1.37561175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Chen, Q.; Lu, W.; Ji, Y.; Liang, W.; Sun, X. Landslide Susceptibility Mapping Based on Information-GRUResNet Model in the Changzhou Town, China. Forests 2023, 14, 499. https://doi.org/10.3390/f14030499
Lin Z, Chen Q, Lu W, Ji Y, Liang W, Sun X. Landslide Susceptibility Mapping Based on Information-GRUResNet Model in the Changzhou Town, China. Forests. 2023; 14(3):499. https://doi.org/10.3390/f14030499
Chicago/Turabian StyleLin, Zian, Qiuguang Chen, Weiping Lu, Yuanfa Ji, Weibin Liang, and Xiyan Sun. 2023. "Landslide Susceptibility Mapping Based on Information-GRUResNet Model in the Changzhou Town, China" Forests 14, no. 3: 499. https://doi.org/10.3390/f14030499
APA StyleLin, Z., Chen, Q., Lu, W., Ji, Y., Liang, W., & Sun, X. (2023). Landslide Susceptibility Mapping Based on Information-GRUResNet Model in the Changzhou Town, China. Forests, 14(3), 499. https://doi.org/10.3390/f14030499