Growth Characteristics of Seven Willow Species Distributed in Eastern Japan in Response to Compost Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Preparation of Willow Cuttings
2.3. Experimental Design
2.4. Soil Analysis
2.5. Measurements of Plant Growth and Photosynthetic Rate
2.6. Measurement of Willow Biomass
2.7. Analysis of Chemical Element Concentrations in Plant Organs
2.8. Statistical Analysis
3. Results
3.1. Soil Properties of Con, LM, and HM Treatments
3.2. Growth Parameters of Willow Individuals
3.3. Photosynthetic Rate, Stomatal Conductance, and Intrinsic Water Use Efficiency
3.4. Differences in the Biomass of Willows
3.5. Nutrient Concentrations
3.6. The PCA Analysis, Vector Analysis, and Correlations between Concentration of Nutrients and Growth
4. Discussion
4.1. Changes in the Growth Characteristics of Willows after Manure Treatment
4.2. Changes in the Nutrient Concentrations and Effects of Willows after Manure Treatment
4.3. Comparison of Growth Characteristics among Seven Willows
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Full term | Abbreviation |
Photosynthetic rate at light saturation | A |
Analysis of variance | ANOVA |
Carbon | C |
Calcium | Ca |
Control treatment | Con |
Iron | Fe |
Forestry and Forest Products Research Institute | FFPRI |
Stomatal conductance | gs |
Height of year (α, β) | Hα, Hβ |
High manure treatment | HM |
Inductively coupled plasma-mass spectrometry | ICP-MS |
Intrinsic water use efficiency | IWUE |
Potassium | K |
Leaf dry mass | LDM |
Low manure treatment | LM |
Magnesium | Mg |
Manganese | Mn |
Nitrogen | N |
Sodium | Na |
Concentration of nutrient | NCc |
Phosphorus | P |
Principal component analysis | PCA |
Root dry mass | RDM |
Relative height growth rate | RHGR |
Stem and branch dry mass | SDM |
Shoot/root ratio | S/R |
Short rotation coppice | SRC |
Zinc | Zn |
References
- Dickmann, D.I.; Kuzovkina, J. Poplars and willows of the world, with emphasis on silviculturally important species. In Poplars and Willows: Trees for Society and the Environment; Isebrands, J.G., Richardson, J., Eds.; CABI Publishing: Wallingford, UK, 2014; pp. 8–91. [Google Scholar]
- Olba-Zięty, E.; Stolarski, M.J.; Krzyżaniak, M. Economic evaluation of the production of perennial crops for energy purposes—A review. Energies 2021, 14, 7147. [Google Scholar] [CrossRef]
- Weih, M.; Glynn, C.; Baum, C. Willow short-rotation coppice as model system for exploring ecological theory on biodiversity-ecosystem function. Diversity 2019, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Baker, P.; Charlton, A.; Johnston, C.; Leahy, J.J.; Lindegaard, K.; Pisano, I.; Prendergast, J.; Preskett, D.; Skinner, C. A review of willow (Salix spp.) as an integrated biorefinery feedstock. Ind. Crops Prod. 2022, 189, 115823. [Google Scholar] [CrossRef]
- Larsson, S.; Nordh, N.E.; Farrell, J.; Tweddle, P. Manual for SRC Willow Growers; Lantmännen Agroenergi: Örebro, Sweden, 2007; p. 18. [Google Scholar]
- Don, A.; Osborne, B.; Hastings, A.; Skiba, U.; Carter, M.S.; Drewer, J.; Flessa, H.; Freibauer, A.; Hyvönen, N.; Jones, M.B.; et al. Land-use change to bioenergy production in Europe: Implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 2012, 4, 372–391. [Google Scholar] [CrossRef] [Green Version]
- Lindegaard, K.N.; Adams, P.W.R.; Holley, M.; Lamley, A.; Henriksson, A.; Larsson, S.; von Engelbrechten, H.G.; Esteban Lopez, G.; Pisarek, M. Short rotation plantations policy history in Europe: Lessons from the past and recommendations for the future. Food Energy Secur. 2016, 5, 125–152. [Google Scholar] [CrossRef] [Green Version]
- Townsend, P.A.; Haider, N.; Body, L.; Heavy, J.; Miller, T.A.; Volk, T.A. A Roadmap for Poplar and Willow to Provide Environmental Services and to Build the Bioeconomy; Washington State University: Pullman, WA, USA, 2018; p. 36. [Google Scholar]
- Guidi, W.; Pitre, F.E.; Labrecque, M. Short-rotation coppice of willows for the production of biomass in eastern Canada. In Biomass Now—Suitable Growth and Use; Motovic, M.D., Ed.; Intech Open: London, UK, 2013; pp. 421–448. [Google Scholar]
- Wu, Z.; Raben, P. Flora of China; Missouri Botanical Garden Press: St. Louis, MO, USA, 1995; p. 479. [Google Scholar]
- Han, Q.; Harayama, H.; Uemura, A.; Ito, E.; Utsugi, H. The effect of the planting depth of cuttings on biomass of short rotation willow. J. For. Res. 2017, 22, 131–134. [Google Scholar] [CrossRef]
- Han, Q.; Harayama, H.; Uemura, A.; Ito, E.; Utsugi, H.; Kitao, M.; Maruyama, Y. High biomass productivity of short-rotation willow plantation in boreal Hokkaido achieved by mulching and cutback. Forests 2020, 11, 505. [Google Scholar] [CrossRef]
- Harayama, H.; Uemura, A.; Utsugi, H.; Han, Q.; Kitao, M.; Maruyama, Y. The effects of weather, harvest frequency, and rotation number on yield of short rotation coppice willow over 10 years in northern Japan. Biomass Bioenergy 2020, 142, 105797. [Google Scholar] [CrossRef]
- Mitsui, Y.; Seto, S.; Nishio, M.; Minato, K.; Ishizawa, K.; Satoh, S. Willow clones with high biomass yield in short rotation coppice in the southern region of Tohoku district (Japan). Biomass Bioenergy 2010, 34, 467–473. [Google Scholar] [CrossRef]
- Satoh, S.; Ishizawa, K.; Mitsui, Y.; Minato, K. Growth and above-ground biomass production of a willow clone with high productivity, Salix pet-susu clone KKD. J. Jpn. Inst. Energy 2012, 91, 948–953. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, I.; Matuo, T.; Yamagishi, M.; Haraguchi, M. Willow tree biomass production technology for laborsaving management of abandoned cropland in the Kanto Region. In Transactions of the Japanese Society of Irrigation, Drainage and Rural Engineering; The Japanese Society of Irrigation, Drainage and Rural Engineering, Ed.; The Japanese Society of Irrigation, Drainage and Rural Engineering: Tokyo, Japan, 2012; pp. 522–523. (In Japanese) [Google Scholar]
- Kajba, D.; Andrić, I. Selection of willows (Salix sp.) for biomass production. South-East Eur. For. 2014, 5, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Viherä-Aarnio, A.; Saarsalmi, A. Growth and nutrition of willow clones. Silva Fenn. 1994, 28, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Amichev, B.Y.; Hangs, R.D.; Konecsni, S.M.; Stadnyk, C.N.; Volk, T.A.; Bélanger, N.; Vujanovic, V.; Schoenau, J.J.; Moukoumi, J.; Van Rees, K.C.J. Willow short-rotation production systems in Canada and northern United States: A review. Soil Sci. Soc. Am. J. 2014, 78, S168–S181. [Google Scholar] [CrossRef] [Green Version]
- Istenič, D.; Božič, G. Short-rotation willows as a wastewater treatment plant: Biomass production and the fate of macronutrients and metals. Forests 2021, 12, 554. [Google Scholar] [CrossRef]
- Fontana, M.; Labrecque, M.; Messier, C.; Bélanger, N. Permanent site characteristics exert a larger influence than atmospheric conditions on leaf mass, foliar nutrients and ultimately aboveground biomass productivity of Salix miyabeana ‘SX67’. For. Ecol. Manag. 2018, 427, 423–433. [Google Scholar] [CrossRef]
- Adegbidi, H.G.; Volk, T.A.; White, E.H.; Abrahamson, L.P.; Briggs, R.D.; Bickelhaupt, D.H. Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York state. Biomass Bioenergy 2001, 20, 399–411. [Google Scholar] [CrossRef]
- Hytönen, J.; Saarsalmi, A. Long-term biomass production and nutrient uptake of birch, alder and willow plantations on cut-away peatland. Biomass Bioenerg. 2009, 33, 1197–1211. [Google Scholar] [CrossRef]
- Fabio, E.S.; Smart, L.B. Effects of nitrogen fertilization in shrub willow short rotation coppice production—A quantitative review. GCB Bioenergy 2018, 10, 548–564. [Google Scholar] [CrossRef]
- Larsen, S.U.; Jørgensen, U.; Lærke, P.E. Biomass yield, nutrient concentration and nutrient uptake by SRC willow cultivars grown on different sites in Denmark. Biomass Bioenergy 2018, 116, 161–170. [Google Scholar] [CrossRef]
- Hasse, D.L.; Rose, R. Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments. For. Sci. 1995, 41, 54–66. [Google Scholar] [CrossRef]
- Scagel, C.F. Growth and nutrient use of ericaceous plants grown in media amended with sphagnum moss peat or coir dust. HortScience 2003, 38, 46–54. [Google Scholar] [CrossRef]
- Miller, B.D.; Hawkins, B.J. Nitrogen uptake and utilization by slow- and fast-growing families of interior spruce under contrasting fertility regimes. Can. J. For. Res. 2003, 33, 959–966. [Google Scholar] [CrossRef]
- Hangs, R.D.; Schoenau, J.J.; van Rees, K.C.J.; Knight, J.D. The effect of irrigation on nitrogen uptake and use efficiency of two willow (Salix spp.) biomass energy varieties. Can. J. Plant Sci. 2012, 92, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Kayama, M.; Yamanaka, T. Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, Quercus myrsinaefolia, and Castanopsis cuspidata planted in calcareous soil. Forests 2016, 7, 266. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I. Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). For. Ecol. Manag. 2001, 150, 223–239. [Google Scholar] [CrossRef]
- Wróblewska, H. Studies on the effect of compost made of post-use wood waste on the growth of willow plants. Mol. Cryst. Liq. Cryst. 2008, 483, 352–366. [Google Scholar] [CrossRef]
- Cavanagh, A.; Gasser, M.O.; Labrecque, M. Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 2011, 35, 4165–4173. [Google Scholar] [CrossRef]
- Holm, B.; Heinsoo, K. Biogas digestate suitability for the fertilisation of young Salix plants. Balt. For. 2014, 20, 263–271. [Google Scholar]
- Marron, N. Agronomic and environmental effects of land application of residues in short-rotation tree plantations: A literature review. Biomass Bioenergy 2015, 81, 378–400. [Google Scholar] [CrossRef]
- Hänel, M.; Istenič, D.; Brix, H.; Arias, C.A. Wastewater-fertigated short-rotation coppice, a combined scheme of wastewater treatment and biomass production: A state-of-the-art review. Forests 2022, 13, 810. [Google Scholar] [CrossRef]
- Chastain, J.P.; Camberato, J.J.; Albrecht, J.E.; Adams, J., III. Swine Manure Production and Nutrient Conten.; Clemson University: Clemson, SC, USA, 2003; p. 18. [Google Scholar]
- Raza, S.T.; Zhu, B.; Ali, Z.; Liang, T.J. Vermicomposting by Eisenia fetida is a sustainable and eco-friendly technology for better nutrient recovery and organic waste management in upland areas of China. Pak. J. Zool. 2019, 51, 1027–1034. [Google Scholar] [CrossRef]
- Oh, S.H.; Whitley, N.C. Pork production in China, Japan and South Korea. Asian-Australas. J. Anim. Sci. 2011, 24, 1629–1636. [Google Scholar] [CrossRef]
- Harada, Y. Treatment and Utilization of Animal Wastes in Japan; Food and Fertilizer Technology Center: Taipei, Taiwan, 1994; p. 11. [Google Scholar]
- Food and Agriculture Organization. An Explanatory Note on the FAO World Soil Resources Map at 1:25,000,000 Scale; World Soil Resources Reports 66; FAO: Rome, Italy, 1993; p. 64. [Google Scholar]
- Yoshikawa, H.; Mogi, T. The Handbook of Japanese Salicaceae; Bun-ichi Co., Ltd.: Tokyo, Japan, 2019; 176p. (In Japanese) [Google Scholar]
- Yoshikawa, M.; Fukushima, T. Distribution and developmental patterns of floodplain willow communities along the Kinu river, central Japan. Veg. Sci. 1999, 16, 25–37, (In Japanese and English Summary). [Google Scholar]
- Dempo, J.; Horioka, K.; Yonemoto, M.; Ito, M. Regional distribution of willow forests at lowland riverbanks in Japan after human disturbance. Ecol. Civil. Eng. 2008, 11, 13–27, (In Japanese and English Summary). [Google Scholar] [CrossRef]
- GBIF. Free and Open Access to Biodiversity Data; Global Biodiversity Information Facility: Copenhagen, Denmark, 2022; Available online: https://www.gbif.org/ (accessed on 13 January 2020).
- Nagamitsu, T.; Futamura, N. Sex expression and inbreed depression in progeny derived from an extraordinary hermaphrodite of Salix subfragilis. Bot. Stud. 2014, 55, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aomori Pref. Manual of Floriculture; Aomori Pref: Aomori, Japan, 2001; p. 588. (In Japanese) [Google Scholar]
- Kayama, M.; Kikuchi, S.; Uemura, A.; Kuramoto, S.; Takahashi, M. Effect of compost for the growth of willow grown in Kanto region. Kanto J. For. Res. 2020, 71, 179–180. (In Japanese) [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; International Soil Reference and Information Centre: Wagningen, The Netherland, 2002; p. 100. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnson, C.T.; Sumner, M.E. Methods of Soil Analysis, Part 3. Chemical Methods; Soil Science Society of America Inc.: Madison, WI, USA, 1996; p. 1390. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewate, 20th ed.; American Public Health Association: Washington, DC, USA, 1998; p. 1220. [Google Scholar]
- Ishimaru, K.; Tokuchi, N.; Osawa, N.; Kawamura, K.; Takeda, H. Behavior of four broad-leaved tree species used to revegetate eroded granite hill slopes. J. For. Res. 2005, 10, 27–34. [Google Scholar] [CrossRef]
- Gentilesca, T.; Battipaglia, G.; Borghetti, M.; Colangelo, M.; Altieri, S.; Ferrara, A.M.S.; Lapolla, A.; Rita, A.; Ripullone, F. Evaluating growth and intrinsic water-use efficiency in hardwood and conifer mixed plantations. Trees 2021, 35, 1329–1340. [Google Scholar] [CrossRef]
- Khaldi, A.; Ammar, R.B.; Woo, S.Y.; Akrimi, N.; Zid, E. Salinity tolerance of hydroponically grown Pinus pinea L. seedlings. Acta Physiol. Plant. 2011, 33, 765–775. [Google Scholar] [CrossRef]
- Goto, S. Digestion method. In Manual of Plant Nutrition; Editorial Committee of Methods for Experiments in Plant Nutrition, Ed.; Hakuyusha: Tokyo, Japan, 1990; pp. 125–128. (In Japanese) [Google Scholar]
- Larsson, S. Genetic improvement of willow for short-rotation coppice. Biomass Bioenergy 1998, 15, 23–26. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I.; Daigle, S. Effect of wastewater sludge on growth and heavy metal bioaccumulation of two Salix species. Plant Soil 1995, 171, 303–316. [Google Scholar] [CrossRef]
- Muklada, H.; Fabio, E.S.; Smart, L.B. Growth, nitrogen uptake, and nutritional value of a diverse panel of shrub willow (Salix spp.) genotypes in response to nitrogen fertilization. Agronomy 2022, 12, 2678. [Google Scholar] [CrossRef]
- Ito, T.; Komiyama, T.; Saigusa, M.; Morioka, M. Phosphate composition of swine and poultry manure compounds. Jpn. J. Soil Sci. Plant Nutr. 2010, 81, 215–223, (In Japanese and English Summary). [Google Scholar]
- Quaye, A.K.; Volk, T.A.; Hafner, S.; Leopold, D.J.; Schirmer, C. Impacts of paper sludge and manure on soil and biomass production of willow. Biomass Bioenerg. 2011, 35, 2796–2806. [Google Scholar] [CrossRef]
- Sevel, L.; Nord-Larsen, T.; Ingerslev, M.; Jørgensen, U.; Raulund-Rasmussen, K. Fertilization of SRC willow, I: Biomass production response. BioEnergy Res. 2014, 7, 319–328. [Google Scholar] [CrossRef]
- Hytönen, J. Effect of fertilizer treatment on the biomass production and nutrient uptake of short-rotation willow on cut-away peatlands. Silva Fenn. 1995, 29, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Takashima, T.; Hikosaka, K.; Hirose, T. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 2004, 27, 1047–1054. [Google Scholar] [CrossRef]
- Berthod, N.; Brereton, N.J.B.; Pitre, F.E.; Labrecque, M. Five willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance. Front. Plant Sci. 2015, 6, 948. [Google Scholar] [CrossRef] [Green Version]
- Major, J.E.; Mosseler, A.; Malcolm, J.W. Assimilation efficiencies and gas exchange responses of four Salix species elevated CO2 under soil moisture stress and fertilization treatments. Forests 2022, 13, 776. [Google Scholar] [CrossRef]
- Ishikawa, S. Ecological studies of the floodplain willow forests in the Tohoku district. Res. Rep. Kochi Univ. Nat. Sci. 1982, 31, 95–104, (In Japanese and English Summary). [Google Scholar]
- Haruki, M.; Tsuyuzaki, S. Woody plant establishment during the early stages of volcanic succession on Mount Usu, northern Japan. Ecol. Res. 2001, 16, 451–457. [Google Scholar] [CrossRef]
- Morita, Y.; Nakamura, A. Effects of flooding and the following dry condition on growth and physiological characteristics of Salix species. J. Jpn. Soc. Reveget. Technol. 2003, 29, 147–152, (In Japanese and English Summary). [Google Scholar] [CrossRef] [Green Version]
- Kayama, M.; Makoto, K.; Nomura, M.; Sasa, K.; Koike, T. Growth characteristics of Sakhalin spruce (Picea glehnii) planted on the northern Japanese hillsides exposed to strong winds. Trees 2009, 23, 145–157. [Google Scholar] [CrossRef]
Willow | Habitat | The Source Location of Cuttings (Latitude and Longitude) |
---|---|---|
S. eriocarpa | North-east China, far eastern Russia, Korea, and Japan (Honshu, Shikoku, and Kyushu) (1,2) | Kokai river (35°59′ N, 134°00′ E) |
S. gilgiana | Korea and Japan (Honshu) (2,3) | Sugao marsh (36°00′ N, 139°55′ E) |
S. gracilistyla | Far eastern Russia, northeast China, Korea, and Japan (3) | Kuji river (36°44′ N, 140°23′ E) |
S. integra | Inner Mongolia, Korea, Japan, and far eastern Russia (3) | Naka river (36°33′ N, 140°18′ E) |
S. sachalinensis | North-east China, Korea, Japan (Hokkaido, Honshu, Shikoku), and far eastern Russia (1,3) | Kuji river (36°47′ N, 140°22′ E) |
S. serissaefolia | Japan (Honshu) (3) | Naka river (36°33′ N, 140°18′ E) |
S. subfragilis | Japan, Korea, far eastern Russia, and China (3,4) | Kokai river (36°01′ N, 134°00′ E) |
Parameter | Treatment | Site A | Site B | F Value (ANOVA) | ||||
---|---|---|---|---|---|---|---|---|
pH | Con | 5.59 ± 0.13 | c | 5.70 ± 0.06 | c | Treatment | 159 | *** |
LM | 6.29 ± 0.07 | b | 6.31 ± 0.13 | b | Site | 2.5 | n.s. | |
HM | 6.66 ± 0.22 | a | 6.78 ± 0.20 | a | T × S | 0.4 | n.s. | |
Compost | 7.36 ± 0.04 | |||||||
C (mol kg−1) | Con | 2.98 ± 0.46 | c | 2.84 ± 0.09 | c | Treatment | 20.7 | *** |
LM | 4.35 ± 0.96 | b | 3.89 ± 0.10 | b | Site | 3.5 | n.s. | |
HM | 6.04 ± 1.53 | a | 4.84 ± 0.44 | a | T × S | 0.9 | n.s. | |
Compost | 28.8 ± 0.3 | (34.4%) | ||||||
N (mmol kg−1) | Con | 193 ± 21 | c | 186 ± 5 | c | Treatment | 35.8 | *** |
LM | 293 ± 44 | b | 276 ± 8 | b | Site | 2.3 | n.s. | |
HM | 410 ± 93 | a | 351 ± 48 | a | T × S | 0.5 | n.s. | |
Compost | 2344 ± 53 | (3.28%) | ||||||
P (mmol kg−1) | Con | 1.4 ± 0.5 | c | 1.5 ± 0.2 | c | Treatment | 187 | *** |
LM | 39.0 ± 14.6 | b | 48.3 ± 4.5 | b | Site | 4.0 | n.s. | |
HM | 77.0 ± 12.1 | a | 88.2 ± 12.1 | a | T × S | 1.0 | n.s. | |
Compost | 4101 ± 39 | (12.7%) | ||||||
Ca (mmol kg−1) | Con | 10.6 ± 3.5 | c | 6.9 ± 0.8 | c | Treatment | 62.6 | *** |
LM | 26.5 ± 9.6 | b | 30.0 ± 2.8 | b | Site | 0.4 | n.s. | |
HM | 39.6 ± 9.2 | a | 44.4 ± 6.9 | a | T × S | 1.2 | n.s. | |
Compost | 562 ± 44 | (2.24%) | ||||||
Mg (mmol kg−1) | Con | 1.7 ± 0.8 | c | 1.3 ± 0.1 | c | Treatment | 204 | *** |
LM | 19.2 ± 3.3 | b | 19.2 ± 4.9 | b | Site | 0.1 | n.s. | |
HM | 31.1 ± 4.5 | a | 30.5 ± 6.1 | a | T × S | <0.1 | n.s. | |
Compost | 405 ± 82 | (0.98%) | ||||||
K (mmol kg−1) | Con | 2.7 ± 0.8 | c | 2.1 ± 0.4 | c | Treatment | 139 | *** |
LM | 25.0 ± 2.9 | b | 25.8 ± 5.3 | b | Site | 0.8 | n.s. | |
HM | 44.6 ± 4.4 | a | 43.4 ± 5.7 | a | T × S | 0.8 | n.s. | |
Compost | 1368 ± 91 | (5.34%) | ||||||
Na (mmol kg−1) | Con | 2.0 ± 0.6 | c | 1.5 ± 0.1 | c | Treatment | 88.1 | *** |
LM | 14.5 ± 6.0 | b | 22.2 ± 3.5 | b | Site | 7.5 | ** | |
HM | 28.2 ± 8.6 | a | 36.5 ± 5.6 | a | T × S | 2.2 | n.s. | |
Compost | 265 ± 19 | (0.61%) | ||||||
Mn (µmol kg−1) | Con | 118 ± 33 | b | 111 ± 3 | c | Treatment | 12.8 | *** |
LM | 150 ± 24 | a | 141 ± 3 | b | Site | 1.1 | n.s. | |
HM | 171 ± 26 | a | 161 ± 4 | a | T × S | <0.1 | n.s. | |
Compost | 2389 ± 141 | (131 ppm) | ||||||
Fe (µmol kg−1) | Con | 92.3 ± 19.7 | a | 93.4 ± 12.6 | a | Treatment | 80.8 | *** |
LM | 41.6 ± 7.8 | b | 42.2 ± 5.7 | b | Site | <0.1 | n.s. | |
HM | 34.9 ± 7.5 | b | 35.3 ± 4.8 | b | T × S | <0.1 | n.s. | |
Compost | 588 ± 35 | (33 ppm) | ||||||
Zn (µmol kg−1) | Con | 19 ± 7 | c | 15 ± 2 | c | Treatment | 50.2 | *** |
LM | 304 ± 108 | b | 244 ± 35 | b | Site | 2.5 | n.s. | |
HM | 453 ± 152 | a | 363 ± 52 | a | T × S | 0.6 | n.s. | |
Compost | 2065 ± 199 | (1350 ppm) |
Species | Treatment | Survival (%) | Stems | RHGR (cm cm−1yr−1) | ||
---|---|---|---|---|---|---|
S. eriocarpa (n = 18) | Con | 100 | 1.94 ± 0.73 | b | 0.354 ± 0.180 | b |
LM | 100 | 3.22 ± 1.31 | a | 0.632 ± 0.178 | a | |
HM | 100 | 3.11 ± 1.23 | a | 0.694 ± 0.064 | a | |
S. gilgiana (n = 32) | Con | 75 | 2.18 ± 0.90 | a | 0.396 ± 0.263 | b |
LM | 88 | 2.34 ± 0.96 | a | 0.604 ± 0.124 | a | |
HM | 94 | 2.31 ± 0.99 | a | 0.640 ± 0.146 | a | |
S. gracilistyla (n = 13) | Con | 69 | 4.22 ± 2.39 | a | 0.387 ± 0.282 | b |
LM | 92 | 4.00 ± 2.00 | a | 0.686 ± 0.254 | a | |
HM | 69 | 3.40 ± 1.90 | a | 0.767 ± 0.232 | a | |
S. integra (n = 14) | Con | 73 | 1.72 ± 0.79 | b | 0.397 ± 0.163 | b |
LM | 79 | 3.00 ± 1.48 | a | 0.711 ± 0.131 | a | |
HM | 86 | 3.00 ± 0.95 | a | 0.769 ± 0.108 | a | |
S. sachalinensis (n = 17) | Con | 82 | 2.67 ± 1.15 | a | 0.405 ± 0.143 | b |
LM | 71 | 2.64 ± 1.43 | a | 0.791 ± 0.115 | a | |
HM | 65 | 2.73 ± 1.56 | a | 0.750 ± 0.092 | a | |
S. serissaefolia (n = 22) | Con | 68 | 4.64 ± 2.73 | a | 0.484 ± 0.314 | b |
LM | 82 | 3.31 ± 1.45 | a | 0.779 ± 0.187 | a | |
HM | 82 | 3.00 ± 2.13 | a | 0.781 ± 0.088 | a | |
S. subfragilis (n = 20) | Con | 70 | 2.07 ± 1.16 | a | 0.302 ± 0.175 | b |
LM | 80 | 2.53 ± 0.83 | a | 0.861 ± 0.142 | a | |
HM | 95 | 2.78 ± 1.31 | a | 0.938 ± 0.148 | a | |
F value (ANOVA) | Willow | 12.0 | *** | 12.0 | *** | |
Treatment | 0.72 | n.s. | 86.3 | *** | ||
W × T | 2.52 | ** | 6.77 | *** |
Species | Treatment | A (µmol m−2s−1) | gs (mol m−2s−1) | IWUE (µmol mol−1) | |||
---|---|---|---|---|---|---|---|
S. eriocarpa (n = 12) | Con | 11.2 ± 2.6 | b | 0.502 ± 0.222 | b | 25.6 ± 11.0 | a |
LM | 18.5 ± 1.6 | a | 1.061 ± 0.113 | a | 17.7 ± 2.7 | b | |
HM | 19.4 ± 1.7 | a | 1.064 ± 0.237 | a | 18.9 ± 3.2 | ab | |
S. gilgiana (n = 12) | Con | 14.4 ± 4.0 | b | 0.339 ± 0.130 | b | 45.2 ± 8.8 | a |
LM | 18.7 ± 1.9 | a | 0.461 ± 0.087 | a | 41.8 ± 7.7 | a | |
HM | 20.3 ± 2.5 | a | 0.494 ± 0.081 | a | 42.6 ± 11.1 | a | |
S. gracilistyla (n = 9) | Con | 13.7 ± 2.2 | b | 0.651 ± 0.217 | b | 22.2 ± 4.8 | a |
LM | 21.1 ± 2.0 | a | 0.977 ± 0.338 | a | 24.0 ± 8.1 | a | |
HM | 20.5 ± 1.0 | a | 0.971 ± 0.359 | a | 24.4 ± 10.4 | a | |
S. integra (n = 10) | Con | 6.9 ± 3.1 | b | 0.274 ± 0.168 | b | 28.6 ± 11.6 | a |
LM | 15.1 ± 2.3 | a | 0.833 ± 0.222 | a | 18.8 ± 3.7 | b | |
HM | 16.2 ± 3.6 | a | 0.834 ± 0.275 | a | 20.7 ± 5.5 | ab | |
S. sachalinensis (n = 11) | Con | 13.5 ± 1.8 | b | 0.336 ± 0.208 | a | 45.3 ± 3.5 | a |
LM | 19.8 ± 2.8 | a | 0.511 ± 0.201 | a | 52.2 ± 4.6 | a | |
HM | 20.8 ± 1.9 | a | 0.537 ± 0.272 | a | 53.4 ± 3.2 | a | |
S. serissaefolia (n = 12) | Con | 14.4 ± 3.6 | b | 0.467 ± 0.133 | a | 33.1 ± 12.6 | a |
LM | 22.4 ± 3.3 | a | 0.567 ± 0.172 | a | 39.3 ± 7.6 | a | |
HM | 20.8 ± 1.9 | a | 0.621 ± 0.160 | a | 41.4 ± 9.7 | a | |
S. subfragilis (n = 12) | Con | 11.3 ± 1.4 | b | 0.429 ± 0.163 | b | 29.0 ± 10.8 | a |
LM | 24.2 ± 2.4 | a | 1.291 ± 0.565 | a | 21.1 ± 6.3 | b | |
HM | 24.3 ± 2.3 | a | 1.009 ± 0.351 | a | 25.7 ± 5.4 | ab | |
F value (ANOVA) | Willow | 31.4 | *** | 23.7 | *** | 45.1 | *** |
Treatment | 284 | *** | 59.2 | *** | 3.80 | * | |
W × T | 3.89 | *** | 4.14 | *** | 1.73 | n.s. |
Species | Treatment | Leaf (g) | Stem & Branch (g) | Root (g) | |||
---|---|---|---|---|---|---|---|
S. eriocarpa (n = 12) | Con | 10 ± 5 | c | 15 ± 6 | c | 25 ± 15 | b |
LM | 214 ± 97 | b | 1255 ± 3911 | b | 586 ± 383 | a | |
HM | 378 ± 215 | a | 2052 ± 550 | a | 802 ± 183 | a | |
S. gilgiana (n = 12) | Con | 10 ± 5 | b | 20 ± 11 | c | 21 ± 6 | b |
LM | 316 ± 103 | a | 1090 ± 331 | b | 380 ± 107 | a | |
HM | 413 ± 138 | a | 1452 ± 415 | a | 482 ± 147 | a | |
S. gracilistyla (n = 9) | Con | 43 ± 13 | b | 58 ± 22 | b | 48 ± 15 | b |
LM | 372 ± 220 | a | 1124 ± 892 | a | 426 ± 299 | a | |
HM | 285 ± 140 | a | 885 ± 393 | a | 396 ± 112 | a | |
S. integra (n = 10) | Con | 11 ± 5 | c | 27 ± 15 | c | 53 ± 18 | c |
LM | 71 ± 40 | b | 536 ± 315 | b | 383 ± 167 | b | |
HM | 137 ± 44 | a | 989 ± 358 | a | 635 ± 191 | a | |
S. sachalinensis (n = 11) | Con | 53 ± 41 | c | 81 ± 62 | c | 69 ± 46 | c |
LM | 447 ± 243 | b | 1538 ± 862 | b | 684 ± 447 | b | |
HM | 617 ± 206 | a | 3086 ± 1417 | a | 1195 ± 504 | a | |
S. serissaefolia (n = 12) | Con | 25 ± 23 | b | 46 ± 46 | b | 34 ± 28 | b |
LM | 202 ± 123 | a | 2081 ± 1416 | a | 733 ± 435 | a | |
HM | 215 ± 128 | a | 2111 ± 1100 | a | 708 ± 363 | a | |
S. subfragilis (n = 12) | Con | 6 ± 2 | c | 26 ± 16 | c | 37 ± 14 | c |
LM | 234 ± 125 | b | 1205 ± 857 | b | 451 ± 288 | b | |
HM | 497 ± 228 | a | 3317 ± 1375 | a | 1030 ± 337 | a | |
F value (ANOVA) | Willow | 16.3 | *** | 10.1 | *** | 8.45 | *** |
Treatment | 139 | *** | 133 | *** | 154 | *** | |
W × T | 5.35 | *** | 5.93 | *** | 4.38 | *** |
Species | Treatment | N (µmol g−1) | P (µmol g−1) | K (µmol g−1) | Ca (µmol g−1) | ||||
---|---|---|---|---|---|---|---|---|---|
S. eriocarpa (n = 12) | Con | 1160 ± 171 | b | 177 ± 33 | a | 251 ± 27 | a | 242 ± 59 | a |
LM | 1445 ± 129 | a | 184 ± 29 | a | 218 ± 32 | a | 252 ± 26 | a | |
HM | 1427 ± 170 | a | 175 ± 32 | a | 226 ± 44 | a | 273 ± 28 | a | |
S. gilgiana (n = 12) | Con | 1460 ± 189 | a | 150 ± 32 | b | 140 ± 42 | a | 390 ± 86 | a |
LM | 1568 ± 163 | a | 192 ± 39 | a | 121 ± 30 | a | 455 ± 141 | a | |
HM | 1555 ± 127 | a | 201 ± 26 | a | 137 ± 38 | a | 448 ± 142 | a | |
S. gracilistyla (n = 9) | Con | 1450 ± 93 | a | 143 ± 14 | b | 304 ± 32 | a | 271 ± 57 | b |
LM | 1450 ± 78 | a | 144 ± 16 | b | 225 ± 45 | b | 277 ± 54 | ab | |
HM | 1472 ± 87 | a | 168 ± 18 | a | 229 ± 46 | b | 339 ± 60 | a | |
S. integra (n = 10) | Con | 1215 ± 206 | a | 128 ± 26 | b | 280 ± 70 | b | 286 ± 113 | a |
LM | 1365 ± 198 | a | 258 ± 75 | a | 354 ± 70 | a | 269 ± 57 | a | |
HM | 1455 ± 254 | a | 230 ± 45 | a | 313 ± 44 | ab | 207 ± 40 | a | |
S. sachalinensis (n = 11) | Con | 1131 ± 129 | b | 190 ± 70 | a | 186 ± 28 | a | 158 ± 51 | a |
LM | 1369 ± 198 | a | 244 ± 65 | a | 186 ± 52 | a | 194 ± 48 | a | |
HM | 1420 ± 170 | a | 224 ± 53 | a | 194 ± 26 | a | 167 ± 42 | a | |
S. serissaefolia (n = 12) | Con | 1423 ± 170 | a | 135 ± 56 | a | 182 ± 33 | a | 246 ± 35 | b |
LM | 1424 ± 138 | a | 134 ± 17 | a | 149 ± 22 | b | 315 ± 50 | a | |
HM | 1473 ± 82 | a | 149 ± 32 | a | 140 ± 23 | b | 308 ± 43 | a | |
S. subfragilis (n = 12) | Con | 1250 ± 348 | b | 113 ± 15 | b | 514 ± 148 | a | 132 ± 51 | b |
LM | 1723 ± 173 | a | 201 ± 49 | a | 551 ± 53 | a | 188 ± 42 | a | |
HM | 1814 ± 118 | a | 204 ± 30 | a | 532 ± 52 | a | 217 ± 63 | a | |
F value (ANOVA) | Willow | 13.8 | *** | 15.9 | *** | 236 | *** | 56.6 | *** |
Treatment | 37.5 | *** | 32.4 | *** | 1.07 | n.s. | 6.00 | ** | |
W × T | 4.41 | *** | 4.68 | *** | 2.73 | ** | 2.13 | * |
Species | Treatment | Mg (µmol g−1) | Mn (µmol g−1) | Fe (µmol g−1) | Zn (µmol g−1) | ||||
---|---|---|---|---|---|---|---|---|---|
S. eriocarpa (n = 12) | Con | 92 ± 10 | b | 2.44 ± 0.89 | a | 1.96 ± 0.42 | a | 1.57 ± 0.31 | a |
LM | 118 ± 18 | a | 2.35 ± 0.21 | a | 1.12 ± 0.41 | b | 0.97 ± 0.32 | b | |
HM | 124 ± 15 | a | 2.53 ± 0.42 | a | 1.16 ± 0.35 | b | 0.96 ± 0.29 | b | |
S. gilgiana (n = 12) | Con | 112 ± 22 | b | 1.42 ± 0.11 | a | 1.62 ± 0.30 | a | 1.17 ± 0.22 | a |
LM | 183 ± 63 | a | 1.50 ± 0.19 | a | 1.09 ± 0.32 | b | 1.08 ± 0.26 | a | |
HM | 173 ± 41 | a | 1.56 ± 0.31 | a | 1.12 ± 0.21 | b | 1.15 ± 0.39 | a | |
S. gracilistyla (n = 9) | Con | 101 ± 11 | a | 2.17 ± 0.68 | a | 11.4 ± 12.6 | a | 1.42 ± 0.80 | a |
LM | 95 ± 12 | b | 1.96 ± 0.35 | a | 3.5 ± 1.6 | ab | 1.00 ± 0.39 | a | |
HM | 124 ± 17 | a | 2.23 ± 0.35 | a | 2.3 ± 1.1 | b | 1.34 ± 0.43 | a | |
S. integra (n = 10) | Con | 108 ± 33 | a | 3.81 ± 2.31 | a | 3.28 ± 2.12 | a | 2.53 ± 1.28 | a |
LM | 114 ± 47 | a | 3.84 ± 2.56 | a | 2.79 ± 2.74 | a | 2.54 ± 1.17 | a | |
HM | 104 ± 41 | a | 3.11 ± 2.23 | a | 2.29 ± 2.29 | a | 2.11 ± 1.09 | a | |
S. sachalinensis (n = 11) | Con | 63 ± 15 | b | 2.58 ± 0.74 | a | 3.32 ± 1.65 | a | 0.85 ± 0.07 | a |
LM | 97 ± 23 | a | 3.17 ± 0.62 | a | 1.65 ± 0.76 | b | 0.79 ± 0.10 | a | |
HM | 90 ± 23 | a | 2.92 ± 0.50 | a | 1.65 ± 0.57 | b | 0.83 ± 0.67 | a | |
S. serissaefolia (n = 12) | Con | 92 ± 14 | b | 3.94 ± 0.96 | a | 15.7 ± 7.9 | a | 1.33 ± 0.53 | a |
LM | 121 ± 19 | a | 2.83 ± 0.69 | b | 6.6 ± 5.1 | b | 0.78 ± 0.29 | b | |
HM | 137 ± 22 | a | 2.46 ± 0.66 | b | 4.4 ± 4.3 | b | 0.64 ± 0.32 | b | |
S. subfragilis (n = 12) | Con | 66 ± 34 | b | 4.64 ± 1.60 | a | 1.66 ± 0.42 | a | 1.48 ± 0.58 | a |
LM | 89 ± 18 | ab | 3.48 ± 0.67 | b | 1.35 ± 0.21 | b | 1.28 ± 0.23 | a | |
HM | 101 ± 11 | a | 2.96 ± 0.42 | b | 1.25 ± 0.14 | b | 1.42 ± 0.20 | a | |
F value (ANOVA) | Willow | 27.8 | *** | 19.7 | *** | 22.6 | *** | 29.6 | *** |
Treatment | 36.6 | *** | 3.90 | * | 22.2 | *** | 6.84 | ** | |
W × T | 2.27 | * | 2.24 | * | 5.34 | *** | 1.35 | n.s. |
Species | Element | r | F | Element | r | F |
---|---|---|---|---|---|---|
S. eriocarpa (n = 36) | N | 0.611 | 20.2 *** | Mg | 0.484 | 10.4 ** |
P | 0.068 | 0.16 | Mn | −0.052 | 0.09 | |
K | −0.040 | 0.05 | Fe | −0.536 | 13.7 *** | |
Ca | 0.130 | 0.58 | Zn | −0.548 | 14.6 *** | |
S. gilgiana (n = 36) | N | 0.415 | 7.07 * | Mg | 0.209 | 1.55 |
P | 0.592 | 18.3 *** | Mn | −0.028 | 0.03 | |
K | 0.199 | 1.41 | Fe | −0.406 | 6.52 * | |
Ca | −0.054 | 0.10 | Zn | 0.006 | <0.01 | |
S. gracilistyla (n = 27) | N | −0.012 | <0.01 | Mg | 0.572 | 13.6 *** |
P | 0.463 | 7.62 * | Mn | −0.121 | 0.40 *** | |
K | −0.434 | 6.51 * | Fe | −0.480 | 8.10 ** | |
Ca | 0.186 | 1.01 | Zn | −0.183 | 0.93 | |
S. integra (n = 30) | N | 0.469 | 7.91 ** | Mg | −0.068 | 0.13 |
P | 0.540 | 11.6 ** | Mn | −0.157 | 0.68 | |
K | 0.286 | 2.50 | Fe | −0.254 | 1.86 | |
Ca | −0.331 | 3.45 | Zn | −0.168 | 0.79 | |
S. sachalinensis (n = 33) | N | 0.470 | 8.77 ** | Mg | 0.613 | 18.7 *** |
P | 0.541 | 12.8 ** | Mn | 0.274 | 2.52 | |
K | 0.141 | 0.63 | Fe | −0.575 | 15.3 *** | |
Ca | 0.403 | 6.03 * | Zn | −0.042 | 0.05 | |
S. serissaefolia (n = 36) | N | 0.167 | 0.98 | Mg | 0.372 | 5.47 * |
P | 0.375 | 5.57 * | Mn | −0.261 | 2.42 | |
K | −0.198 | 1.40 | Fe | −0.369 | 5.19 * | |
Ca | 0.392 | 6.19 * | Zn | −0.313 | 3.59 | |
S. subfragilis (n = 36) | N | 0.638 | 23.4 *** | Mg | 0.466 | 9.42 ** |
P | 0.720 | 36.6 *** | Mn | −0.471 | 9.70 ** | |
K | 0.024 | 0.02 | Fe | −0.431 | 7.75 ** | |
Ca | 0.583 | 17.5 *** | Zn | 0.013 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayama, M.; Kikuchi, S.; Uemura, A.; Takahashi, M. Growth Characteristics of Seven Willow Species Distributed in Eastern Japan in Response to Compost Application. Forests 2023, 14, 606. https://doi.org/10.3390/f14030606
Kayama M, Kikuchi S, Uemura A, Takahashi M. Growth Characteristics of Seven Willow Species Distributed in Eastern Japan in Response to Compost Application. Forests. 2023; 14(3):606. https://doi.org/10.3390/f14030606
Chicago/Turabian StyleKayama, Masazumi, Satoshi Kikuchi, Akira Uemura, and Masayoshi Takahashi. 2023. "Growth Characteristics of Seven Willow Species Distributed in Eastern Japan in Response to Compost Application" Forests 14, no. 3: 606. https://doi.org/10.3390/f14030606
APA StyleKayama, M., Kikuchi, S., Uemura, A., & Takahashi, M. (2023). Growth Characteristics of Seven Willow Species Distributed in Eastern Japan in Response to Compost Application. Forests, 14(3), 606. https://doi.org/10.3390/f14030606