Subarctic Vegetation under the Mixed Warming and Air Pollution Influence
Abstract
:1. Introduction
- What are the consequences of the combined pollution and warming influence on the growth and dieback of the main tree and shrub species?
- What are the temporal trends of GPP, NPP, and NDVI within the polluted area?
2. Materials and Methods
2.1. Study Area
2.2. Field Studies
2.3. Dendrochronological Analysis
2.4. Eco-Climate Variables
2.5. Statistical Analysis
3. Results
3.1. Eco-Climate Variables
3.2. Air Pollution Volume and Transfer
3.3. Tree Growth and Mortality Dynamics
3.4. Trees Growth Dependence on the Eco-Climate Variables
3.4.1. Partial Correlations
3.4.2. Multiple Correlations
3.5. Temporal Trends of NDVI, GPP and NPP Indexes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mack, M.C.; Walker, X.J.; Johnstone, J.F.; Alexander, H.D.; Melvin, A.M.; Jean, M.; Miller, S.N. Carbon loss from 650 boreal forest wildfires offset by increased dominance of deciduous trees. Science 2021, 372, 280–283. [Google Scholar] [CrossRef]
- Chylek, P.; Folland, C.; Klett, J.D.; Wang, M.; Hengartner, N.; Lesins, G.; Dubey, M.K. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophys. Res. Lett. 2022, 49, e2022GL099371. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Petrov, I.A.; Krivobokov, L.V.; Golyukov, A.S.; Dvinskaya, M.L.; Im, S.T.; Shushpanov, A.S.; Smith, K.T. Larch response to warming in northern Siberia. Reg. Environ. Chang. 2023, 23, 17. [Google Scholar] [CrossRef]
- Dolgikh, V.I. Phenomenon of Norilsk: History of the Norilsk Industrial Region; Polar Star: Moscow, Russia, 2006. [Google Scholar]
- Governmental Reports on the State and Protection of the Environment in Krasnoyarsk Region; Polygraph-Avanta Ltd.: Krasnoyarsk, Russia, 2022.
- Kozlov, M.V.; Zvereva, E.L.; Zverev, V.E. Impacts of Point Polluters on Terrestrial Biota: Comparative Analysis of 18 Contaminated Areas; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Korets, M.A.; Ryzhkova, V.A.; Danilova, I.V. GIS-Based approaches to the assessment of the state of terrestrial ecosystems in the Norilsk industrial region. Contemp. Probl. Ecol. 2014, 7, 643–653. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Prokushkin, A.S.; Tabakova, M.A. Tree-ring growth of Gmelin larch under contrasting local conditions in the north of Central Siberia. Dendrochronologia 2013, 31, 114–119. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Krusic, P.J.; Shishov, V.V.; Vaganov, E.A.; Fertikov, A.I.; Myglan, V.S.; Barinov, V.V.; Browse, J.; Esper, J.; Ilyin, V.A.; et al. Ecological and conceptual consequences of Arctic pollution. Ecol. Lett. 2020, 23, 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- Kharouk, V.I.; Winterberger, K.; Tsibul’skii, G.M.; Yakhimovich, A.P.; Moroz, S.N. Technogenic disturbance of pretundra forests in Noril’sk Valley. Russ. J. Ecol. 1996, 27, 406–410. [Google Scholar]
- Kharuk, V.I.; Petrov, I.A.; Im, S.T.; Golyukov, A.S.; Dvinskaya, M.L.; Shushpanov, A.S. Pollution and Climatic Influence on Trees in the Siberian Arctic Wetlands. Water 2023, 15, 215. [Google Scholar] [CrossRef]
- Freedman, B.; Hutchinson, T. Long-term effects of smelter pollution at Sudbury, Ontario, on forest community composition. Can. J. Bot. 2011, 58, 2123–2140. [Google Scholar] [CrossRef]
- Chernen’kova, T.V.; Kabirov, R.R.; Basova, E.V. Progressive successions in northern taiga forests upon reduction of aerotechnogenic load. Lesovedenie 2011, 6, 49–66. [Google Scholar]
- Vorobeichik, E.L.; Trubina, M.R.; Khantemirova, E.V.; Bergman, I.E. Long-term dynamic of forest vegetation after reduction of copper smelter emissions. Russ. J. Ecol. 2014, 45, 498–507. [Google Scholar] [CrossRef]
- Vorobeichik, E.L. Natural Recovery of Terrestrial Ecosystems after the Cessation of Industrial Pollution: 1. A State-of-the-Art Review. Russ. J. Ecol. 2022, 53, 1–39. [Google Scholar] [CrossRef]
- Trubina, M.R.; D’yachenko, A.P. Current state of the forest moss layer after reduction of emissions from the Middle Ural Copper Smelter. Povolzh. Ekol. Zh. 2020, 4, 477–491. [Google Scholar] [CrossRef]
- Zubareva, O.N.; Skripal’shchikova, L.N.; Greshilova, N.V.; Kharuk, V.I. Zoning of landscapes exposed to technogenic emissions from the Norilsk mining and smelting works. Russ. J. Ecol. 2003, 34, 375–380. [Google Scholar] [CrossRef]
- De Marco, A.; Sicard, P.; Feng, Z.; Agathokleous, E.; Alonso, R.; Araminiene, V.; Augustatis, A.; Badea, O.; Beasley, J.C.; Branquinho, C.; et al. Strategic roadmap to assess forest vulnerability under air pollution and climate change. Glob. Chang. Biol. 2022, 28, 5062–5085. [Google Scholar] [CrossRef]
- Zvereva, E.L.; Roitto, M.; Kozlov, M.V. Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge. Environ. Rev. 2010, 18, 355–367. [Google Scholar] [CrossRef]
- Rinn, F. Tsap V. 3.6 Reference Manual: Computer Program for Tree-Ring Analysis and Presentation; Frank Rinn Distribution: Heidelberg, Germany, 1996. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 44, 69–75. [Google Scholar]
- Cook, E.R.; Holmes, R.L. User’s Manual for Program ARSTAN. In Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin; Chronology Series 6; Holmes, R.L., Adams, R.K., Fritts, H.C., Eds.; Laboratory of Tree-Ring Research: Tucson, TX, USA, 1986; pp. 50–65. [Google Scholar]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Kharuk, V.I. Air pollution impact on subarctic forests at Norilsk, Siberia. In Forest Dynamics in Heavily Polluted Regions; Innes, J.L., Oleksyn, J., Eds.; CAB International: Wallingford, UK, 1999; pp. 77–86. [Google Scholar]
- ESA Copernicus Sentinel-5P Mapping Portal. Available online: https://maps.s5p-pal.com/SO2/ (accessed on 20 December 2022).
- Running, S.; Mu, Q.; Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500 m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Running, S.; Zhao, M. MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2019. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.-L. A corrected Akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal. 1993, 14, 271–279. [Google Scholar] [CrossRef]
- Ryan, S.E.; Porth, L.S. A Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data; Gen. Tech. Rep. RMRS-GTR-189; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007; 41p.
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1999; 608p. [Google Scholar]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Telyatnikov, M.Y. Dynamics of the Phytodiversity of Natural Ecosystems Affected by Oil Products in the Norilsk Industrial District. Contemp. Probl. Ecol. 2022, 15, 160–179. [Google Scholar] [CrossRef]
- Kharuk, V.I. Spectral Indicators of the Vegetation Stress. Ph.D. Thesis, Institute of Biiopfysics Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia, 1993; 350p. [Google Scholar]
- USSR Ministry of Forests. Report of the Forest Service; USSR: Moscow, Russia, 1988; 21p.
- Yarmishko, V.T.; Lyanguzova, I.V.; Lyanguzov, A.Y. Changes in the annual increment of Pinus sylvestris (Pinaceae) trunks upon reduction of aerotechnogenic pollution. Rastit. Resur. 2017, 4, 527–542. [Google Scholar]
- Chernen’kova, T.V.; Kabirov, R.R.; Mekhanikova, E.V.; Stepanov, A.M.; Gusarova, A.Y. Demutation of vegetation after copper smelter shutdown. Lesovedenie 2001, 6, 31–37. [Google Scholar]
- Kharouk, V.I.; Middleton, E.M.; Spencer, S.L.; Rock, B.N.; Willams, D.L. Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem. J. Water Air Soil Pollut. 1995, 82, 483–497. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Dvinskaya, M.L.; Im, S.T.; Golyukov, A.S.; Smith, K.T. Wildfires in the Siberian Arctic. Fire 2022, 5, 106. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, Y.; Yu, Z.; Gu, F.; Peng, Z. The Resilience of Vegetation to the 2009/2010 Extreme Drought in Southwest China. Forests 2022, 13, 851. [Google Scholar] [CrossRef]
- Veselkin, D.V.; Chashchina, O.E.; Kuyantseva, N.B.; Mumber, A.G. Stable carbon and nitrogen isotopes in woody plants and herbs near the large copper smelting plant. Geochem. Int. 2019, 57, 575–582. [Google Scholar] [CrossRef]
- Veselkin, D.; Kuyantseva, N.; Mumber, A.; Molchanova, D.; Kiseleva, D. δ15N in Birch and Pine Leaves in the Vicinity of a Large Copper Smelter Indicating a Change in the Conditions of Their Soil Nutrition. Forests 2022, 13, 1299. [Google Scholar] [CrossRef]
- Zhulidov, A.V.; Robarts, R.D.; Pavlov, D.F.; Kämäri, J.; Gurtovaya, T.Y.; Meriläinen, J.J.; Pospelov, I.N. Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) North of the Norilsk Industrial Complex. Environ. Monit. Assess. 2011, 181, 539–553. [Google Scholar] [CrossRef]
- Winterhalder, K. Natural recovery of vascular plant communities on the industrial barrens of the Sudbury area. In Restoration and Recovery of an Industrial Region; Gunn, J.M., Ed.; Springer: New York, NY, USA, 1995; pp. 93–102. [Google Scholar] [CrossRef]
- Pimenov, A.V.; Efimov, D.Y.; Pervunin, V.A. Topo-ecological differentiation of vegetation in the Norilsk industrial region. Sib. J. Ecol. 2014, 6, 923–931. (In Russian) [Google Scholar]
- Emmett, B.A. The Impact of Nitrogen on Forest Soils and Feedbacks on tree Growth. Water Air Soil Pollut. 1999, 116, 65–74. [Google Scholar] [CrossRef]
- Bontemps, J.-D.; Hervé, J.-C.; Leban, J.-M.; Dhôte, J.F. Nitrogen footprint in a long-term observation of forest growth over the twentieth century. Trees 2010, 25, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Watts, J.D.; Farina, M.; Kimball, J.S.; Schiferl, L.D.; Liu, Z.; Arndt, K.A.; Zona, D.; Ballantyne, A.; Euskirchen, E.S.; Parmentier, F.W.; et al. Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget. Glob. Chang. Biol. 2023, 29, 1870–1889. [Google Scholar] [CrossRef] [PubMed]
- Kharuk, V.; Petrov, I.; Im, S.; Golyukov, A.; Dvinskaya, M.; Shushpanov, A.; Savchenko, A.; Temerova, V. Shared Data Used in the Manuscript Subarctic Vegetation under the Mixed Warming and Air Pollution Influence. OSF. Available online: http://osf.io/hv7dn (accessed on 13 February 2023). [CrossRef]
TP | Coordinates | Elevation (m) | The Distance of the Test Plots from Norilsk (km) | Species | Number of Samples | Mean Tree Height (m) | Mean DBH (cm) | Mean Tree Age (year) |
---|---|---|---|---|---|---|---|---|
Impact zone | ||||||||
1 | 87.83° E, 69.40° N | 33 | 16.6 | Larix sibirica (alive) | 26 | 13.8 | 26 | 85 |
Duschekia fruticosa | 19 | 1.7 | - | 60 | ||||
Salix sp. | 59 | 1.9 | - | 45 | ||||
2 | 87.91° E, 69.43° N | 33 | 15.6 | Larix sibirica (alive) | 24 | 11 | 19.9 | 155 |
3 | 87.69° E, 69.49° N | 47 | 26.7 | Larix sibirica (alive) | 20 | 8.5 | 19.8 | 140 |
4 | 87.85° E, 69.45° N | 32 | 18.7 | Larix sibirica (alive) | 22 | 10.1 | 23.4 | 125 |
5 | 87.81° E, 69.40° N | 35 | 17.2 | Larix sibirica (alive) | 5 | 8.5 | 21 | 245 |
Larix sibirica (dead) | 12 | 260 | ||||||
6 | 87.85° E, 69.42° N | 34 | 16.8 | Larix sibirica (dead) | 13 | 7.1 | 17.2 | 220 |
7 | 87.91° E, 69.45° N | 31 | 16.9 | Larix sibirica (alive) | 20 | 8.6 | 21 | 130 |
8 | 87.96° E, 69.44° N | 34 | 14.7 | Larix sibirica (alive) | 27 | 5.4 | 11.8 | 140 |
9 | 87.61° E, 69.49° N | 53 | 28.7 | Larix sibirica (alive) | 12 | 6.7 | 17 | 60 |
Larix sibirica (dead) | 8 | 240 | ||||||
10 | 88.36° E, 69.38° N | 37 | 6.9 | Larix sibirica (alive) | 16 | 11.4 | 29.2 | 200 |
Larix sibirica (dead) | 10 | 225 | ||||||
11 | 88.33° E, 69.39° N | 43 | 7.1 | Larix sibirica (alive) | 8 | 13.9 | 32.8 | 190 |
Larix sibirica (dead) | 9 | 150 | ||||||
LSB zone | ||||||||
12 | 88.40° E, 69.46° N | 54 | 14.9 | Larix sibirica | 18 | 12.8 | 30.5 | 190 |
Picea obovata | 15 | 11.8 | 26 | 160 | ||||
Betula sp. | 14 | 9.5 | 13.3 | 80 | ||||
13 | 88.37° E, 69.45° N | 41 | 13.7 | Larix sibirica | 20 | 14.6 | 35.6 | 150 |
Picea obovata | 16 | 9.3 | 17.8 | 170 | ||||
Betula sp. | 13 | 10.4 | 15.3 | 90 | ||||
14 | 88.34° E, 69.44° N | 38 | 12.1 | Larix sibirica | 19 | 16 | 40 | 205 |
Picea obovata | 14 | 11.6 | 23.6 | 125 | ||||
Betula sp. | 15 | 9.5 | 15 | 85 | ||||
Reference zone | ||||||||
15 | 88.04° E, 69.66° N | 41 | 35.6 | Larix sibirica | 25 | 8.8 | 21.8 | 110 |
16 | 88.03° E, 69.67° N | 39 | 37.0 | Larix sibirica | 26 | 9.1 | 22.9 | 120 |
Equation | Adjusted R2 | AICc | Explained Variance | Fraction of Variance |
---|---|---|---|---|
Larch (impact zone) | ||||
(1) GI = −0.39 × SD + 0.50 × TJul + 0.26 × POctMay − 0.05 | 0.60 ** | 52.7 | 65% | SD * = 34%, TJul ** = 22%, POctMay * = 8%. |
(2) GI = −0.33 × SD + 0.29 × POctMay + 0.53 × STJul − 0.06 | 0.54 ** | 56.1 | 59% | SD * = 34%, POctMay * = 6%, STJul * = 19%. |
(3) GI = −0.45 × SD + 0.51 × TJul − 0.02 | 0.61 ** | 56.9 | 64% | SD * = 41%, TJul ** = 24%. |
Larch (LSB zone) | ||||
(1) GI = 0.63 × TJul − 0.07 | 0.42 ** | 63.6 | 45% | TJul ** = 45% |
(2) GI = 0.60 × STJul − 0.07 | 0.39 ** | 65.3 | 41% | STJul ** = 41% |
(3) GI = 0.57 × TJunJul − 0.07 | 0.34 * | 67.2 | 37% | TJunJul ** = 37% |
Spruce (LSB zone) | ||||
(1) GI = −0.55 × SD + 0.47 × TJul − 0.01 | 0.68 ** | 52.1 | 71% | SD ** = 52%, TJul ** = 19%. |
(2) GI = −0.54 × SD + 0.28 × POctMay + 0.37 × STJul − 0.02 | 0.61 ** | 54.7 | 66% | SD ** = 53%, POctMay * = 5%, STJul * = 8%. |
(3) GI = 0.72 × TJunJul + 0.30 × POctMay − 0.01 | 0.47 ** | 55.5 | 52% | TJunJul ** = 42%, POctMay * = 11%. |
Birch (LSB zone) | ||||
(1) GI = 0.68 × STJul + 0.08 | 0.54 ** | 55.9 | 56% | STJul ** = 56% |
(2) GI = 0.76 × TJunJul | 0.57 ** | 60.9 | 58% | TJunJul ** = 58% |
(3) GI = 0.04 × TJun − 0.50 × SMJul | 0.49 ** | 67.2 | 53% | TJun * = 29%, SMJul * = 23%. |
Alder (impact zone) | ||||
(1) GI = 0.37 × TJun + 0.46 × POctMay + 0.44 × STJul − 0.08 | 0.55 ** | 56.0 | 60% | TJun * = 21%, POctMay ** = 22%, STJul * = 18%. |
(2) GI = −0.84 × TJul + 0.48 × POctMay + 1.42 × STJul − 0.11 | 0.51 ** | 57.8 | 57% | TJul * = 19%, POctMay ** = 17%, STJul * = 22%. |
(3) GI = 0.42 × POctMay + 0.58 × STJul − 0.09 | 0.44 ** | 59.4 | 49% | POctMay * = 13%, STJul ** = 36%. |
Willow (impact zone) | ||||
(1) GI = 0.71 × TJunJul + 0.51 × POctMay − 0.01 | 0.67 ** | 47.8 | 69% | TJunJul ** = 46%, POctMay ** = 23%. |
(2) GI = 0.52 × TSep + 0.37 × STJul + 0.02 | 0.57 ** | 51.2 | 61% | TSep * = 50%, STJul * = 11%. |
(3) GI = 0.41 × TJun + 0.52 × POctMay + 0.51 × STJul + 0.02 | 0.63 ** | 52.4 | 68% | TJun * = 19%, POctMay ** = 32%, STJul * = 17%. |
Larch (reference zone) | ||||
(1) GI = +0.67 × TJul − 0.09 | 0.43 ** | 60.9 | 45% | TJul ** = 45% |
(2) GI = −0.39 × TMay − 0.59 × PJunJul − 0.08 | 0.39 * | 63.8 | 44% | TMay * = 10%, PJunJul ** = 34% |
(3) GI = −0.55 × PJunJul − 0.07 | 0.27 ** | 67.5 | 30% | PJunJul * = 30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharuk, V.I.; Petrov, I.A.; Im, S.T.; Golyukov, A.S.; Dvinskaya, M.L.; Shushpanov, A.S.; Savchenko, A.P.; Temerova, V.L. Subarctic Vegetation under the Mixed Warming and Air Pollution Influence. Forests 2023, 14, 615. https://doi.org/10.3390/f14030615
Kharuk VI, Petrov IA, Im ST, Golyukov AS, Dvinskaya ML, Shushpanov AS, Savchenko AP, Temerova VL. Subarctic Vegetation under the Mixed Warming and Air Pollution Influence. Forests. 2023; 14(3):615. https://doi.org/10.3390/f14030615
Chicago/Turabian StyleKharuk, Viacheslav I., Il’ya A. Petrov, Sergei T. Im, Alexey S. Golyukov, Maria L. Dvinskaya, Alexander S. Shushpanov, Alexander P. Savchenko, and Victoria L. Temerova. 2023. "Subarctic Vegetation under the Mixed Warming and Air Pollution Influence" Forests 14, no. 3: 615. https://doi.org/10.3390/f14030615
APA StyleKharuk, V. I., Petrov, I. A., Im, S. T., Golyukov, A. S., Dvinskaya, M. L., Shushpanov, A. S., Savchenko, A. P., & Temerova, V. L. (2023). Subarctic Vegetation under the Mixed Warming and Air Pollution Influence. Forests, 14(3), 615. https://doi.org/10.3390/f14030615