Changes in Plant Diversity and Soil Factors under Different Rocky Desertification Degrees in Northern Guangdong, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sample Plot Arrangement
2.3. Sample Plot Surveys and Analyses
2.4. Soil Sample Collection and Analysis
2.5. Statistical Analyses
3. Results
3.1. Vegetation Structure and Diversity
3.1.1. Species Composition and Importance Values
3.1.2. Plant Diversity
3.2. Soil Factors
3.2.1. Soil Physical Factors
3.2.2. Soil Chemical Factors
3.3. Relationships between Soil Factors and Plant Community Structures
3.3.1. Correlation Analysis
3.3.2. CCA Analysis of Plant Communities and Soil Factors
4. Discussion
4.1. Response of Plant Community Structure Characteristics to Different RDDs
4.2. Response of Soil Factors to Different RDDs
4.3. Relationships between Plant Community Structures and Soil Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chong, G.; Hai, Y.; Zheng, H.; Xu, W.; Ouyang, Z. Characteristics of Changes in Karst Rocky Desertification in Southtern and Western China and Driving Mechanisms. Chin. Geogr. Sci. 2021, 31, 1082–1096. [Google Scholar] [CrossRef]
- Ying, B.; Xiao, S.-Z.; Xiong, K.-N.; Cheng, Q.-W.; Luo, J.-S. Comparative studies of the distribution characteristics of rocky desertification and land use/land cover classes in typical areas of Guizhou province, China. Environ. Earth Sci. 2014, 71, 631–645. [Google Scholar] [CrossRef]
- Xiong, Y.J.; Qiu, G.Y.; Mo, D.K.; Lin, H.; Sun, H.; Wang, Q.X.; Zhao, S.H.; Yin, J. Rocky desertification and its causes in karst areas: A case study in Yongshun County, Hunan Province, China. Environ. Geol. 2009, 57, 1481–1488. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, Q.M.; Zhang, D.F. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Dai, Q.; Peng, X.; Yang, Z.; Zhao, L. Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area. Catena 2017, 152, 218–226. [Google Scholar] [CrossRef]
- Zeng, T.R. Current conditions of the rock desertification in the karst mountain area in Northern Guangdong and its influence on water environment. Hydrogeol. Eng. Geol. 2006, 33, 101–105. [Google Scholar]
- Sheng, M.; Xiong, K.; Wang, L.; Li, X.; Li, R.; Tian, X. Response of soil physical and chemical properties to Rocky desertification succession in South China Karst. Carbonates Evaporites 2018, 33, 15–28. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Bai, X.-Y.; He, X.-B. Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest china. Carbonates Evaporites 2011, 26, 149–153. [Google Scholar] [CrossRef]
- Wang, J.-T.; Zheng, Y.-M.; Hu, H.-W.; Li, J.; Zhang, L.-M.; Chen, B.-D.; Chen, W.-P.; He, J.-Z. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems. Sci. Rep. 2016, 6, 19561. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Wang, L.-J.; Sheng, M.-Y.; Li, S.; Wu, J. Patterns and Dynamics of Plant Diversity and Soil Physical-Chemical Properties of the Karst Rocky Desertification Ecosystem, SW China. Pol. J. Environ. Stud. 2021, 30, 1393–1408. [Google Scholar] [CrossRef]
- Qi, D.; Wieneke, X.; Zhou, X.; Jiang, X.; Xue, P. Succession of plant community composition and leaf functional traits in responding to karst rocky desertification in the Wushan County in Chongqing, China. Community Ecol. 2017, 18, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Yi, R.; Xu, X.; Zhu, S.; Zhang, Y.; Zhong, F.; Zeng, X.; Xu, C. Difference in hydraulic resistance between planted forest and naturally regenerated forest and its implications for ecosystem restoration in subtropical karst landscapes. J. Hydrol. 2021, 596, 126093. [Google Scholar] [CrossRef]
- Yan, Y.; Dai, Q.; Hu, G.; Jiao, Q.; Mei, L.; Fu, W. Effects of vegetation type on the microbial characteristics of the fissure soil-plant systems in karst rocky desertification regions of SW China. Sci. Total Environ. 2020, 712, 136543. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, P.; Zhu, T.; Li, Q.; Cao, J. The Characteristics of Soil C, N, and P Stoichiometric Ratios as Affected by Geological Background in a Karst Graben Area, Southwest China. Forests 2019, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Deng, X.; Chen, L.; Xiang, W. The soil properties and their effects on plant diversity in different degrees of rocky desertification. Sci. Total Environ. 2020, 736, 139667. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, W.; Rao, C.; Wang, E.; Yan, W. Soil Quality Assessment and Management in Karst Rocky Desertification Ecosystem of Southwest China. Forests 2022, 13, 1513. [Google Scholar] [CrossRef]
- Green, S.M.; Dungait, J.A.J.; Tu, C.; Buss, H.L.; Sanderson, N.; Hawkes, S.J.; Xing, K.; Yue, F.; Hussey, V.L.; Peng, J.; et al. Soil functions and ecosystem services research in the Chinese karst Critical Zone. Chem. Geol. 2019, 527, 119107. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Liao, H.-K.; Li, J.; Chen, C.-Y. Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis. Huanjing Kexue 2012, 33, 2131–2138. [Google Scholar]
- Ng, C.W.W.; Tasnim, R.; Capobianco, V.; Coo, J.L. Influence of soil nutrients on plant characteristics and soil hydrological responses. Geotech. Lett. 2018, 8, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, P.; Sheng, M.; Tian, J. Ecological stoichiometry and environmental influencing factors of soil nutrients in the karst rocky desertification ecosystem, southwest China. Glob. Ecol. Conserv. 2018, 16, e00449. [Google Scholar] [CrossRef]
- Dingaan, M.N.V.; Tsubo, M.; Walker, S.; Newby, T. Soil chemical properties and plant species diversity along a rainfall gradient in semi-arid grassland of South Africa. Plant Ecol. Evol. 2017, 150, 35–44. [Google Scholar] [CrossRef]
- de Carvalho, F.; Godoy, E.L.; Lisboa, F.J.G.; de Souza Moreira, F.M.; de Souza, F.A.; Louro Berbara, R.L.; Wilson Fernandes, G. Relationship between physical and chemical soil attributes and plant species diversity in tropical mountain ecosystems from Brazil. J. Mt. Sci. 2014, 11, 875–883. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, Y.; Tang, Y.; Tian, J.; Wu, X. Correlation Between Plant Diversity and The Physicochemical Properties of Soil Microbes. Appl. Ecol. Environ. Res. 2019, 17, 10371–10388. [Google Scholar] [CrossRef]
- Yan, Y.; Dai, Q.; Jin, L.; Wang, X. Geometric morphology and soil properties of shallow karst fissures in an area of karst rocky desertification in SW China. Catena 2019, 174, 48–58. [Google Scholar] [CrossRef]
- Anding, L.; Chunyan, G.; Lifei, Y. The Composition and Structural Feature of Plant Community in Different Karst Stony Desertification Areas. Appl. Ecol. Environ. Res. 2017, 15, 1167–1183. [Google Scholar] [CrossRef]
- Zhang, Z.-h.; Hu, G.; Ni, J. Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forests, southwestern China. J. Mt. Sci. 2013, 10, 95–104. [Google Scholar] [CrossRef]
- Zheng, X.; Fu, J.; Ramamonjisoa, N.; Zhu, W.; He, C.; Lu, C. Relationship between Wetland Plant Communities and Environmental Factors in the Tumen River Basin in Northeast China. Sustainability 2019, 11, 1559. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Liang, C.; Li, F.Y.; Zhao, L.; Ma, W.; Wang, L.; Wen, L.; Zheng, Y.; Li, Z.; Zhao, C.; et al. Community phylogenetic structure of grasslands and its relationship with environmental factors on the Mongolian Plateau. J. Arid. Land 2019, 11, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.-X.; Nizamani, M.M.; Sahu, S.K.; Kunasingam, A.; Wang, H.-F. Tree abundance, richness, and phylogenetic diversity along an elevation gradient in the tropical forest of Diaoluo Mountain in Hainan, China. Acta Oecologica-Int. J. Ecol. 2019, 101, 103481. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, D.; Liao, Q.; Ying, B. Analysis on the influence of rainfall characteristics on soil and water loss in rocky desertification region. Carbonates Evaporites 2021, 36, 1–11. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H. Temporal analysis on quantitative attribution of karst soil erosion: A case study of a peak-cluster depression basin in Southwest China. Catena 2019, 172, 369–377. [Google Scholar] [CrossRef]
- Yan, Y.; Dai, Q.; Yuan, Y.; Peng, X.; Zhao, L.; Yang, J. Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China. Geoderma 2018, 330, 30–40. [Google Scholar] [CrossRef]
- Xu, X.; Yan, Y.; Dai, Q.; Yi, X.; Hu, Z.; Cen, L. Spatial and temporal dynamics of rainfall erosivity in the karst region of southwest China: Interannual and seasonal changes. Catena 2023, 221, 106763. [Google Scholar] [CrossRef]
- Wan, P.; Xiong, K.; Zhang, L. Heterogeneity of Spatial-Temporal Distribution of Nitrogen in the Karst Rocky Desertification Soils and Its Implications for Ecosystem Service Support of the Desertification Control-A Literature Review. Sustainability 2022, 14, 6327. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Dai, M.H.; Wang, L.C.; Zeng, C.F.; Su, W.C. The challenge and future of rocky desertification control in karst areas in southwest China. Solid Earth 2016, 7, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.N.; Jiang, Y.J.; Zhang, C.Y. Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecol. Indic. 2021, 121, 107081. [Google Scholar] [CrossRef]
- Li, S.; Wei, X.H.; Zhang, S.H.; Li, H.B.; Wang, M.G.; Luo, H.B.; Wang, J.H. The processes of land rocky desertification in typical Karst Mountain area: A case study in the karst mountain area of North Guangdong. Acta Ecol. Sin. 2010, 30, 674–684. [Google Scholar]
- Xiong, K.N. Remote Sensing of Karst Rocky Desertification: A Typical GIS Study; Geology Press: Beijing, China, 2002. [Google Scholar]
- LY/T 1210-1999,10P. A14; Field Sampling and Preparation of Forest Soil Samples. National Forestry and Grassland Administration: Beijing, China, 1999.
- LY/T 1215-1999, 4P. A4; Determination of Forest Soil Water-Physical Properties. National Forestry and Grassland Administration: Beijing, China, 1999.
- LY/T 1275-1999, 28P. A24; Chemical Analysis Methods of Forest Soil Water. National Forestry and Grassland Administration: Beijing, China, 1999.
- Crawford, K.M.; Rudgers, J.A. Plant species diversity and genetic diversity within a dominant species interactively affect plant community biomass. J. Ecol. 2012, 100, 1512–1521. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, X.; Jiang, X.; Ding, B.; Wu, P.; Ding, F. Plant Functional Trait Responses to Dolomite and Limestone Karst Forests in Southwest China. Forests 2022, 13, 2187. [Google Scholar] [CrossRef]
- Tang, X.G.; Xiao, J.F.; Ma, M.G.; Yang, H.; Li, X.; Ding, Z.; Yu, P.J.; Zhang, Y.G.; Wu, C.Y.; Huang, J.; et al. Satellite evidence for China’s leading role in restoring vegetation productivity over global karst ecosystems. For. Ecol. Manag. 2022, 507, 120000. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Y.; Wu, F.; Liu, W.; Ning, Y.; Huang, Z.; Tang, S.; Liang, Y. Plant adaptability in karst regions. J. Plant Res. 2021, 134, 889–906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xiong, K.; Qin, Y.; Min, X.; Xiao, J. Evolution and determinants of ecosystem services: Insights from South China karst. Ecol. Indic. 2021, 133, 108437. [Google Scholar] [CrossRef]
- Zheng, W.; Wu, Q.; Rao, C.J.; Chen, X.Y.; Wang, E.W.; Liang, X.C.; Yan, W.D. Characteristics and interactions of soil bacteria, phytocommunity and soil properties in rocky desertification ecosystems of Southwest China. Catena 2023, 220, 106731. [Google Scholar] [CrossRef]
- Li, S.-X.; Wang, Z.-H.; Malhi, S.S.; Li, S.-Q.; Gao, Y.-J.; Tian, X.-H. Nutrient and Water Management Effects on Crop Production, and Nutrient and Water Use Efficiency in Dryland Areas of China. Adv. Agron. 2009, 102, 223–265. [Google Scholar]
- Wang, H.; Gao, J.; Hou, W. Quantitative attribution analysis of soil erosion in different geomorphological types in karst areas: Based on the geodetector method. J. Geogr. Sci. 2019, 29, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Huang, X.; Xiong, K.; Hu, J.; Zhang, Z.; Zhang, J. Mechanism and Evolution of Soil Organic Carbon Coupling with Rocky Desertification in South China Karst. Forests 2022, 13, 28. [Google Scholar] [CrossRef]
- Li, D.; Wang, Z.; Sun, X.; Zhang, Q.; Wang, K. Tree species effects on asymbiotic N-2 fixation in subtropical karst and non-karst forests. Soil Biol. Biochem. 2018, 117, 185–190. [Google Scholar] [CrossRef]
- Tong, X.; Wang, K.; Yue, Y.; Brandt, M.; Liu, B.; Zhang, C.; Liao, C.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Austin, A.T.; Ballare, C.L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2010, 107, 4618–4622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Dai, Q.; Ding, G.; Li, C. Role of underground leakage in soil, water and nutrient loss from a rock-mantled slope in the karst rocky desertification area. J. Hydrol. 2019, 578, 124086. [Google Scholar] [CrossRef]
- Sheng, M.Y.; Liu, Y.; Xiong, K.N. Response of soil physical-chemical properties to rocky desertification succession in South China Karst. Acta Ecol. Sin. 2013, 33, 6303–6313. [Google Scholar] [CrossRef]
- Yan, M.; Chan, J.C.L.; Zhao, K. Impacts of Urbanization on the Precipitation Characteristics in Guangdong Province, China. Adv. Atmos. Sci. 2020, 37, 696–706. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, H.L.; Zhao, W.Z.; Zhang, T.H. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma 2004, 122, 43–49. [Google Scholar] [CrossRef]
- Li, W.; Yang, J.; Li, H.; Zhang, C. Effects of Environmental Factors on Species Diversity Among The Plant Communities in The Mount Lao Nature Reserve, Shandong Province of China. Pak. J. Bot. 2020, 52, 1205–1213. [Google Scholar] [CrossRef]
- Hu, F.; Du, H.; Zeng, F.; Peng, W.; Song, T. Plant community characteristics and their relationships with soil properties in a karst region of southwest China. Contemp. Probl. Ecol. 2017, 10, 707–716. [Google Scholar] [CrossRef]
- Zhu, H.; He, X.; Wang, K.; Su, Y.; Wu, J. Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem. Eur. J. Soil Biol. 2012, 51, 1–7. [Google Scholar] [CrossRef]
- Lawrence, D.; Fiegna, F.; Behrends, V.; Bundy, J.G.; Phillimore, A.B.; Bell, T.; Barraclough, T.G. Species Interactions Alter Evolutionary Responses to a Novel Environment. PLoS Biol. 2012, 10, e1001330. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.F.; Lu, Q.; Wang, Y.; Liu, Y.G.; Qi, L.; Yan, W.; Yungen, L. Soil nutrient characteristics and differences under forest in rocky desertification areas of Southwest China. Carsologica Sin. 2022. Available online: http://kns.cnki.net/kcms/detail/45.1157.P.20220823.1556.006.html (accessed on 28 September 2022).
RDD | Plot Location | Bare Rock Ratio (%) | Soil Type | Average Altitude (m) | Average Slope (%) | Major Vegetation |
---|---|---|---|---|---|---|
Ⅰ | LC, YD, RY, YS | <30 | Sandy loam | 322.3 | 11.5 | Cinnamomum burmannii, Cinnamomum camphora, Pinus massoniana, Castanopsis sclerophylla, Osmanthus fragrans |
Ⅱ | YD, YS | 30–50 | Loam | 260.0 | 18.2 | Pinus massoniana, Cinnamomum burmannii |
Ⅲ | LC, YD | 51–70 | Sandy loam | 508.5 | 16.4 | Castanopsis sclerophylla, Machilus chinensis |
Ⅳ | YD, RY, YS | 71–90 | Loam | 547.9 | 21.4 | Cornus wilsoniana, Celtis sinensis |
Ⅴ | RY, YS | >90 | Loam | 472.0 | 28.6 | Quercus stewardiana, Acer coriaceifolium |
Family Name | Species Name | Importance Value (%) | ||||
---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | ||
Pinaceae | Pinus massoniana | 7.57 | 35.33 | 4.43 | - | - |
Lauraceae | Cinnamomum burmannii | 15.82 | 18.27 | - | 0.17 | - |
Fagaceae | Castanopsis sclerophylla | 7.50 | - | 20.10 | - | - |
Oleaceae | Osmanthus fragrans | 5.99 | 2.96 | 1.59 | 2.75 | 2.86 |
Lauraceae | Machilus chinensis | 2.42 | 0.75 | 5.35 | 2.21 | 3.29 |
Ulmaceae | Celtis sinensis | 1.44 | 0.86 | 0.61 | 5.99 | 3.28 |
Euphorbiaceae | Mallotus philippensis | 0.74 | - | 4.00 | 2.53 | 4.05 |
Lauraceae | Cinnamomum camphora | 10.77 | - | - | - | - |
Cornaceae | Cornus wilsoniana | 1.01 | - | 4.75 | 8.73 | 0.56 |
Fagaceae | Quercus stewardiana | - | - | - | - | 7.49 |
Sapindaceae | Dimocarpus longan | 0.38 | 4.70 | - | 0.81 | - |
Aceraceae | Acer coriaceifolium | - | - | - | 0.50 | 5.31 |
Verbenaceae | Vitex negundo | - | 1.90 | 0.64 | 1.72 | 1.25 |
Leguminosae | Zenia insignis | - | 4.54 | - | - | 0.86 |
Rhamnaceae | Hovenia acerba | - | 1.54 | - | 2.65 | 1.01 |
Fagaceae | Quercus glauca | - | - | 0.20 | 2.84 | 1.98 |
Hamamelidaceae | Liquidambar formosana | - | 1.37 | 1.15 | 1.41 | 1.01 |
Theaceae | Schima superba | 4.58 | - | - | - | - |
Anacardiaceae | Choerospondias axillaris | 1.56 | 0.79 | 0.29 | 0.76 | 2.47 |
Hamamelidaceae | Loropetalum chinense | 1.52 | - | 1.26 | 0.25 | 1.19 |
Anacardiaceae | Pistacia chinensis | - | - | 1.45 | 2.85 | 0.90 |
Sterculiaceae | Sterculia lanceolata | - | 3.03 | - | 0.89 | - |
Pittosporaceae | Pittosporum illicioides | - | - | 1.90 | 1.65 | 0.21 |
Bignoniaceae | Catalpa fargesii | - | - | - | - | 3.72 |
Araliaceae | Kalopanax septemlobus | 0.74 | 1.22 | - | 0.72 | 0.84 |
Aquifoliaceae | Ilex chinensis | 0.64 | - | 0.71 | 1.56 | 0.59 |
Fagaceae | Quercus fabri | - | - | 3.37 | - | - |
Fagaceae | Castanopsis faberi | - | - | - | 3.26 | - |
Cornaceae | Alangium chinense | - | 0.76 | - | 0.32 | 2.18 |
RDD | Soil Moisture Content (g/cm3) | Soil Bulk Density (g/cm3) | Soil Mechanical Composition (%) | ||
---|---|---|---|---|---|
2–0.05 mm | 0.05–0.002 mm | <0.002 mm | |||
Ⅰ | 19.94 ± 1.35 a | 1.38 ± 0.04 ab | 35.00 ± 1.66 ab | 46.14 ± 1.42 a | 18.86 ± 2.32 a |
Ⅱ | 16.98 ± 1.59 a | 1.44 ± 0.04 a | 42.43 ± 2.48 bc | 40.14 ± 1.26 b | 17.43 ± 3.31 ab |
Ⅲ | 20.78 ± 0.98 a | 1.35 ± 0.03 ab | 32.67 ± 6.05 a | 38.67 ± 3.23 b | 28.67 ± 4.51 c |
Ⅳ | 16.90 ± 3.11 a | 1.35 ± 0.04 ab | 53.80 ± 1.25 cd | 36.41 ± 1.20 b | 9.79 ± 0.52 b |
Ⅴ | 17.68 ± 1.06 a | 1.34 ± 0.02 b | 47.86 ± 3.36 d | 37.71 ± 2.13 b | 14.43 ± 1.81 ab |
RDD | pH | SOM (g/kg) | TN (g/kg) | TP (g/kg) | TK (g/kg) | AHN (mg/kg) | AP (mg/kg) | AK (mg/kg) |
---|---|---|---|---|---|---|---|---|
Ⅰ | 6.30 ± 0.29 a | 21.35 ± 1.91 ab | 1.38 ± 0.12 a | 0.30 ± 0.06 a | 14.60 ± 2.62 a | 75.45 ± 7.02 a | 0.41 ± 0.09 a | 29.49 ± 4.18 a |
Ⅱ | 6.30 ± 0.27 a | 17.67 ± 1.80 a | 1.30 ± 0.13 a | 0.29 ± 0.06 a | 15.84 ± 2.07 a | 60.29 ± 3.72 a | 1.11 ± 0.80 a | 34.41 ± 1.38 a |
Ⅲ | 6.20 ± 0.18 a | 21.67 ± 3.40 ab | 1.39 ± 0.23 a | 0.31 ± 0.02 a | 13.34 ± 2.26 a | 83.77 ± 17.01 ab | 0.37 ± 0.05 a | 29.23 ± 2.41 a |
Ⅳ | 6.09 ± 0.20 a | 28.50 ± 1.89 b | 1.97 ± 0.22 b | 0.38 ± 0.10 a | 15.10 ± 2.97 a | 111.14 ± 8.16 b | 1.51 ± 0.92 a | 41.53 ± 6.67 ab |
Ⅴ | 5.71 ± 0.12 a | 36.20 ± 3.05 c | 2.49 ± 0.26 b | 0.45 ± 0.05 a | 15.75 ± 1.35 a | 148.87 ± 10.40 c | 0.79 ± 0.16 a | 48.54 ± 5.46 b |
CCA1 | CCA2 | |
---|---|---|
Eigenvalue | 0.7145 | 0.6618 |
Proportion Explained | 0.2207 | 0.2044 |
Cumulative Proportion | 0.2207 | 0.4251 |
RDD | 0.4952 | −0.4068 |
TP | −0.4353 | −0.3551 |
AP | 0.2219 | −0.4922 |
SMC | −0.3747 | −0.1647 |
BRR | 0.3893 | −0.4277 |
SA | 0.1622 | 0.1164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, M.; Xue, C.; Yang, J.; Wang, N.; Sun, C.; Wu, G.; Chen, H.; Su, Z. Changes in Plant Diversity and Soil Factors under Different Rocky Desertification Degrees in Northern Guangdong, China. Forests 2023, 14, 694. https://doi.org/10.3390/f14040694
Lan M, Xue C, Yang J, Wang N, Sun C, Wu G, Chen H, Su Z. Changes in Plant Diversity and Soil Factors under Different Rocky Desertification Degrees in Northern Guangdong, China. Forests. 2023; 14(4):694. https://doi.org/10.3390/f14040694
Chicago/Turabian StyleLan, Mingyu, Chunquan Xue, Jiazhi Yang, Ning Wang, Chuanxi Sun, Guozhang Wu, Hongyu Chen, and Zhiyao Su. 2023. "Changes in Plant Diversity and Soil Factors under Different Rocky Desertification Degrees in Northern Guangdong, China" Forests 14, no. 4: 694. https://doi.org/10.3390/f14040694
APA StyleLan, M., Xue, C., Yang, J., Wang, N., Sun, C., Wu, G., Chen, H., & Su, Z. (2023). Changes in Plant Diversity and Soil Factors under Different Rocky Desertification Degrees in Northern Guangdong, China. Forests, 14(4), 694. https://doi.org/10.3390/f14040694