Monitoring of Respiratory Health Risks Caused by Biomass Storage in Urban-Type Heating Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Samples Collection
2.2. Laboratory Analysis
3. Results
3.1. Total Number of Phytopathogens and Relative Moisture Content of Stored Material
3.2. Identified Species of Phytopathogens and Their Number
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karras, T.; Brosowski, A.; Thran, D. A Review on Supply Costs and Prices of Residual Biomass in Techno-Economic Models for Europe. Sustainability 2022, 14, 7473. [Google Scholar] [CrossRef]
- Titi, G.C.N.; Kamdem, J.S.; Fono, L.A. Optimal renewable resource harvesting model using price and biomass stochastic variations: A utility based approach. Math. Method. Oper. Res. 2022, 95, 297–326. [Google Scholar] [CrossRef]
- Gejdoš, M.; Potkány, M. The Impact of Global Crisis Accidents on the Prices Development of Selected Raw-Wood Assortments In The Middle Europe Region. In Proceedings of the 15th International Scientific Conference WoodEMA 2022 Crisis Management and Safety Foresight in Forest-Based Sector and SMEs Operating in the Global Environment, Trnava, Slovakia, 8–10 June 2023. [Google Scholar]
- Havlik, J.; Dlouhy, T.; Pitel, J. Drying Biomass with a High Water Content-The Influence of the Final Degree of Drying on the Sizing of Indirect Dryers. Processes 2022, 10, 739. [Google Scholar] [CrossRef]
- Nemeth, M. Renewable Energy Production and Storage Options and their Economic Impacts in Hungary. Public Financ. Quart. 2022, 67, 335–357. [Google Scholar] [CrossRef]
- Myllymaa, T.; Holmberg, H.; Hillamo, H.; Laajalehto, T.; Ahtila, P. Wood Chip Drying in Fixed Beds: Drying Kinetics and Economics of Drying at a Municipal Combined Heat and Power Plant Site. Dry. Technol. 2015, 33, 205–215. [Google Scholar] [CrossRef]
- Mantau, U.; Doring, P.; Weimar, H.; Glasenapp, S. Utilization of wood resources in biomass heat and power plants in the context of market developments. In Proceedings of the Papers of the 26th European Biomass Conference: Setting the Course for a Biobased Economy, Copenhagen, Denmark, 14–17 May 2018. [Google Scholar]
- Cikic, A.; Zdilar, S.; Misevic, P. The Effects of Biomass Availability and Preparation on the Sustainability of Power Plants in Croatia. Teh. Vjesn. 2021, 28, 1806–1812. [Google Scholar] [CrossRef]
- Quirion-Blais, O.; Malladi, K.T.; Sowlati, T.; Gao, E.; Mui, C. Analysis of feedstock requirement for the expansion of a biomass-fed district heating system considering daily variations in heat demand and biomass quality. Energy Convers. Manag. 2019, 187, 554–564. [Google Scholar] [CrossRef]
- Czupy, I.; Szucs, F.; Vagvolgyi, A. Technical Problems of Wood Chips Utilization. In Proceedings of the 4th International Conference on Environment and Renewable energy (ICERE 2018), IOP Conference Series-Earth and Environmental Science, Da Nang, Vietnam, 25–27 February 2018. [Google Scholar]
- Anerud, E.; Bergstrom, D.; Routa, J.; Eliasson, L. Fuel quality and dry matter losses of stored wood chips-Influence of cover material. Biomass Bioenergy 2021, 150, 106109. [Google Scholar] [CrossRef]
- Anerud, E.; Larsson, G.; Eliasson, L. Storage of Wood Chips: Effect of Chip Size on Storage Properties. Croat. J. For. Eng. 2020, 41, 277–286. [Google Scholar] [CrossRef]
- Pecenka, R.; Lenz, H.; Idler, C. Influence of the chip format on the development of mass loss, moisture content and chemical composition of poplar chips during storage and drying in open-air piles. Biomass Bioenergy 2018, 116, 140–150. [Google Scholar] [CrossRef]
- Lieskovský, M.; Gejdoš, M.; Messingerová, V.; Němec, M.; Danihelová, Z.; Moravčíková, V. Biological Risks from Long-Term Storage of Wood Chips. Pol. J. Environ. Stud. 2017, 26, 2633–2641. [Google Scholar] [CrossRef] [PubMed]
- Alakoski, E.; Jamsen, M.; Agar, D.; Tampio, E.; Wihersaari, M. From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass—A short review. Renew. Sust. Energy Rev. 2016, 54, 376–383. [Google Scholar] [CrossRef]
- Gejdoš, M.; Lieskovský, M.; Slančík, M.; Němec, M.; Danihelová, Z. Storage and Fuel Quality of Coniferous Wood Chips. Bioresources 2015, 10, 5544–5553. [Google Scholar] [CrossRef]
- Barontini, M.; Crognale, S.; Scarfone, A.; Gallo, P.; Gallucci, F.; Petruccioli, M.; Pasciaroli, L.; Pari, L. Airborne fungi in biofuel wood chip storage sites. Int. Biodeter. Biodegr. 2014, 90, 17–22. [Google Scholar] [CrossRef]
- Noll, M.; Jirjis, R. Microbial communities in largescale wood piles and their effects on wood quality and the environment. Appl. Microbiol. Biot. 2012, 95, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Yassin, M.F.; Almouqatea, S. Assessment of airborne bacteria and fungi in an indoor and outdoor environment. Int. J. Environ. Sci. Technol. 2010, 7, 535–544. [Google Scholar] [CrossRef]
- Thörnquist, T.; Lundström, H. Health hazards caused by fungi in stored wood chips. Forest Prod. J. 1982, 32, 29–32. [Google Scholar]
- Schweier, J.; Schnitzler, J.-P.; Becker, G. Selected environmental impacts of the technical production of wood chips from poplar short rotation coppice on marginal land. Biomass Bioenergy 2016, 85, 235–242. [Google Scholar] [CrossRef]
- Suchomel, J.; Belanová, K.; Gejdoš, M.; Němec, M.; Danihelová, A.; Mašková, Z. Analysis of fungi in wood chip storage piles. Bioresources 2014, 9, 4410–4420. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.; Summerbell, R.C.; Flannigan, B.; Miller, J.D. Common and Important Species of Fungi and Actinomycetes in Indoor Environments. In Microorganisms in Home and Indoor Work Environments, 2nd ed.; Flannigan, B., Samson, R.A., Miller, J.D., Eds.; CRC Press: New York, NY, USA, 2011; pp. 287–292. [Google Scholar]
- Therasme, O.; Eisenbies, M.H.; Volk, T.A. Overhead protection increases fuel quality and natural drying of leaf-on woody biomass storage piles. Forests 2019, 10, 390. [Google Scholar] [CrossRef]
- Ashman, J.; Jones, J.; Williams, A. Some characteristics of the self-heating of the large scale storage of biomass. Fuel Process. Technol. 2018, 174, 1–8. [Google Scholar] [CrossRef]
- Pari, L.; Brambilla, M.; Bisaglia, C.; Del Giudice, A.; Croce, S.; Salerno, M.; Gallucci, F. Poplar wood chip storage: Effect of particle size and breathable covering on drying dynamics and biofuel quality. Biomass Bioenergy 2015, 81, 282–287. [Google Scholar] [CrossRef]
- Government of the Slovak Republic. Government Directive Nr. 356/2006 Body of Laws: On Protecting the Health of Employees from Risks Related to Exposure to Carcinogenic and Mutagenic Factors at Work; Government of the Slovak Republic: Bratislava, Slovakia, 2020.
- Government of the Slovak Republic. Government Directive Nr. 333/2020 Body of Laws: On Protecting the Health of Employees from Risks Related to Exposure to Biological Factors at Work; Government of the Slovak Republic: Bratislava, Slovakia, 2020.
- Sydor, M.; Cofta, G.; Doczekalska, B.; Bonenberg, A. Fungi in Mycelium-Based Composites: Usage and Recommendations. Materials 2022, 15, 6283. [Google Scholar] [CrossRef]
- Sydor, M.; Bonenberg, A.; Doczekalska, B.; Cofta, G. Mycelium-Based Composites in Art, Architecture, and Interior Design: A Review. Polymers 2022, 14, 145. [Google Scholar] [CrossRef]
- Jirjis, R. Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis. Biomass Bioenergy 2005, 28, 193–201. [Google Scholar] [CrossRef]
- Afzal, M.T.; Bedane, A.H.; Sokhansanj, S.; Mahmood, W. Storage of comminuted and uncomminuted forest biomass and its effect on fuel quality. Bioresources 2010, 5, 55–69. [Google Scholar]
- STN ISO 21527-2: 2010; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Yeasts and Moulds. Part 2:Colony Count Technique in Products with Water Activity Less Than or Equal to 0.95. European Committee for Standardization, CEN-CENELEC: Brussels, Belgium, 2018.
- EN ISO 7218; Microbiology of Food and Animal Feeding Stuffs. General Requirements and Guidance for Microbiological Examinations. European Committee for Standardization, CEN-CENELEC: Brussels, Belgium, 2007.
- STN 56 0100: 1968; Microbiological Examination of Foodstuffs, Articles of Current Use and Environment of Food Establishments. Slovak Office of Standards, Metrology and Testing: Bratislava, Slovakia, 1968.
- Klich, M.A. Identification of Common Aspergillus Species, 1st ed.; Centralbureau voor Schimmelcultures: Utrecht, The Netherlands, 2002; p. 116. [Google Scholar]
- De Hoog, G.S.; Guarro, J.; Gené, J.; Figueras, M.J. Atlas of Clinical Fungi, 2nd ed.; Centralbureau voor Schimmelcultures: Utrecht, The Netherlands, 2001; p. 1160. [Google Scholar]
- Seyedmousavi, S. Aspergillosis in Humans and Animals. In Recent Trends in Human and Animal Mycology, 1st ed.; Singh, K., Srivastava, N., Eds.; Springer: Singapore, 2019; pp. 81–98. [Google Scholar] [CrossRef]
- Freire, F.D.O.; da Rocha, M.E.B. Impact of Mycotoxins on Human Health. In Fungal Metabolites, 1st ed.; Merillon, J.M., Ramawat, K.G., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–23. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Ceremuga, M.; Stela, M.; Saluk-Bijak, J.; Siadkowski, A.; Bijak, M. Molecular Aspects of Mycotoxins-A Serious Problem for Human Health. Int. J. Mol. Sci. 2017, 21, 8187. [Google Scholar] [CrossRef] [PubMed]
- Šimonovičová, A.; Piecková, E.; Ferianc, P.; Hanajík, P.; Horváth, R. Environmentálna Mikrobiológia [Environmental Microbiology], 1st ed.; Comenius University Bratislava: Bratislava, Slovakia, 2013; p. 276. [Google Scholar]
- Bálint, O.; Rajčáni, J.; Mokráš, M.; Holečková, K.; Michal, L.; Ondrušková, M.; Dobiašová, Z.; Jarčuška, R.; Schréter, I.; Mitrová, E.; et al. Infektológia a Antiinfekčná Terapia [Infectology and Anti-Infective Therapy], 2nd ed.; Osveta: Martin, Slovakia, 2007; p. 587. [Google Scholar]
- Szilágyiová, M.; Šimeková, K. Infektológia pre Prax [Infectology for Praxis], 1st ed.; Herba: Bratislava, Slovakia, 2010; p. 292. [Google Scholar]
- Sebastian, A.; Madsen, A.M.; Martensson, L.; Pomorska, D.; Larsson, L. Assessment of microbial exposure risks from handling of biofuel wood chips and straw—Effect of outdoor storage. Ann. Agric. Environ. Med. 2006, 13, 139–145. [Google Scholar]
- Scholz, V.; Idler, C.; Daries, W.; Egert, J. Development of mould and losses during storage of wood chips. Holz Roh. Werkst. 2005, 63, 449–455. [Google Scholar] [CrossRef]
- Kropacz, A.; Fojutowski, A. Colonization by fungi of wood chips stored in industrial conditions. Drewno 2014, 57, 69–80. [Google Scholar] [CrossRef]
- Garstang, J.; Weekes, A.; Poulter, R.; Bartlett, D. Identification and Characterisation of Factors Affecting Losses in the Large-Scale, Non-Ventilated Bulk Storage of Wood Chips and Development of Best Storage Practices, 1st ed.; First Renewables Ltd.: London, UK, 2002; p. 119. [Google Scholar]
- Mirski, R.; Kawalerczyk, J.; Dziurka, D.; Stuper-Szablewska, K. Mold fungi development during the short-term wood-chips storage depending on the storage method. Wood Mater. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Laitinen, S.; Laitinen, J.; Fagernas, L.; Korpijarvi, K.; Korpinen, L.; Ojanen, K.; Aatamila, M.; Jumpponen, M.; Koponen, H.; Jokiniemi, J. Exposure to biological and chemical agents at biomass power plants. Biomass Bioenergy 2016, 93, 78–86. [Google Scholar] [CrossRef]
- Gejdoš, M.; Lieskovský, M. Wood Chip Storage in Small Scale Piles as a Tool to Eliminate Selected Risks. Forests 2021, 12, 289. [Google Scholar] [CrossRef]
- Furumiya, J.; Nishimura, H.; Nakanishi, A.; Hashimoto, Y. Postmortem endogenous ethanol production and diffusion from the lung due to aspiration of wood chip dust in the work place. Legal Med. 2011, 13, 210–212. [Google Scholar] [CrossRef]
- Zohrer, J.; Probst, M.; Dumfort, S.; Lenz, H.; Pecenka, R.; Insam, H.; Ascher-Jenull, J. Molecular monitoring of the poplar wood chip microbiome as a function of storage strategy. Int. Biodeter. Biodegr. 2021, 156, 105133. [Google Scholar] [CrossRef]
- Nagler, M.; Probst, M.; Zoehrer, J.; Dumfort, S.; Fornasier, F.; Pecenka, R.; Lenz, H.; Insam, H.; Ascher-Jenull, J. Microbial community dynamics during the storage of industrial-scale wood chip piles of Picea abies and Populus canadensis and the impact of an alkaline stabilization. Biomass Bioenergy 2022, 165, 106560. [Google Scholar] [CrossRef]
- European Comission Health & Consumer Protection Directorate—General. Working Document on Microbial Contaminant Limits for Microbial Pest Control Products, 1st ed.; Organisation for Economic Co-operation and Development: Paris, France, 2011; p. 53. Available online: https://food.ec.europa.eu/system/files/2016-10/pesticides_ppp_app-proc_guide_phys-chem-ana_microbial-contaminant-limits.pdf (accessed on 20 March 2023).
- World Health Organization. WHO Guidelines for Indoor Air Quality: Dampness and Mould, 1st ed.; Heseltine, E., Rosen, J., Eds.; WHO Regional Office for Europe: Copenhagen, Denmark, 2009; p. 248. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lieskovský, M.; Gejdoš, M. Monitoring of Respiratory Health Risks Caused by Biomass Storage in Urban-Type Heating Plants. Forests 2023, 14, 707. https://doi.org/10.3390/f14040707
Lieskovský M, Gejdoš M. Monitoring of Respiratory Health Risks Caused by Biomass Storage in Urban-Type Heating Plants. Forests. 2023; 14(4):707. https://doi.org/10.3390/f14040707
Chicago/Turabian StyleLieskovský, Martin, and Miloš Gejdoš. 2023. "Monitoring of Respiratory Health Risks Caused by Biomass Storage in Urban-Type Heating Plants" Forests 14, no. 4: 707. https://doi.org/10.3390/f14040707
APA StyleLieskovský, M., & Gejdoš, M. (2023). Monitoring of Respiratory Health Risks Caused by Biomass Storage in Urban-Type Heating Plants. Forests, 14(4), 707. https://doi.org/10.3390/f14040707