A 278-Year Summer Minimum Temperature Reconstruction Based on Tree-Ring Data in the Upper Reaches of Dadu River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Tree-Ring Data
2.2. Meteorological Data
2.3. Methods
3. Results
3.1. Climate-Growth Response Analysis
3.2. Temperature Reconstruction
3.3. Temperature Variation Characteristics
4. Discussion
4.1. Climate Responses
4.2. Verification of the Reconstructed Temperature
4.3. Climate Responses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Y.; Gou, X.; Gao, L.; Yang, M.; Zhang, F. Spatiotemporal Drought Variability of the Eastern Tibetan Plateau during the Last Millennium. Clim. Dyn. 2017, 49, 2077–2091. [Google Scholar] [CrossRef]
- Li, J.; Jin, L.; Zheng, Z.; Qin, N. Variability of the Early Summer Temperature in the Southeastern Tibetan Plateau in Recent Centuries and the Linkage to the Indian Ocean Basin Mode. Lithosphere 2022, 2022, 9648384. [Google Scholar] [CrossRef]
- Gou, X.; Deng, Y.; Chen, F.; Yang, M.; Fang, K.; Gao, L.; Yang, T.; Zhang, F. Tree Ring Based Streamflow Reconstruction for the Upper Yellow River over the Past 1234 Years. Chin. Sci. Bull. 2010, 55, 4179–4186. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.-P.; Cook, E.R.; Chen, F.; Shi, J.; Zhang, D.D.; Fang, K.; Gou, X.; Li, T.; Peng, J.; et al. Deciphering Human Contributions to Yellow River Flow Reductions and Downstream Drying Using Centuries-Long Tree Ring Records. Geophys. Res. Lett. 2019, 46, 898–905. [Google Scholar] [CrossRef]
- Shi, F.; Sun, C.; Guion, A.; Yin, Q.; Zhao, S.; Liu, T.; Guo, Z. Roman Warm Period and Late Antique Little Ice Age in an Earth System Model Large Ensemble. J. Geophys. Res. Atmos. 2022, 127, e2021JD035832. [Google Scholar] [CrossRef]
- Jiang, D.; Yu, G.; Zhao, P.; Chen, X.; Liu, J.; Liu, X.; Wang, S.; Zhang, Z.; Yu, Y.; Li, Y.; et al. Paleoclimate Modeling in China: A Review. Adv. Atmos. Sci. 2015, 32, 250–275. [Google Scholar] [CrossRef]
- Parsons, L.A.; Amrhein, D.E.; Sanchez, S.C.; Tardif, R.; Brennan, M.K.; Hakim, G.J. Do Multi-Model Ensembles Improve Reconstruction Skill in Paleoclimate Data Assimilation? Earth Space Sci. 2021, 8, e2020EA001467. [Google Scholar] [CrossRef]
- Pang, H.; Hou, S.; Zhang, W.; Wu, S.; Jenk, T.M.; Schwikowski, M.; Jouzel, J. Temperature Trends in the Northwestern Tibetan Plateau Constrained by Ice Core Water Isotopes Over the Past 7000 Years. J. Geophys. Res. Atmos. 2020, 125, e2020JD032560. [Google Scholar] [CrossRef]
- Gyawali, A.R.; Wang, J.; Ma, Q.; Wang, Y.; Xu, T.; Guo, Y.; Zhu, L. Paleo-Environmental Change since the Late Glacial Inferred from Lacustrine Sediment in Selin Co, Central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 516, 101–112. [Google Scholar] [CrossRef]
- Chinese Academy of Meteorological Sciences; China Meteorological Administration. Yearly Charts of Dryness/Wetness in China for the Last 500-Year Period; SinoMaps Press: Beijing, China, 1981.
- Yang, B.; Qin, C.; Bräuning, A.; Osborn, T.J.; Trouet, V.; Ljungqvist, F.C.; Esper, J.; Schneider, L.; Grießinger, J.; Büntgen, U.; et al. Long-Term Decrease in Asian Monsoon Rainfall and Abrupt Climate Change Events over the Past 6700 Years. Proc. Natl. Acad. Sci. USA 2021, 118, e2102007118. [Google Scholar] [CrossRef]
- Liu, Y.; Song, H.; An, Z.; Sun, C.; Trouet, V.; Cai, Q.; Liu, R.; Leavitt, S.W.; Song, Y.; Li, Q.; et al. Recent Anthropogenic Curtailing of Yellow River Runoff and Sediment Load Is Unprecedented over the Past 500 y. Proc. Natl. Acad. Sci. USA 2020, 117, 18251–18257. [Google Scholar] [CrossRef]
- PAGES 2k. Consortium Continental-Scale Temperature Variability during the Past Two Millennia. Nat. Geosci. 2013, 6, 339–346. [Google Scholar] [CrossRef]
- Neukom, R.; Steiger, N.; Gómez-Navarro, J.J.; Wang, J.; Werner, J.P. No Evidence for Globally Coherent Warm and Cold Periods over the Preindustrial Common Era. Nature 2019, 571, 550–554. [Google Scholar] [CrossRef]
- Mann, M.E.; Bradley, R.S.; Hughes, M.K. Global-Scale Temperature Patterns and Climate Forcing over the Past Six Centuries. Nature 1998, 392, 779–787. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Shan, B.; Xu, Z.; Niu, Q.; Cheng, L.; Liu, X.; Xu, Z. Spatiotemporal Variation of Drought and Associated Multi-Scale Response to Climate Change over the Yarlung Zangbo River Basin of Qinghai–Tibet Plateau, China. Remote Sens. 2019, 11, 1596. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zheng, Z.; Zeng, S. A 479-Year Early Summer Temperature Reconstruction Based on Tree-Ring in the Southeastern Tibetan Plateau, China. Atmosphere 2021, 12, 1251. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Wang, S.; Shao, X.; Qin, N.; An, W. A Reconstruction of June–July Temperature since AD 1383 for Western Sichuan Plateau, China Using Tree-Ring Width. Int. J. Climatol. 2022, 42, 1803–1817. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Li, T.; Au, T.F. 351-Year Tree Ring Reconstruction of the Gongga Mountains Winter Minimum Temperature and Its Relationship with the Atlantic Multidecadal Oscillation. Clim. Change 2021, 165, 49. [Google Scholar] [CrossRef]
- Fang, K.; Guo, Z.; Chen, D.; Wang, L.; Dong, Z.; Zhou, F.; Zhao, Y.; Li, J.; Li, Y.; Cao, X. Interdecadal Modulation of the Atlantic Multi-Decadal Oscillation (AMO) on Southwest China’s Temperature over the Past 250 Years. Clim. Dyn. 2019, 52, 2055–2065. [Google Scholar] [CrossRef]
- Nie, W.; Li, M. July Mean Temperature Reconstruction for the Southern Tibetan Plateau Based on Tree-Ring Width Data during 1763–2020. Forests 2022, 13, 1911. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Li, Z.; Guo, B.; Wang, X. A 368-Year Maximum Temperature Reconstruction Based on Tree-Ring Data in the Northwestern Sichuan Plateau (NWSP), China. Clim. Past 2016, 12, 1485–1498. [Google Scholar] [CrossRef]
- Xu, G.; Liu, X.; Zhang, Q.; Zhang, Q.; Hudson, A.; Trouet, V. Century-Scale Temperature Variability and Onset of Industrial-Era Warming in the Eastern Tibetan Plateau. Clim Dyn 2019, 53, 4569–4590. [Google Scholar] [CrossRef]
- Fritts, H. Tree Rings and Climate; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Fritts, H.C. Dendroclimatology and Dendroecology. Quat. Res. 1971, 1, 419–449. [Google Scholar] [CrossRef]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull. 1983, 43, 51–67. [Google Scholar]
- Cook, E.R. A Time Series Analysis Approach to Tree Ring Standardization. Ph.D. Thesis, University of Arizona, Tuscon, AZ, USA, 1985. [Google Scholar]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- An, W.; Li, J.; Wang, S.; Xu, C.; Shao, X.; Qin, N.; Guo, Z. Hydrological Extremes in the Upper Yangtze River over the Past 700 Yr Inferred from a Tree Ring Δ18O Record. J. Geophys. Res. Atmos. 2022, 127, e2021JD036109. [Google Scholar] [CrossRef]
- Babadi, B.; Brown, E.N. A Review of Multitaper Spectral Analysis. IEEE Trans. Biomed. Eng. 2014, 61, 1555–1564. [Google Scholar] [CrossRef]
- Prieto, G.A.; Parker, R.L.; Vernon, F.L., III. A Fortran 90 Library for Multitaper Spectrum Analysis. Comput. Geosci. 2009, 35, 1701–1710. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liang, E.; Asad, F.; Grießinger, J. A Tree-Ring–Based Summer (June–July) Minimum Temperature Reconstruction for the Western Kunlun Mountains since AD 1681. Theor. Appl. Climatol. 2019, 138, 673–682. [Google Scholar] [CrossRef]
- Liang, E.; Shao, X.; Qin, N. Tree-Ring Based Summer Temperature Reconstruction for the Source Region of the Yangtze River on the Tibetan Plateau. Glob. Planet. Change 2008, 61, 313–320. [Google Scholar] [CrossRef]
- Mayr, S. Limits in Water Relations. In Trees at Their Upper Limit: Treelife Limitation at the Alpine Timberline; Springer: Berlin/Heidelberg, Germany, 2007; pp. 145–162. [Google Scholar]
- Wieser, G.; Tausz, M. Trees at Their Upper Limit: Treelife Limitation at the Alpine Timberline; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 5. [Google Scholar]
- Shi, C.; Wang, K.; Sun, C.; Zhang, Y.; He, Y.; Wu, X.; Gao, C.; Wu, G.; Shu, L. Significantly Lower Summer Minimum Temperature Warming Trend on the Southern Tibetan Plateau than over the Eurasian Continent since the Industrial Revolution. Environ. Res. Lett. 2019, 14, 124033. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.; Zhang, G.; Fan, Z.; Wang, X.; Fu, B. Tree Ring–Based Minimum Temperature Reconstruction in the Central Hengduan Mountains, China. Theor. Appl. Climatol. 2020, 141, 359–370. [Google Scholar] [CrossRef]
- Liang, E.; Wang, Y.; Piao, S.; Lu, X.; Camarero, J.J.; Zhu, H.; Zhu, L.; Ellison, A.M.; Ciais, P.; Peñuelas, J. Species Interactions Slow Warming-Induced Upward Shifts of Treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2016, 113, 4380–4385. [Google Scholar] [CrossRef]
- Vaganov, E.A.; Hughes, M.K.; Kirdyanov, A.V.; Schweingruber, F.H.; Silkin, P.P. Influence of Snowfall and Melt Timing on Tree Growth in Subarctic Eurasia. Nature 1999, 400, 149–151. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Wilson, R.; Liepert, B.; Cherubini, P. On the ‘Divergence Problem’ in Northern Forests: A Review of the Tree-Ring Evidence and Possible Causes. Glob. Planet. Change 2008, 60, 289–305. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Chen, D. Central Scandinavian Winter Precipitation Variability during the Past Five Centuries Reconstructed from Pinus Sylvestris Tree Rings. Boreas 2008, 34, 43–52. [Google Scholar] [CrossRef]
- Shao, X.; Fan, J. Past Climate on West Sichuan Plateau as Reconstructed from Ring-Widths of Dragon Spruce. Quat. Sci. 1999, 1, 81–89. [Google Scholar]
- Huang, R.; Zhu, H.; Liang, E.; Liu, B.; Shi, J.; Zhang, R.; Yuan, Y.; Grießinger, J. A Tree Ring-Based Winter Temperature Reconstruction for the Southeastern Tibetan Plateau since 1340 CE. Clim. Dyn. 2019, 53, 3221–3233. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Ljungqvist, F.C. A Millennial Summer Temperature Reconstruction for the Eastern Tibetan Plateau from Tree-Ring Width. J. Clim. 2015, 28, 5289–5304. [Google Scholar] [CrossRef]
- Li, J.; Shao, X.; Li, Y.; Qin, N. Annual Temperature Recorded in Tree-Ring from Songpan Region. Chin. Sci. Bull. 2014, 59, 1446–1458. [Google Scholar]
- Wen, K.; Zhan, Z. China Meteorological Calamity Grand Ceremony: Sichuan; Meteorological Press: Beijing, China, 2005. [Google Scholar]
- Xu, X.; Yi, C. Little Ice Age on the Tibetan Plateau and Its Bordering Mountains: Evidence from Moraine Chronologies. Glob. Planet. Change 2014, 116, 41–53. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, H.; Shao, X.; Yin, Z. Tree Ring-Dated Fluctuation History of Midui Glacier since the Little Ice Age in the Southeastern Tibetan Plateau. Sci. China Earth Sci. 2012, 55, 521–529. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Jia, W. Response of“Glaciers-Runoff”System in a Typical Temperate-Glacier, Hailuogou Glacier in Gongga Mountain of China to Global Change. Sci. Geogr. Sin. 2008, 28, 229. [Google Scholar]
- Liu, N.; Bao, G.; Liu, Y.; Linderholm, H.W. Two Centuries-Long Streamflow Reconstruction Inferred from Tree Rings for the Middle Reaches of the Weihe River in Central China. Forests 2019, 10, 208. [Google Scholar] [CrossRef]
- Su, M.; Wang, H. Relationship and Its Instability of ENSO—Chinese Variations in Droughts and Wet Spells. Sci. China Ser. D 2007, 50, 145–152. [Google Scholar] [CrossRef]
- Yin, H.; Liu, H.; Linderholm, H.W.; Sun, Y. Tree Ring Density-Based Warm-Season Temperature Reconstruction since a.D. 1610 in the Eastern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 112–120. [Google Scholar] [CrossRef]
- Yin, H.; Li, M.-Y.; Huang, L. Summer Mean Temperature Reconstruction Based on Tree-Ring Density over the Past 440 Years on the Eastern Tibetan Plateau. Quat. Int. 2021, 571, 81–88. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Wilson, R. Spring Pacific Decadal Oscillation Index Reconstruction. In IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series; World Data Center for Paleoclimatology: Boulder, CO, USA, 2006; Volume 95. [Google Scholar]
- Qin, J.; Tian, Y.; Ren, J.; Wan, Y. Interdecadal Oscillation of Pacific and Interdecadal Change of Summer Temperature in Yunnan. Plateau Meteor 2004, 23, 69–76. [Google Scholar]
- Yang, Y.; Zhao, D.; Chen, H. Variability of Bio-Climatology Indicators in the Southwest China under Climate Warming during 1961–2015. Int. J. Biometeorol. 2019, 63, 107–119. [Google Scholar] [CrossRef]
Statistical Characteristic | Values |
---|---|
Period | 1675–2010 |
Common period | 1900–2000 |
First-order autocorrelation (AC1) | 0.773 |
Signal-to-noise ratio (SNR) | 16.518 |
Mean sensitivity (MS) | 0.158 |
Mean correlations within trees | 0.604 |
Mean correlations between trees | 0.208 |
Expressed population signal (EPS) | 0.943 |
Period with EPS > 0.85 (minimum number of trees) | 1733 (21) |
Variance of first eigenvector (PC1) | 29.7% |
Time Period | Correlation Coefficient | Variance Explanation | F-Value | Sign Tests | Sign Tests of First-Order Difference | Mean Product (t) | Reduced Error (RE) |
---|---|---|---|---|---|---|---|
1962~2010 | 0.602 | 36.2% | 26.733 | 36 (32 *, 34 **) | 34 (32 *, 34 **) | 3.07 | 0.36 |
Year | The Value of Extremely High Temperature (°C) | Year | The Value of Extremely High Temperature (°C) |
---|---|---|---|
1735 | 13.2 | 1797 | 11.2 |
1788 | 13.4 | 1798 | 11.0 |
1808 | 13.5 | 1799 | 11.8 |
1858 | 13.3 | 1819 | 11.9 |
1859 | 13.2 | 1820 | 11.7 |
1863 | 13.4 | 1843 | 11.8 |
1884 | 13.2 | 1844 | 11.8 |
1887 | 13.3 | 1872 | 11.5 |
1889 | 13.3 | 1874 | 11.6 |
1933 | 13.4 | 1875 | 11.8 |
1983 | 13.2 | 1878 | 11.8 |
1984 | 13.2 | 1900 | 11.8 |
2010 | 13.6 | 1907 | 11.8 |
1908 | 11.6 | ||
1918 | 11.7 | ||
1920 | 11.9 | ||
1968 | 11.7 | ||
1990 | 11.8 | ||
2003 | 11.8 | ||
2004 | 11.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jin, L.; Zheng, Z. A 278-Year Summer Minimum Temperature Reconstruction Based on Tree-Ring Data in the Upper Reaches of Dadu River. Forests 2023, 14, 832. https://doi.org/10.3390/f14040832
Li J, Jin L, Zheng Z. A 278-Year Summer Minimum Temperature Reconstruction Based on Tree-Ring Data in the Upper Reaches of Dadu River. Forests. 2023; 14(4):832. https://doi.org/10.3390/f14040832
Chicago/Turabian StyleLi, Jinjian, Liya Jin, and Zeyu Zheng. 2023. "A 278-Year Summer Minimum Temperature Reconstruction Based on Tree-Ring Data in the Upper Reaches of Dadu River" Forests 14, no. 4: 832. https://doi.org/10.3390/f14040832
APA StyleLi, J., Jin, L., & Zheng, Z. (2023). A 278-Year Summer Minimum Temperature Reconstruction Based on Tree-Ring Data in the Upper Reaches of Dadu River. Forests, 14(4), 832. https://doi.org/10.3390/f14040832