Coupling of SWAT and EPIC Models to Investigate the Mutual Feedback Relationship between Vegetation and Soil Erosion, a Case Study in the Huangfuchuan Watershed, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Statistical Analysis
2.2.1. Linear Fitting Method
2.2.2. Normalized Difference Vegetation Index
2.2.3. Spatial Autocorrelation Analysis
2.3. Modeling Strategy
2.3.1. SWAT Model
2.3.2. The EPIC Model
2.3.3. The Comprehensive SWAT-EPIC Framework
2.4. Simulation Scenarios
3. Results
3.1. Variations in the Water-Sediment Relationship and Vegetation
3.2. Effects of Vegetation Changes on Erosion
3.3. Effects of Erosion on Vegetation Growth
4. Discussion
4.1. Runoff and Sediment Reduction by Vegetation
4.2. Nutrient Cycling between Vegetation and Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beniaich, A.; Silva, M.L.N.; Guimarães, D.V.; Avalos, F.A.P.; Terra, F.S.; Menezes, M.D.; Avanzi, J.C.; Candido, B.M. UAV-based vegetation monitoring for assessing the impact of soil loss in olive orchards in Brazil. Geoderma Reg. 2022, 30, e00543. [Google Scholar] [CrossRef]
- Cerda, A. Parent material and vegetation affect soil erosion in eastern Spain. Soil Sci. Soc. Am. J. 1999, 63, 362–368. [Google Scholar] [CrossRef]
- Zhang, B.Q.; He, C.S.; Burnham, M.; Zhang, L.H. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Dunkerley, D.; Lopez-Vicente, M.; Shi, Z.H.; Wu, G.L. Trade-off between surface runoff and soil erosion during the implementation of ecological restoration programs in semiarid regions: A meta-analysis. Sci. Total Environ. 2020, 712, 136477. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Brooks, E.S.; Dobre, M.; Elliot, W.J.; Wu, J.Q.; Flanagan, D.C.; Gravelle, J.A.; Link, T.E. Modeling forest management effects on water and sediment yield from nested, paired watersheds in the interior Pacific Northwest, USA using WEPP. Sci. Total Environ. 2020, 701, 134877.1–134877.14. [Google Scholar] [CrossRef]
- Mancini, S.; Egidio, E.; De Luca, D.A.; Lasagna, M. Application and comparison of different statistical methods for the analysis of groundwater levels over time: Response to rainfall and resource evolution in the Piedmont Plain (NW Italy). Sci. Total Environ. 2022, 846, 157479. [Google Scholar] [CrossRef]
- Eingrüber, N.; Korres, W. Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Sci. Total Environ. 2022, 838, 155775. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.L.; Meng, C.C. Study on characteristics of water-sediment relationship and key influencing factors in Huangfuchuan Watershed of Yellow River. Adv. Sci. Technol. Water Resour. 2019, 39, 27–35. [Google Scholar]
- Wang, H.; Sun, F.B.; Xia, L. Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess Plateau in China. Hydrol. Earth Syst. Sci. 2017, 21, 1929–1945. [Google Scholar] [CrossRef]
- Gao, X.R.; Yan, C.S.; Wang, Y.B.; Zhao, X.N.; Zhao, Y.; Sun, M.; Peng, S.Z. Attribution analysis of climatic and multiple anthropogenic causes of runoff change in the Loess Plateau-A case-study of the Jing River Basin. Land Degrad. Dev. 2020, 31, 1622–1640. [Google Scholar] [CrossRef]
- Shi, W.H.; Huang, M.B. Predictions of soil and nutrient losses using a modified SWAT model in a large hilly-gully watershed of the Chinese Loess Plateau. Int. Soil Water Conserv. Res. 2021, 9, 291–304. [Google Scholar] [CrossRef]
- Huo, A.D.; Yang, L.; Luo, P.P.; Cheng, Y.X.; Peng, J.B.; Nover, D. Influence of landfill and land use scenario on runoff, evapotranspiration, and sediment yield over the Chinese Loess Plateau. Ecol. Indic. 2021, 121, 107208. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhao, X.N.; Gao, X.D.; Wei, W.; Wang, S.F.; Yu, Y.L.; Wang, J.X.; Shao, Z.E. Simulation on soil moisture and water productivity of apple orchard on the Loess Plateau, Northwest China. Chin. J. Appl. Ecol. 2021, 1, 201–210. [Google Scholar] [CrossRef]
- Dong, B.L.; Zhou, Y.Q.; Jeppesen, E.; Qin, B.Q.; Shi, K. Six decades of field observations reveal how anthropogenic pressure changes the coverage and community of submerged aquatic vegetation in a eutrophic lake. Sci. Total Environ. 2022, 842, 156878. [Google Scholar] [CrossRef]
- Wu, M.H.; Xue, K.; Wei, P.J.; Jia, Y.L.; Zhang, Y.; Chen, S.Y. Soil microbial distribution and assembly are related to vegetation biomass in the alpine permafrost regions of the Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 834, 155259. [Google Scholar] [CrossRef]
- Wen, W.; Timmermans, J.; Chen, Q.; Van Bodegom, P.M. Monitoring the combined effects of drought and salinity stress on crops using remote sensing in the Netherlands. Hydrol. Earth Syst. Sci. 2022, 26, 4537–4552. [Google Scholar] [CrossRef]
- Arciniega-Esparza, S.; Birkel, C.; Chavarria-Palma, A.; Arheimer, B.; Brena-Naranjo, J.A. Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica. Hydrol. Earth Syst. Sci 2022, 26, 975–999. [Google Scholar] [CrossRef]
- Hu, R.Y.; Wang, Y.M.; Chang, J.X.; Istanbulluoglu, E.; Guo, A.J.; Meng, X.J.; Li, Z.H.; He, B.; Zhao, Y.X. Coupling water cycle processes with water demand routes of vegetation using a cascade causal modeling approach in arid inland basins. Sci. Total Environ. 2022, 840, 156492. [Google Scholar] [CrossRef]
- Oliveira, G.D.; Arruda, D.M.; Fernandes, E.I.; Veloso, G.V.; Francelino, M.R.; Schaefer, C.E.G.R. Soil predictors are crucial for modelling vegetation distribution and its responses to climate change. Sci. Total Environ. 2021, 780, 146680. [Google Scholar] [CrossRef]
- Iiames, J.S.; Cooter, E.; Pilant, A.N.; Shao, Y. Comparison of EPIC-Simulated and MODIS-Derived Leaf Area Index (LAI) across Multiple Spatial Scales. Remote Sens. 2020, 12, 2764. [Google Scholar] [CrossRef]
- Guo, F.X.; Wang, Y.P.; Wu, F.Y. Conservation Agriculture Could Improve the Soil Dry Layer Caused by the Farmland Abandonment to Forest and Grassland in the Chinese Loess Plateau Based on EPIC Model. Forests 2021, 12, 1228. [Google Scholar] [CrossRef]
- Xue, B.L.; Zhang, H.W.; Wang, Y.T.; Tan, Z.X.; Zhu, Y.; Shrestha, S. Modeling water quantity and quality for a typical agricultural plain basin of northern China by a coupled model. Sci. Total Environ. 2021, 790, 148139. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, S.H.; Zhou, Y.; Hou, X.N.; Yang, X.Y. Characteristics of watershed dynamic sediment delivery based on improved RUSLE model. Catena 2022, 219, 106602. [Google Scholar] [CrossRef]
- Xu, X.M.; Lyu, D.; Lei, X.J.; Huang, T.; Li, Y.L.; Yi, H.J.; Guo, J.W.; He, L.; He, J.; Yang, X.H. Variability of extreme precipitation and rainfall erosivity and their attenuated effects on sediment delivery from 1957 to 2018 on the Chinese Loess Plateau. J. Soils Sediments 2021, 21, 3933–3947. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, X.P.; Ma, Q.; Zhang, J.J.; Ma, T.Y.; Sun, Y.P. Spatiotemporal characteristics of precipitation and extreme events on the Loess Plateau of China between 1957 and 2009. Hydrol. Process. 2014, 28, 4971–4983. [Google Scholar] [CrossRef]
- Zhao, G.J.; Zhai, J.Q.; Tian, P.; Zhang, L.M.; Mu, X.M.; An, Z.F.; Han, M.W. Variations in extreme precipitation on the Loess Plateau using a high-resolution dataset and their linkages with atmospheric circulation indices. Theor. Appl. Climatol. 2018, 133, 1235–1247. [Google Scholar] [CrossRef]
- Sun, C.X.; Huang, G.H.; Fan, Y.R. Multi-Indicator Evaluation for Extreme Precipitation Events in the Past 60 Years over the Loess Plateau. Water 2020, 12, 193. [Google Scholar] [CrossRef]
- Zhu, B.S.; Cheng, C.; Yin, X.L.; Liu, B.; Xie, G. Analysis of changes in characteristics of flood and sediment yield in typical basins of the Yellow River under extreme rainfall events. Catena 2019, 177, 31–40. [Google Scholar] [CrossRef]
- Wieder, W.R.; Boehnert, J.; Bonan, G.B.; Langseth, M. Regridded Harmonized World Soil Database V1.2; ORNL DAAC: Oak Ridge, TN, USA, 2014. [Google Scholar] [CrossRef]
- Deering, D.W. Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Available online: https://www.proquest.com/openview/8263e222279ac22c0a0874aaff98099a/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 10 April 2022).
- Martin, D. An assessment of surface and zonal models of population. Int. J. Geogr. Inf. Syst. 1996, 10, 973–989. [Google Scholar] [CrossRef]
- Getis, A. Reflections on spatial autocorrelation. Reg. Sci. Urban Econ. 2007, 37, 491–496. [Google Scholar] [CrossRef]
- Moran, P. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B-Stat. Methodol. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologicmodeling and assessment part I: Model development. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Mockus, V. National Engineering Handbook; Department of Agriculture: Washington, DC, USA, 1972; Section 4.
- Hooshyar, M.; Wang, D.B. An analytical solution of Richards’ equation providing the physical basis of SCS curve number method and its proportionality relationship. Water Resour. Res. 2016, 52, 6611–6620. [Google Scholar] [CrossRef]
- Prokesova, R.; Horackova, S.; Snopkova, Z. Surface runoff response to long-term land use changes: Spatial rearrangement of runoff-generating areas reveals a shift in flash flood drivers. Sci. Total Environ. 2022, 815, 151591. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; Department of Agriculture: Washington, DC, USA, 1978.
- Guerra, C.A.; Maes, J.; Geijzendorffer, I.; Metzger, M.J. An assessment of soil erosion prevention by vegetation in Mediterranean Europe: Current trends of ecosystem service provision. Ecol. Indic. 2016, 60, 213–222. [Google Scholar] [CrossRef]
- Yue, T.Y.; Yin, S.Q.; Xie, Y.; Yu, B.F.; Liu, B.Y. Rainfall erosivity mapping over mainland China based on high-density hourly rainfall records. Earth Syst. Sci. Data 2022, 14, 665–682. [Google Scholar] [CrossRef]
- Qi, J.Y.; Li, S.; Yang, Q.; Xing, Z.S.; Meng, F.R. SWAT Setup with Long-Term Detailed Landuse and Management Records and Modification for a Micro-Watershed Influenced by Freeze-Thaw Cycles. Water Resour. Manag. 2017, 31, 3953–3974. [Google Scholar] [CrossRef]
- Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 104082. [Google Scholar] [CrossRef]
- Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol.-Reg. Stud. 2019, 25, 100621. [Google Scholar] [CrossRef]
- Ndhlovu, G.Z.; Woyessa, Y.E. Use of gridded climate data for hydrological modelling in the Zambezi River Basin, Southern Africa. J. Hydrol. 2021, 602, 126749. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Hubbart, J.A. A SWAT model validation of nested-scale contemporaneous streamflow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. Sci. Total Environ. 2016, 572, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Femeena, P.V.; Chaubey, I.; Aubeneau, A.; McMillan, S.K.; Wagner, P.D.; Fohrer, N. An improved process-based representation of stream solute transport in the soil and water assessment tools. Hydrol. Process. 2020, 34, 2599–2611. [Google Scholar] [CrossRef]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.L.; Zeng, Y.L.; Barnieh, B.A.; Jiang, M. Calibration and Validation of SWAT Model by Using Hydrological Remote Sensing Observables in the Lake Chad Basin. Remote Sens. 2022, 14, 1511. [Google Scholar] [CrossRef]
- Williams, J.R. The Erosion-Productivity Impact Calculator (EPIC) Model: A Case History. Philos. Trans. R. Soc. B—Biol. Sci. 1990, 329, 421–428. [Google Scholar] [CrossRef]
- Wang, X.P.; Huang, G.H.; Yang, J.S.; Huang, Q.Z.; Liu, H.J.; Yu, L.P. An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain. Agric. Water Manag. 2015, 159, 197–208. [Google Scholar] [CrossRef]
- Doro, L.; Wang, X.Y.; Ammann, C.; Migliorati, M.D.; Grunwald, T.; Klumpp, K.; Loubet, B.; Pattey, E. Improving the simulation of soil temperature within the EPIC model. Environ. Modell. Softw. 2021, 144, 105140. [Google Scholar] [CrossRef]
- Zhang, X.X.; Guo, P.; Wang, Y.Z.; Guo, S.S. Impacts of droughts on agricultural and ecological systems based on integrated model in shallow groundwater area. Sci. Total Environ. 2022, 851, 158228. [Google Scholar] [CrossRef]
- Li, J.; Shao, M.A.; Zhang, X.C. Simulation equations for soil water transfer and use in the model. Agric. Res. Arid. Areas 2004, 2, 72–75. [Google Scholar]
- Zhang, X.S.; Sahajpal, R.; Manowitz, D.H.; Zhao, K.G.; LeDuc, S.D.; Xu, M.; Xiong, W.; Zhang, A.P.; Izaurralde, R.C.; Thomson, A.M.; et al. Multi-scale geospatial agroecosystem modeling: A case study on the influence of soil data resolution on carbon budget estimates. Sci. Total Environ. 2014, 479, 138–150. [Google Scholar] [CrossRef]
- Zhang, J.; Balkovic, J.; Azevedo, L.B.; Skasky, R.; Bouwman, A.F.; Xu, G.; Wang, J.Z.; Xu, M.G.; Yu, C.Q. Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China. Sci. Total Environ. 2018, 627, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.; Shibasaki, R. National spatial crop yield simulation using GIS-based crop production model. Ecol. Model 2001, 136, 113–129. [Google Scholar] [CrossRef]
- Wu, J.; Yu, F.S.; Chen, Z.X.; Chen, J. Global sensitivity analysis of growth simulation parameters of winter wheat based on EPIC model. Trans. Chin. Soc. Agric. Eng. 2009, 25, 136–142. [Google Scholar]
- Garcia, V.; Cooter, E.; Crooks, J.; Hinckley, B.; Murphy, M.; Xing, X.N. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system. Sci. Total Environ. 2017, 586, 16–24. [Google Scholar] [CrossRef]
- Ran, L.; Yuan, Y.; Cooter, E.; Benson, V.; Yang, D.; Pleim, J.; Wang, R.; Williams, J. An Integrated Agriculture, Atmosphere, and Hydrology Modeling System for Ecosystem Assessments. J. Adv. Model. Earth Syst. 2019, 11, 4645–4668. [Google Scholar] [CrossRef]
- Zuo, D.P.; Xu, Z.X.; Yao, W.Y.; Jin, S.Y.; Xiao, P.Q.; Ran, D.C. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chen, L.D.; Gao, Y.; Chen, S.B.; Chen, W.L.; Hao, Z.; Jia, J.J.; Han, N. Geochemical isotopic composition in the Loess Plateau and corresponding source analyses: A case study of China’s Yangjuangou catchment. Sci. Total Environ 2017, 581, 794–800. [Google Scholar] [CrossRef]
- El Allaoui, N.; Serra, T.; Soler, M.; Colomer, J.; Pujol, D.; Oldham, C. Modified hydrodynamics in canopies with longitudinal gaps exposed to oscillatory flows. J. Hydrol. 2015, 531, 840–849. [Google Scholar] [CrossRef]
- Aron, P.G.; Poulsen, C.J.; Fiorella, R.P.; Matheny, A.M. Stable Water Isotopes Reveal Effects of Intermediate Disturbance and Canopy Structure on Forest Water Cycling. J. Geophys. Res.-Biogeosci. 2019, 124, 2958–2975. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zhang, Z.S.; Zhao, Y.; Hu, Y.G.; Zhang, D.H. Soil carbon storage along a 46-year revegetation chronosequence in a desert area of northern China. Geoderma 2018, 325, 28–36. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Wang, Y.Q.; He, M.N.; Tong, Y.P.; Zhou, J.X.; Guo, X.Y.; Liu, J.Z.; Zhang, X.C. Transference of Robinia pseudoacacia water-use patterns from deep to shallow soil layers during the transition period between the dry and rainy seasons in a water-limited region. For. Ecol. Manag. 2020, 457, 117727. [Google Scholar] [CrossRef]
- Cheng, L.P.; Liu, W.Z. Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Profile of Loess Tableland in China. J. Integr. Agric. 2014, 13, 1382–1392. [Google Scholar] [CrossRef]
- Yu, W.J.; Jiao, J.Y. Sustainability of Abandoned Slopes in the Hill and Gully Loess Plateau Region Considering Deep Soil Water. Sustainability 2018, 10, 2287. [Google Scholar] [CrossRef]
- Stoelzle, M.; Stahl, K.; Morhard, A.; Weiler, M. Streamflow sensitivity to drought scenarios in catchments with different geology. Geophys. Res. Lett. 2014, 41, 6174–6183. [Google Scholar] [CrossRef]
- Karlovic, I.; Posavec, K.; Larva, O.; Markovic, T. Numerical groundwater flow and nitrate transport assessment in alluvial aquifer of Varazdin region, NW Croatia. J. Hydrol.-Reg. Stud. 2022, 41, 101084. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Chen, L.D.; Feng, T.J.; Daryanto, S. Quantifying the effects of precipitation, vegetation, and land preparation techniques on runoff and soil erosion in a Loess watershed of China. Sci. Total Environ. 2019, 652, 755–764. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Ren, Z.P.; Yu, Y.; Li, P.; Gong, J.F. Land-use changes and check dams reducing runoff and sediment yield on the Loess Plateau of China. Sci. Total Environ. 2019, 664, 984–994. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Q.J.; Jones, S.B.; Shao, M.G. Soil water depletion and recharge under different land cover in China’s Loess Plateau. Ecohydrology 2016, 9, 396–406. [Google Scholar] [CrossRef]
- Feng, J.; Wei, W.; Pan, D.L. Effects of rainfall and terracing-vegetation combinations on water erosion in a loess hilly area, China. J. Environ. Manag. 2020, 261, 110247. [Google Scholar] [CrossRef]
- Eliades, M.; Bruggeman, A.; Djuma, H.; Christou, A.; Rovanias, K.; Lubczynski, M.W. Testing three rainfall interception models and different parameterization methods with data from an open Mediterranean pine forest. Agric. For. Meteorol. 2022, 313, 108755. [Google Scholar] [CrossRef]
- Hao, M.Z.; Zhang, J.C.; Meng, M.J.; Chen, H.Y.H.; Guo, X.P.; Liu, S.L.; Ye, L.X. Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests. Sci. Rep. 2019, 9, 8372. [Google Scholar] [CrossRef] [PubMed]
- Horn, R.; Mordhorst, A.; Fleige, H.; Zimmermann, I.; Burbaum, B.; Filipinski, M.; Cordsen, E. Soil type and land use effects on tensorial properties of saturated hydraulic conductivity in northern Germany. Eur. J. Soil Sci. 2020, 71, 179–189. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, Y.M. Coupling of plant and soil C:N:P stoichiometry in black locust (Robinia pseudoacacia) plantations on the Loess Plateau, China. Trees-Struct. Funct. 2017, 31, 1559–1570. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.B.; Wu, J.P.; Liu, W.F.; Yuan, Y.H.; Hu, L.; Cai, Q.K. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 2015, 397, 127–138. [Google Scholar] [CrossRef]
2020 | ||||||||
---|---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Water | Urban Land | Bare Land | Total | ||
1985 | Cropland | 286.27 | 0.00 | 454.01 | 0.54 | 7.74 | 0.00 | 748.56 |
Forest | 0.00 | 0.54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.54 | |
Grassland | 84.35 | 0.54 | 2266.95 | 0.75 | 18.27 | 1.61 | 2372.47 | |
Water | 1.07 | 0.00 | 0.21 | 0.43 | 0.00 | 0.00 | 1.72 | |
Urban land | 0.11 | 0.00 | 0.00 | 0.32 | 51.58 | 0.00 | 52.01 | |
Bare land | 1.93 | 0.00 | 66.19 | 0.00 | 2.26 | 0.32 | 70.70 | |
Total | 373.74 | 1.07 | 2787.36 | 2.04 | 79.84 | 1.93 | 3245.99 |
Parameter Acronym | Parameters | Range | Optimum Value | Rank |
---|---|---|---|---|
V CANMX | Maximum canopy storage | (0, 100) | 44.167 | 1 |
V SOL_K | Saturated hydraulic conductivity (mm/hr) | (0, 2000) | 856.667 | 2 |
V GWQMN | Threshold depth of water in the shallow aquifer return flow to occur (mm) | (0, 5000) | 4675 | 3 |
V GW_DELAY | Delay time of groundwater supply flow | (0, 500) | 144.167 | 4 |
V ESCO | Compensation factor for evaporation from soil | (0, 1) | 0.468 | 5 |
V ALPHA_BF | Groundwater reaction factor | (0, 1) | 0.778 | 6 |
R CN2 | Curve number | (−1, 1) | 0.193 | 7 |
V USLE_P | Factor related to soil conservation operations in the USLE equation | (0, 1) | 0.112 | 8 |
V SPEXP | Exponential re-entrainment coefficient for channel sediment routing sediment added in river sediment calculation | (1, 1.5) | 1.006 | 9 |
V GW_REVAP | Groundwater “revap” coefficient | (0.02, 0.2) | 0.116 | 10 |
V SPCON | linear parameter for calculating the maximum amount of sediment that can be reentrained during channel sediment routing sediment added in river sediment calculation | (0.0001, 0.01) | 0.009 | 11 |
V USLE_K | USLE equation soil erodibility (K) factor | (0, 0.65) | 0.075 | 12 |
V SOL_AWC | Available water capacity in the soil layer | (0, 1) | 0.341 | 13 |
Scenario | Water Yield (mm) | Erosion Modulus (t/(km2·a)). | ||||
---|---|---|---|---|---|---|
Average | Change | Percent | Average | Change | Percent | |
Base period scenario (S1) | 49.17 | - | - | 3356 | - | - |
Grass land cover scenario (S2) | 48.85 | −0.32 | −0.65% | 2677 | −680 | −20.24% |
Forest cover scenario (S3) | 48.87 | −0.30 | −0.61% | 2762 | −594 | −17.71% |
Bare land cover scenario (S4) | 54.02 | 4.85 | 9.86% | 10390 | 7034 | 209.60% |
Soil Erosion Intensity | Soil Water Storage (Fraction of Field Capacity) | Organic Nitrogen (kg/ha) | Organic Phosphorus (kg/ha) |
---|---|---|---|
Micro | 0.25 | 99.24 | 24.89 |
Slight | 0.53 | 88.78 | 23.56 |
Moderate | 0.58 | 81.48 | 22.62 |
Intensity | 0.60 | 63.87 | 20.35 |
Extreme intensity | 0.98 | 26.94 | 15.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Zhang, H.; Pang, J.; Yang, J.; Li, M. Coupling of SWAT and EPIC Models to Investigate the Mutual Feedback Relationship between Vegetation and Soil Erosion, a Case Study in the Huangfuchuan Watershed, China. Forests 2023, 14, 844. https://doi.org/10.3390/f14040844
Luo Z, Zhang H, Pang J, Yang J, Li M. Coupling of SWAT and EPIC Models to Investigate the Mutual Feedback Relationship between Vegetation and Soil Erosion, a Case Study in the Huangfuchuan Watershed, China. Forests. 2023; 14(4):844. https://doi.org/10.3390/f14040844
Chicago/Turabian StyleLuo, Zeyu, Huilan Zhang, Jianzhuang Pang, Jun Yang, and Ming Li. 2023. "Coupling of SWAT and EPIC Models to Investigate the Mutual Feedback Relationship between Vegetation and Soil Erosion, a Case Study in the Huangfuchuan Watershed, China" Forests 14, no. 4: 844. https://doi.org/10.3390/f14040844
APA StyleLuo, Z., Zhang, H., Pang, J., Yang, J., & Li, M. (2023). Coupling of SWAT and EPIC Models to Investigate the Mutual Feedback Relationship between Vegetation and Soil Erosion, a Case Study in the Huangfuchuan Watershed, China. Forests, 14(4), 844. https://doi.org/10.3390/f14040844