Effects of the Larch–Ashtree Mixed Forest on Contents of Secondary Metabolites in Larix olgensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mixed Mode Setting of L. olgensis and F. mandshurica
2.2. Collection of Larch Needles
2.3. Determination of Secondary Metabolites Content
2.3.1. Determination of Tannin Content
2.3.2. Determination of Flavonoid Content
2.3.3. Determination of Lignin Content
2.4. Statistical Analysis
3. Results
3.1. Effect of the Banding Mixed Forest in the Field on Content of Secondary Metabolites in Needles of L. olgensis
3.2. Effects of the Banding Mixed Forest in Pots on Content of Secondary Metabolites in Needles of L. olgensis
3.3. Effects of Two Planting Methods on Content of Secondary Metabolites in Needles of L. olgensis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, C. Inter-specific and intra-specific chemical interactions among plants. Chin. J. Appl. Ecol. 2020, 31, 2141–2150. [Google Scholar]
- Li, Y.; Xia, Z.; Kong, C. Allelobiosis in the interference of allelopathic wheat with weeds. Pest Manag. Sci. 2016, 72, 2146–2153. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Lou, Y.G. Research progresses in chemical interactions between plants and phytophagous Insects. Chin. J. Appl. Ecol. 2020, 31, 2151–2160. [Google Scholar]
- Wu, J.S. The “chemical defense”of plants against pathogenic microbes: Phytoa-lexins biosynthesis and molecular regulations. Chin. J. Appl. Ecol. 2020, 31, 2161–2167. [Google Scholar]
- Zhang, W.H.; Liu, G.J. A review on plant secondary substances in plant resistance to insect pests. Chin. Bull. Bot. 2003, 20, 522–530. [Google Scholar]
- Jiang, D.; Yan, S. Effects of Cd, Zn or Pb stress in Populus alba berolinensis on the development and reproduction of Lymantria dispar. Ecotoxicology 2017, 26, 1305–1313. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Q.; He, D. Temporal changes of phenolicacids in Phellodendron amurense Rupr. Leaves and its resistance to insects. J. Northeast. For. Univ. 2014, 42, 126–130. [Google Scholar]
- Jiang, D.; Wang, Y.Y.; Yan, S.C. Effects of Zn stress on growth development and chemical defense of Populus alba’berolinensis’ seedlings. J. Beijing For. Univ. 2018, 40, 42–48. [Google Scholar]
- Guo, Y.; Zhang, P.; Guo, M. Secondary metabolites and plant defence against pathogenic disease. Plant Physiol. Jounal. 2012, 48, 429–434. [Google Scholar]
- Weston, L. Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J. Exp. Bot. 2012, 63, 3445–3454. [Google Scholar] [CrossRef]
- Li, M.; Zeng, R.; Luo, S. Secondary metabolites related with plant resistance against pathogenic microorganisms and insect pests. Chin. J. Biol. Control. 2007, 23, 269–273. [Google Scholar]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Shi, X.P.; Chen, Y.P.; Yan, Z.Q. Research progress on plant allelopathy. Biotechnol. Bull. 2020, 36, 215–222. [Google Scholar]
- Yuan, H.; Yan, S.; Tong, L. Content differences of condensed tannin in needles of Larix gmelinii by cutting needles and insect feeding. Acta Ecol. Sin. 2009, 29, 1415–1420. [Google Scholar]
- Liu, X.X.; Jiang, D.; Meng, Z.J. Effects of secondary substances on food Utilization by Hyphantria cunea larvae. J. Northeast. For. Univ. 2020, 48, 99–103. [Google Scholar]
- Dučaiová, Z.; Sajko, M.; Mihaličová, S.; Repčák, M. Dynamics of accumulation of coumarin-related compounds in leaves of Matricaria chamomilla after methyl jasmonate elicitation. Plant Growth Regul. 2016, 79, 81–94. [Google Scholar] [CrossRef]
- Shahabinejad, M.; Shojaaddini, M.; Maserti, B. Exogenous application of methyl jasmonate and salicylic acid increases antioxidant activity in the leaves of pistachio (Pistacia vera L. cv. Fandoughi) trees and reduces the performance of the phloem-feeding psyllid Agonoscena pistaciae. Arthropod Plant Interact. 2014, 8, 525–530. [Google Scholar] [CrossRef]
- Mitsuda, N.; Seki, M.; Shinozaki, K.; Ohmetakagi, M. The NAC Transcription Factors NST1 and NST2 of Arabidopsis Regulate Secondary Wall Thickenings and Are Required for Anther Dehiscence. Plant Cell 2005, 17, 2993–3006. [Google Scholar] [CrossRef]
- Klapwijk, M.J.; Björkman, C. Mixed forests to mitigate risk of insect outbreaks. Scand. J. For. Res. 2018, 33, 772–780. [Google Scholar] [CrossRef]
- Jactel, H.; Bauhus, J.; Boberg, J. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 2017, 3, 223–243. [Google Scholar] [CrossRef]
- Zhang, Y.J. Allelopathic Effects of Pinus tabulaeformis Carr.Littles Extract on Castanea mollissima Bl. and Quercus variabilis Bl. Seedling Growth. Diss. Beijing For. Univ. 2009.
- Jiang, H.; Yan, S.; Xue, Y. Effects of forest type on activity of several defense proteins and contents of secondary metabolites in Larch needles. For. Res. 2018, 31, 24–28. [Google Scholar]
- Wu, Y.Q.; Guo, Y.Y. Determination of tannin in cotton plant. J. Appl. Ecol. 2000, 11, 243–245. [Google Scholar]
- Jiang, D.; Wang, Y.Y.; Dong, X.W.; Yan, S.C. Inducible defense responses in populus alba berolinensis to pb stress. S. Afr. J. Bot. 2018, 119, 295–300. [Google Scholar] [CrossRef]
- Ren, Q.; Hu, Y.J.; Li, Z.Y. Content variation of lignin and peroxidase activities from damaged Pinus massioniana. ActaEcologicaSinica 2007, 27, 4895–4899. [Google Scholar]
- Fukushima, R.; Hatfield, R. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J. Agric. Food Chem. 2001, 49, 3133–3139. [Google Scholar] [CrossRef]
- Hisashi, K.; Fukiko, K.; Osamu, O. Involvement of allelopathy in inhibition of understory growth in red pine forests. J. Plant Physiol. 2017, 218, 66–73. [Google Scholar]
- Kong, C. Chemical interactions between plant and othe rorganisms: A potential strategy for pest mana-gement. Sci. Agric. Sin. 2007, 40, 712–720. [Google Scholar]
- Yamawo, A. Relatedness of Neighboring Plants Alters the Expression of Indirect Defense Traits in an Extrafloral Nectary-Bearing Plant. Evol. Biol. 2015, 42, 12–19. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Jiang, Y. Allelochemicals from root exudates and their effects on soil biota. Adv. Earth Sci. 2005, 20, 330–337. [Google Scholar]
- Pretzsch, P.H. Tree species mixing can increase maximum stand density. Can. J. For. Res. 2016, 46, 45–52. [Google Scholar] [CrossRef]
- Chen, B.; During, H.; Anten, N. Detect thy neighbor: Identity recognition at the root level in plants. Plant Sci. 2012, 195, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Guyot, V.; Castagneyrol, B.; Vialatte, A. Tree diversity reduces pest damage in mature forests across Europe. Biol. Lett. 2016, 4, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Xu, X. Effects of mixed forest of Ailanthus altissima and Populus bolleana on host choice of Anoplophora glabripennis. Sci. Silvae Sin. 2006, 42, 56–60. [Google Scholar]
- Zhang, Y.; Chang, S.; Song, Y. Application of plant allelopathy in agro-ecosystems. Chin. Agric. Sci. Bull. 2018, 34, 61–68. [Google Scholar] [CrossRef]
- Semchenko, M.; Saar, S.; Lepik, A. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytol. 2014, 204, 631–637. [Google Scholar] [CrossRef]
- Semchenko, M.; John, E.A.; Hutchings, M.J. Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytol. 2007, 176, 644–654. [Google Scholar] [CrossRef]
- Santonja, M.; Bousquet-Mélou, A.; Greff, S. Allelopathic effects of volatile organic compounds released from Pinus halepensis needles and roots. Ecol. Evol. 2019, 9, 8201–8213. [Google Scholar] [CrossRef]
- Qian, C.Y.; Tang, F.H.; Li, C.C. Review on allelopathic effect of forest tree. J. Northwest For. Univ. 2019, 34, 79–85. [Google Scholar]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
Planting Modes | Banding Mixed Modes | Abbreviation Code |
---|---|---|
planting in the field | larch pure forests | FLPF |
larch–ashtree banding mixed forests in the proportion of 1:1 | FBMF1:1 | |
larch–ashtree banding mixed forests in the proportion of 3:3 | FBMF3:3 | |
larch–ashtree banding mixed forests in the proportion of 5:5 | FBMF5:5 | |
planting in pots | larch pure forests | PLPF |
larch–ashtree banding mixed forests in the proportion of 1:1 | PBMF1:1 | |
larch–ashtree banding mixed forests in the proportion of 3:3 | PBMF3:3 | |
larch–ashtree banding mixed forests in the proportion of 5:5 | PBMF5:5 |
Ratio of Secondary Metabolites Content to Control | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Secondary Metabolites | Month/Date | BMF1:1 | BMF3:3 | BMF5:5 | ||||||
Planting in Field | Planting in Pots | Sig. | Planting in Field | Planting in Pots | Sig. | Planting in Field | Planting In Pots | Sig. | ||
tannin | 7/22 | 1.09 ± 0.07 | 1.18 ± 0.02 | ns | 1.11 ± 0.05 | 1.35 ± 0.06 | * | 1.07 ± 0.02 | 1.53 ± 0.04 | ** |
8/01 | 1.16 ± 0.04 | 1.04 ± 0.05 | ns | 1.40 ± 0.01 | 1.33 ± 0.09 | ns | 1.27 ± 0.04 | 1.04 ± 0.05 | * | |
8/12 | 1.13 ± 0.02 | 1.37 ± 0.04 | ** | 1.34 ± 0.02 | 1.46 ± 0.06 | ns | 1.44 ± 0.03 | 1.16 ± 0.05 | * | |
8/22 | 1.18 ± 0.00 | 1.28 ± 0.04 | ns | 1.65 ± 0.03 | 1.36 ± 0.05 | * | 1.42 ± 0.00 | 1.08 ± 0.05 | * | |
9/01 | 1.17 ± 0.02 | 1.19 ± 0.00 | ns | 1.33 ± 0.04 | 1.58 ± 0.04 | ** | 1.25 ± 0.01 | 1.28 ± 0.07 | ns | |
flavonoid | 7/22 | 1.34 ± 0.15 | 1.08 ± 0.10 | ns | 1.69 ± 0.13 | 1.13 ± 0.07 | * | 1.44 ± 0.50 | 0.96 ± 0.17 | ns |
8/01 | 1.10 ± 0.01 | 1.14 ± 0.03 | ns | 1.33 ± 0.39 | 1.21 ± 0.06 | ns | 1.68 ± 0.09 | 1.32 ± 0.04 | * | |
8/12 | 1.39 ± 0.16 | 1.24 ± 0.01 | ns | 1.70 ± 0.05 | 1.57 ± 0.14 | ns | 1.63 ± 0.03 | 1.56 ± 0.06 | ns | |
8/22 | 1.24 ± 0.07 | 1.25 ± 0.05 | ns | 1.37 ± 0.02 | 1.37 ± 0.09 | ns | 1.60 ± 0.08 | 1.77 ± 0.05 | ns | |
9/01 | 1.21 ± 0.09 | 1.15 ± 0.08 | ns | 1.14 ± 0.04 | 1.28 ± 0.06 | ns | 1.31 ± 0.02 | 1.47 ± 0.02 | * | |
lignin | 7/22 | 1.62 ± 0.08 | 1.15 ± 0.07 | ** | 2.07 ± 0.05 | 1.56 ± 0.01 | ** | 0.93 ± 0.04 | 1.71 ± 0.06 | ** |
8/01 | 1.22 ± 0.05 | 1.19 ± 0.09 | ns | 1.64 ± 0.02 | 1.75 ± 0.03 | ns | 1.41 ± 0.03 | 1.40 ± 0.01 | ns | |
8/12 | 1.56 ± 0.14 | 1.16 ± 0.03 | * | 2.76 ± 0.00 | 1.60 ± 0.00 | ** | 2.39 ± 0.00 | 1.37 ± 0.02 | ** | |
8/22 | 1.23 ± 0.09 | 1.20 ± 0.13 | ns | 1.85 ± 0.02 | 1.31 ± 0.02 | ** | 1.20 ± 0.03 | 1.31 ± 0.01 | ns | |
9/01 | 1.40 ± 0.09 | 1.33 ± 0.11 | ns | 2.50 ± 0.02 | 1.30 ± 0.01 | ** | 2.75 ± 0.02 | 1.45 ± 0.03 | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Yan, S.; Meng, Z.; Zhao, S.; Jiang, D.; Li, P. Effects of the Larch–Ashtree Mixed Forest on Contents of Secondary Metabolites in Larix olgensis. Forests 2023, 14, 871. https://doi.org/10.3390/f14050871
Jiang H, Yan S, Meng Z, Zhao S, Jiang D, Li P. Effects of the Larch–Ashtree Mixed Forest on Contents of Secondary Metabolites in Larix olgensis. Forests. 2023; 14(5):871. https://doi.org/10.3390/f14050871
Chicago/Turabian StyleJiang, Hong, Shanchun Yan, Zhaojun Meng, Shen Zhao, Dun Jiang, and Peng Li. 2023. "Effects of the Larch–Ashtree Mixed Forest on Contents of Secondary Metabolites in Larix olgensis" Forests 14, no. 5: 871. https://doi.org/10.3390/f14050871
APA StyleJiang, H., Yan, S., Meng, Z., Zhao, S., Jiang, D., & Li, P. (2023). Effects of the Larch–Ashtree Mixed Forest on Contents of Secondary Metabolites in Larix olgensis. Forests, 14(5), 871. https://doi.org/10.3390/f14050871