Opportunities for Research on Carbon Management in Longleaf Pine Ecosystems
Abstract
:1. Introduction
2. Aboveground C Stocks and Accumulation
2.1. Extended Rotations
2.2. Reduced Risk of C Emissions
2.3. Wildlife Management
3. Belowground C Stocks and Accumulation
3.1. Afforestation on Marginal Agricultural Lands
3.2. Early and Mid-Rotation Fertilization
3.3. Incorporation of Pyrogenic C into the Mineral Soil
3.4. Minimize Disturbance and Utilization of Live and Dead Root Systems
3.5. Novel Approaches to Reduce C Emissions
4. Total Ecosystem C Dynamics
5. Harvested Wood Products
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puhlick, J.J.; Brantley, S.T.; O’Halloran, T.L.; Clay, L.; Klepzig, K.D. Perspectives: Carbon markets might incentivize poorer ecological outcomes in longleaf pine ecosystems. For. Ecol. Manag. 2022, 520, 120421. [Google Scholar] [CrossRef]
- USDA Forest Service Forest Inventory and Analysis Program. Forest Inventory EVALIDator Web-Application Version 2.0.5; USDA Forest Service, Northern Research Station: St. Paul, MN, USA, 2023.
- Kirkman, L.K.; Giencke, L.M.; Taylor, R.S.; Boring, L.R.; Staudhammer, C.L.; Mitchell, R.J. Productivity and species richness in longleaf pine woodlands: Resource-disturbance influences across an edaphic gradient. Ecology 2016, 97, 2259–2271. [Google Scholar] [CrossRef]
- McIntyre, R.K.; Conner, L.M.; Jack, S.B.; Schlimm, E.M.; Smith, L.L. Wildlife habitat condition in open pine woodlands: Field data to refine management targets. For. Ecol. Manag. 2019, 437, 282–294. [Google Scholar] [CrossRef]
- Kirkman, L.K.; Giencke, L.M. Restoring and managing a diverse ground cover. In Ecological Restoration and Management of Longleaf Pine Forests; Kirkman, L.K., Jack, S.B., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 207–232. [Google Scholar]
- Kirkman, L.K.; Mitchell, R.J.; Helton, R.C.; Drew, M.B. Productivity and species richness across an environmental gradient in a fire-dependent ecosystem. Am. J. Bot. 2001, 88, 2119–2128. [Google Scholar] [CrossRef] [PubMed]
- Golladay, S.W.; Craig, L.S.; DePalma-Dow, A.D.; Emanuel, B.N.; Rogers, S.G. Building resilience into water management through public engagement. Freshw. Sci. 2021, 40, 238–244. [Google Scholar] [CrossRef]
- Qi, J.; Brantley, S.T.; Golladay, S.W. Simulated longleaf pine (Pinus palustris Mill.) restoration increased streamflow-A case study in the Lower Flint River Basin. Ecohydrology 2022, 15, e2365. [Google Scholar] [CrossRef]
- Condon, B.; Putz, F.E. Countering the broadleaf invasion: Financial and carbon consequences of removing hardwoods during longleaf pine savanna restoration. Restor. Ecol. 2007, 15, 296–303. [Google Scholar] [CrossRef]
- Rutledge, B.T.; McIntyre, R.K. Prescribed Fire at The Jones Center at Ichauway: A 28-Year Case Study; The Jones Center at Ichauway: Newton, GA, USA, 2022; 29p. [Google Scholar]
- Flanagan, S.A.; Bhotika, S.; Hawley, C.; Starr, G.; Wiesner, S.; Hiers, J.K.; O’Brien, J.J.; Goodrick, S.; Callaham, M.A., Jr.; Scheller, R.M.; et al. Quantifying carbon and species dynamics under different fire regimes in a southeastern U.S. pineland. Ecosphere 2019, 10, e02772. [Google Scholar] [CrossRef]
- Flanagan, S.A.; Hiers, J.K.; Callaham, M.A., Jr.; Goodrick, S.; O’Brien, J.J.; Starr, G.; Wiesner, S.; Klepzig, K.D.; Loudermilk, E.L. A model comparison of fire return interval impacts on carbon and species dynamics in a southeastern U.S. pineland. Ecosphere 2021, 12, e03836. [Google Scholar] [CrossRef]
- Ahlswede, B.J.; O’Halloran, T.L.; Thomas, R.Q. Combined carbon and albedo climate forcing from pine and switchgrass grown for bioenergy. Front. For. Glob. Change 2022, 5, 1–11. [Google Scholar] [CrossRef]
- Bracho, R.; Starr, G.; Gholz, H.L.; Martin, T.A.; Cropper, W.P.; Loescher, H.W. Controls on carbon dynamics by ecosystem structure and climate for southeastern US slash pine plantations. Ecol. Monogr. 2012, 82, 101–128. [Google Scholar] [CrossRef]
- Clark, K.L.; Gholz, H.L.; Castro, M.S. Carbon dynamics along a chronosequence of slash pine plantations in north Florida. Ecol. Appl. 2004, 14, 1154–1171. [Google Scholar] [CrossRef]
- Noormets, A.; McNulty, S.G.; Domec, J.C.; Gavazzi, M.; Sun, G.; King, J.S. The role of harvest residue in rotation cycle carbon balance in loblolly pine plantations. Respiration partitioning approach. Glob. Change Biol. 2012, 18, 3186–3201. [Google Scholar] [CrossRef]
- Bautista, N.; Marino, B.D.V.; Munger, J.W. Science to commerce: A commercial-scale protocol for carbon trading applied to a 28-year record of forest carbon monitoring at the Harvard Forest. Land 2021, 10, 163. [Google Scholar] [CrossRef]
- Novick, K.A.; Metzger, S.; Anderegg, W.R.L.; Barnes, M.; Cala, D.S.; Guan, K.Y.; Hemes, K.S.; Hollinger, D.Y.; Kumar, J.; Litvak, M.; et al. Informing Nature-based Climate Solutions for the United States with the best-available science. Glob. Change Biol. 2022, 28, 3778–3794. [Google Scholar] [CrossRef]
- Kush, J.S.; Meldahl, R.S.; McMahon, C.K.; Boyer, W.D. Longleaf pine: A sustainable approach for increasing terrestrial carbon in the southern United States. Environ. Manag. 2004, 33, S139–S147. [Google Scholar] [CrossRef]
- Samuelson, L.J.; Stokes, T.A.; Butnor, J.R.; Johnsen, K.H.; Gonzalez-Benecke, C.A.; Anderson, P.; Jackson, J.; Ferrari, L.; Martin, T.A.; Cropper, W.P. Ecosystem carbon stocks in Pinus palustris forests. Can. J. For. Res. 2014, 44, 476–486. [Google Scholar] [CrossRef]
- Samuelson, L.J.; Stokes, T.A.; Butnor, J.R.; Johnsen, K.H.; Gonzalez-Benecke, C.A.; Martin, T.A.; Cropper, W.P.; Anderson, P.H.; Ramirez, M.R.; Lewis, J.C. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests. Ecol. Appl. 2017, 27, 244–259. [Google Scholar] [CrossRef]
- Harrington, T.B. Silvicultural Approaches for Thinning Southern Pines: Method, Intensity, and Timing; Publication Number FSP002; Georgia Forestry Commission: Dry Branch, GA, USA, 2001. [Google Scholar]
- Puhlick, J.J.; Weiskittel, A.R.; Kenefic, L.S.; Woodall, C.W.; Fernandez, I.J. Strategies for enhancing long-term carbon sequestration in mixed-species, naturally regenerated Northern temperate forests. Carbon Manag. 2020, 11, 381–397. [Google Scholar] [CrossRef]
- Ulyshen, M.D.; Horn, S.; Pokswinski, S.; McHugh, J.V.; Hiers, J.K. A comparison of coarse woody debris volume and variety between old-growth and secondary longleaf pine forests in the southeastern United States. For. Ecol. Manag. 2018, 429, 124–132. [Google Scholar] [CrossRef]
- Pile Knapp, L.S.; Guan, S.; Song, B.; Wang, G.G. Temporal effects of hurricanes and prescribed fire on fuel loading and pine reproduction in the southeastern United States. In Proceedings of the 21st Biennial Southern Silvicultural Research Conference; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2022; pp. 21–31. [Google Scholar]
- Russell, M.B.; Woodall, C.W.; Fraver, S.; D’Amato, A.W.; Domke, G.M.; Skog, K.E. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems 2014, 17, 765–777. [Google Scholar] [CrossRef]
- Gonzalez-Benecke, C.A.; Samuelson, L.J.; Martin, T.A.; Cropper, W.P.; Johnsen, K.H.; Stokes, T.A.; Butnor, J.R.; Anderson, P.H. Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks. For. Ecol. Manag. 2015, 355, 24–36. [Google Scholar] [CrossRef]
- Remucal, J.M.; McGee, J.D.; Fehrenbacher, M.M.; Best, C.; Mitchell, R.J. Application of the Climate Action Reserve’s Forest Project Protocol to a longleaf pine forest under restoration management. J. For. 2013, 111, 59–66. [Google Scholar] [CrossRef]
- Puhlick, J.J.; Weiskittel, A.R.; Fernandez, I.J.; Solarik, K.A.; Sleep, D.J.H. Evaluation of projected carbon accumulation after implementing different forest management treatments in mixed-species stands in northern Maine. Carbon Manag. 2022, 13, 190–204. [Google Scholar] [CrossRef]
- Temperli, C.; Blattert, C.; Stadelmann, G.; Brandli, U.B.; Thurig, E. Trade-offs between ecosystem service provision and the predisposition to disturbances: A NFI-based scenario analysis. For. Ecosyst. 2020, 7, 17. [Google Scholar] [CrossRef]
- Oswalt, C.M.; Cooper, J.A.; Brockway, D.G.; Brooks, H.W.; Walker, J.L.; Connor, K.F.; Oswalt, S.N.; Conner, R.C. History and Current Condition of Longleaf Pine in the Southern United States; General Technical Report WO-91; USDA Forest Service: Washington, DC, USA, 2012.
- Leland, C.; Rao, M.P.; Cook, E.R.; Cook, B.I.; Lapidus, B.M.; Staniforth, A.B.; Solomon, A.; Holloway, M.Y.; Rodriguez-Caton, M. Dendroarchaeological analysis of the Terminal Warehouse in New York City reveals a history of long-distance timber transport during the Gilded Age. J. Archaeol. Sci. Rep. 2021, 39, 103114. [Google Scholar] [CrossRef]
- Rutledge, B.T.; Cannon, J.B.; McIntyre, R.K.; Holland, A.M.; Jack, S.B. Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: Post-hurricane assessment in a longleaf pine landscape. For. Ecol. Manag. 2021, 481, 118724. [Google Scholar] [CrossRef]
- Nowak, J.; Asaro, C.; Klepzig, K.; Billings, R. The southern pine beetle prevention initiative: Working for healthier forests. J. For. 2008, 106, 261–267. [Google Scholar]
- Lavoie, M.; Mack, M.C.; Hiers, J.K.; Pokswinski, S.; Barnett, A.; Provencher, L. Effects of restoration techniques on soil carbon and nitrogen dynamics in Florida longleaf pine (Pinus palustris) sandhill forests. Forests 2014, 5, 498–517. [Google Scholar] [CrossRef]
- Cherry, M.J.; Warren, R.J.; Conner, L.M. Fear, fire, and behaviorally mediated trophic cascades in a frequently burned savanna. For. Ecol. Manag. 2016, 368, 133–139. [Google Scholar] [CrossRef]
- Markewitz, D.; Sartori, F.; Craft, C. Soil change and carbon storage in longleaf pine stands planted on marginal agricultural lands. Ecol. Appl. 2002, 12, 1276–1285. [Google Scholar] [CrossRef]
- Butnor, J.R.; Johnsen, K.H.; Sanchez, F.G.; Nelson, C.D. Impacts of pine species, stump removal, cultivation, and fertilization on soil properties half a century after planting. Can. J. For. Res. 2012, 42, 675–685. [Google Scholar] [CrossRef]
- Nave, L.E.; Domke, G.M.; Hofmeister, K.L.; Mishra, U.; Perry, C.H.; Walters, B.F.; Swanston, C.W. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl. Acad. Sci. USA 2018, 115, 2776–2781. [Google Scholar] [CrossRef] [PubMed]
- Abney, R.B.; Jin, L.; Berhe, A.A. Soil properties and combustion temperature: Controls on the decomposition rate of pyrogenic organic matter. Catena 2019, 182, 104127. [Google Scholar] [CrossRef]
- Boyer, W.D. Interim Site-Index Curves for Longleaf Pine Plantations; Research Note SO-261; USDA Forest Service, Southern Forest Experiment Station: Asheville, NC, USA, 1980.
- Richter, D.D.; Markewitz, D.; Trumbore, S.E.; Wells, C.G. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999, 400, 56–58. [Google Scholar] [CrossRef]
- Carter, D.C.; Hendricks, J.J.; Mitchell, R.J.; Pecot, S.D. Fine root carbon allocation and fates in longleaf pine forests. For. Sci. 2004, 50, 177–187. [Google Scholar]
- Clabo, D.C.; Dickens, E.D.; Moorhead, D.J. Old-field longleaf pine (Pinus palustris Mill.) long-term growth and yield response to midrotation fertilization. For. Sci. 2020, 66, 726–736. [Google Scholar] [CrossRef]
- Dias, A.C.; Arroja, L. Environmental impacts of eucalypt and maritime pine wood production in Portugal. J. Clean. Prod. 2012, 37, 368–376. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, S.; Moreira, M.T.; Dias, A.C.; Mola-Yudego, B. Cradle-to-gate life cycle assessment of forest operations in Europe: Environmental and energy profiles. J. Clean. Prod. 2014, 66, 188–198. [Google Scholar] [CrossRef]
- Butnor, J.R.; Samuelson, L.J.; Johnsen, K.H.; Anderson, P.H.; Benecke, C.A.G.; Boot, C.M.; Cotrufo, M.F.; Heckman, K.A.; Jackson, J.A.; Stokes, T.A.; et al. Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests. For. Ecol. Manag. 2017, 390, 15–26. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santin, C.; Merino, A.; Belcher, C.M.; Baxter, G. Fire as a removal mechanism of pyrogenic carbon from the environment: Effects of fire and pyrogenic carbon characteristics. Front. Earth Sci. 2018, 6, 127. [Google Scholar] [CrossRef]
- Stallard, R.F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 1998, 12, 231–257. [Google Scholar] [CrossRef]
- Pingree, M.R.A.; DeLuca, T.H. Function of wildfire-deposited pyrogenic carbon in terrestrial ecosystems. Front. Environ. Sci. 2017, 5, 53. [Google Scholar] [CrossRef]
- Wagner, S.; Brantley, S.; Stuber, S.; van Stan, J.; Whitetree, A.; Stubbins, A. Dissolved black carbon in throughfall and stemflow in a fire-managed longleaf pine woodland. Biogeochemistry 2019, 146, 191–207. [Google Scholar] [CrossRef]
- Abiven, S.; Hengartner, P.; Schneider, M.P.W.; Singh, N.; Schmidt, M.W.I. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biol. Biochem. 2011, 43, 1615–1617. [Google Scholar] [CrossRef]
- Hockaday, W.C.; Grannas, A.M.; Kim, S.; Hatcher, P.G. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org. Geochem. 2006, 37, 501–510. [Google Scholar] [CrossRef]
- Santos, F.; Wagner, S.; Rothstein, D.; Jaffe, R.; Miesel, J.R. Impact of a historical fire event on pyrogenic carbon stocks and dissolved pyrogenic carbon in Spodosols in northern Michigan. Front. Earth Sci. 2017, 5, 80. [Google Scholar] [CrossRef]
- Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- Binkley, D.; Richter, D.; David, M.B.; Caldwell, B. Soil chemistry in a loblolly/longleaf pine forest with interval burning. Ecol. Appl. 1992, 2, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, M.; Starr, G.; Mack, M.C.; Martin, T.A.; Gholz, H.L. Effects of a prescribed fire on understory vegetation, carbon pools, and soil nutrients in a longleaf pine-slash pine forest in Florida. Nat. Area J. 2010, 30, 82–94. [Google Scholar] [CrossRef]
- Kupfer, J.A.; Terando, A.J.; Gao, P.; Teske, C.; Hiers, J.K. Climate change projected to reduce prescribed burning opportunities in the south-eastern United States. Int. J. Wildland Fire 2020, 29, 764–778. [Google Scholar] [CrossRef]
- Starr, G.; Staudhammer, C.L.; Loescher, H.W.; Mitchell, R.; Whelan, A.; Hiers, J.K.; O’Brien, J.J. Time series analysis of forest carbon dynamics: Recovery of Pinus palustris physiology following a prescribed fire. New For. 2015, 46, 63–90. [Google Scholar] [CrossRef]
- Whelan, A.; Mitchell, R.; Staudhammer, C.; Starr, G. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems. PLoS ONE 2013, 8, e54045. [Google Scholar] [CrossRef] [PubMed]
- Starr, G.; Staudhammer, C.L.; Wiesner, S.; Kunwor, S.; Loescher, H.W.; Baron, A.F.; Whelan, A.; Mitchell, R.J.; Boring, L. Carbon dynamics of Pinus palustris ecosystems following drought. Forests 2016, 7, 98. [Google Scholar] [CrossRef]
- Wiesner, S.; Staudhammer, C.L.; Javaheri, C.L.; Hiers, J.K.; Boring, L.R.; Mitchell, R.J.; Starr, G. The role of understory phenology and productivity in the carbon dynamics of longleaf pine savannas. Ecosphere 2019, 10, e02675. [Google Scholar] [CrossRef]
- Williston, H.L.; Guthrie, J.G.; Hood, C.A. Managing and harvesting longleaf pine for specialty products. In Proceedings of the Symposium on the Management of Longleaf Pine, Long Beach, MS, USA, 4–6 April 1989; Farrar, R.M., Ed.; General Technical Report SO-75. USDA Forest Service, Southern Forest Experiment Station: New Orleans, LA, USA, 1989; pp. 209–214. [Google Scholar]
- Bragg, D.C.; Guldin, J.M. Estimating long-term carbon sequestration patterns in even- and uneven-aged southern pine stands. In Integrated Management of Carbon Sequestration and Biomass Utilization Opportunities in a Changing Climate: Proceedings of the 2009 National Silviculture Workshop, Fort Collins, CO, USA, 15–18 June 2009; Boise, ID. Proceedings RMRS-P-61; Jain, T.B., Graham, R.T., Sandquist, J., Eds.; USDA, Forest Service, Rocky Mountain Research Station: Logan, UT, USA, 2010; pp. 111–123. [Google Scholar]
- Sharma, A.; Bohn, K.K.; Jose, S.; Dwivedi, P. Even-aged vs. uneven-aged silviculture: Implications for multifunctional management of southern pine ecosystems. Forests 2016, 7, 86. [Google Scholar] [CrossRef]
- Gunn, J.S.; Buchholz, T. Forest sector greenhouse gas emissions sensitivity to changes in forest management in Maine (USA). Forestry 2018, 91, 526–538. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puhlick, J.J.; O’Halloran, T.L.; Starr, G.; Abney, R.B.; Pile Knapp, L.S.; McCleery, R.A.; Klepzig, K.D.; Brantley, S.T.; McIntyre, R.K.; Song, B. Opportunities for Research on Carbon Management in Longleaf Pine Ecosystems. Forests 2023, 14, 874. https://doi.org/10.3390/f14050874
Puhlick JJ, O’Halloran TL, Starr G, Abney RB, Pile Knapp LS, McCleery RA, Klepzig KD, Brantley ST, McIntyre RK, Song B. Opportunities for Research on Carbon Management in Longleaf Pine Ecosystems. Forests. 2023; 14(5):874. https://doi.org/10.3390/f14050874
Chicago/Turabian StylePuhlick, Joshua J., Thomas L. O’Halloran, Gregory Starr, Rebecca B. Abney, Lauren S. Pile Knapp, Robert A. McCleery, Kier D. Klepzig, Steven T. Brantley, R. Kevin McIntyre, and Bo Song. 2023. "Opportunities for Research on Carbon Management in Longleaf Pine Ecosystems" Forests 14, no. 5: 874. https://doi.org/10.3390/f14050874
APA StylePuhlick, J. J., O’Halloran, T. L., Starr, G., Abney, R. B., Pile Knapp, L. S., McCleery, R. A., Klepzig, K. D., Brantley, S. T., McIntyre, R. K., & Song, B. (2023). Opportunities for Research on Carbon Management in Longleaf Pine Ecosystems. Forests, 14(5), 874. https://doi.org/10.3390/f14050874