Effect of Cork Flour Supplementation on the Growth Indices and Rhizosphere Bacterial Communities of Quercus variabilis Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Treatments
2.2. Determination of the Nutrient Content of Q. variabilis Seedling Substrates
2.3. Measurement of the Physiological Indices of Q. variabilis Seedling Growth
2.4. Diversity of Rhizosphere Bacterial Communities of Q. variabilis Seedlings
2.5. Statistical Analysis
3. Results
3.1. Differences in Seedling Rhizosphere Nutrient Content among the Different Substrates
3.2. Differences in the Growth Indices of Q. variabilis Seedlings Grown in Different Substrates
3.3. Differences in the Physiological Indices of Q. variabilis Seedlings Grown in Different Substrates
3.4. Differences in the Number of Rhizosphere Bacteria Associated with Q. variabilis Seedlings
3.5. Differences in the Alpha Diversity of Seedling Rhizosphere Bacteria
3.6. Effect of Cork Flour Addition on the Beta Diversity of Seedling Rhizosphere Bacteria
3.7. Differences in the Composition of Rhizosphere Bacterial Communities of Q. variabilis Seedlings Grown in Different Substrates
3.8. Functional Analysis of Rhizosphere Bacterial Communities of Q. variabilis Seedlings Grown in Different Substrates
4. Discussion
4.1. Relationship between Differences in Nutrient Contents and Growth and Physiological Indices of Q. variabilis
4.2. Effect of Cork Flour Supplementation on the Diversity of Rhizosphere Bacterial Communities of Q. variabilis Seedlings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, X.M.; Wen, Q.; Cao, M.; Guo, X.; Xu, L.A. Genetic diversity and structure of natural Quercus variabilis population in China as revealed by microsatellites markers. Forests 2017, 8, 495. [Google Scholar] [CrossRef]
- Kholkhal, D.; Benmahioul, B. Effects of substrate on the germination and seedling growth of Quercus suber L. Biodiv. Res. Conserv. 2021, 64, 7–14. [Google Scholar] [CrossRef]
- Xu, N.N.; Guo, W.H.; Liu, J.; Du, N.; Wang, R.Q. Increased nitrogen deposition alleviated the adverse effects of drought stress on Quercus variabilis and Quercus mongolica seedlings. Acta Physiol. Plant. 2015, 37, 107. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, W.H.; Ma, C.; Zhou, J.Y. Changes in morphological, physiological, and biochemical responses to different levels of drought stress in Chinese cork oak (Quercus variabilis Bl.) seedlings. Russ. J. Plant Physiol. 2013, 60, 681–692. [Google Scholar] [CrossRef]
- Avila, J.M.; Gallardo, A.; Ibáñez, B.; Gómez-Aparicio, L.; Turnbull, M. Quercus suberdieback alters soil respiration and nutrient availability in Mediterranean forests. J. Ecol. 2016, 104, 1441–1452. [Google Scholar] [CrossRef]
- Tittarelli, F.; Rea, E.; Verrastro, V.; Pascual, J.A.; Canali, S.; Ceglie, F.G.; Trinchera, A.; Rivera, C.M. Compost-based Nursery Substrates: Effect of Peat Substitution on Organic Melon Seedlings. Compost Sci. Util. 2009, 17, 220–228. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Wang, P.C.; Zhang, Q.A.; Yan, C.S.; Yu, F.F.; Yi, J.Q.; Fang, L. Effect of different levels of nitrogen, phosphorus, and potassium on root activity and chlorophyll content in leaves of Brassica oleracea seedlings grown in vegetable nursery substrate. Hortic. Environ. Biotechnol. 2017, 58, 5–11. [Google Scholar] [CrossRef]
- Mechergui, T.; Pardos, M.; Vanderschaaf, C.L.; Boussaidi, N.; Jhariya, M.K.; Banerjee, A. Feasibility of using orange wattle (Acacia cyanophylla Lindl.) compost as an organic growing medium for the production of cork oak (Quercus suber L.) seedlings. J. Soil Sci. Plant Nutr. 2022, 22, 3507–3517. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, N.J.; Zhang, J.P.; Yao, X.H.; Zhang, T.T.; Zhang, X.F.; Zhan, L.Y.; Li, J.M. Formulation of substrates with agricultural and forestry wastes for Camellia oleifera Abel seedling cultivation. PLoS ONE 2022, 17, e0265979. [Google Scholar] [CrossRef]
- Chang, E.F.; Li, Y.; Li, P.R.; Xiao, G.Y.; Zhang, Q.; Ding, Y.X.; Huang, C.L. Effect of substrate on seedling growing of Quercus baronii and Sapium sebiferum. J. West China For. Sci. 2018, 47, 56–62. [Google Scholar] [CrossRef]
- Lin, X.; Zheng, J.; Liu, H.J.; Qian, R.J.; Wang, J.W. Effects of different media on growth and leaf physiological characteristics of Ficus concinna var. subsessilis container seedlings. Sci. Silvae Sin. 2010, 46, 62–70. [Google Scholar]
- Deng, H.P.; Yang, G.J. Influence of different media formulas on container-growing Seedling quality of Ulmus pumila cv. Jinye. For. Res. 2010, 23, 138–142. [Google Scholar] [CrossRef]
- Qin, A.L.; Guo, Q.S.; Jian, Z.J.; Zhu, L.; Pei, S.X.; Zhao, Z.L.; Xing, J.C. Effects of different nursery substrates on germination rate and seedling growth of Thuja sutchuenensis. Sci. Silvae Sin. 2015, 51, 9–17. [Google Scholar]
- Tang, H.H.; Zhao, Q.; Yang, Y.; Wei, D.; Qian, W.H.; Zou, W.J. Effects of different media formulas on the growth of Acacia podalyriifolia Seedlings. J. Southwest For. Univ. 2018, 38, 1–9. [Google Scholar]
- Hrynkiewicz, K.; Baum, C. The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In Environmental Protection Strategies for Sustainable Development; Spring: Berlin/Heidelberg, Germany, 2012; pp. 35–64. [Google Scholar] [CrossRef]
- Ma, L.; Qi, A.N.; Zhang, R.; Xia, Q.Y. Effects substrates with different ratios on rhizosphere microorganism of strawberry. Hubei Agric. Sci. 2014, 53, 1551–1554. [Google Scholar] [CrossRef]
- Lu, W.Y. Effects of Different Substrate Ratio on Growth Physiology and Rhizosphere Microorganism of Orah Seedlings. Master’s Thesis, Guangxi University, Nanning, China, 2022. [Google Scholar] [CrossRef]
- Yang, H.S.; Yang, B.; Dai, Y.J.; Xu, M.M.; Koide, R.T.; Wang, X.H.; Liu, J.; Bian, X.M. Soil nitrogen retention is increased by ditch-buried straw return in a rice-wheat rotation system. Eur. J. Agron. 2015, 69, 52–58. [Google Scholar] [CrossRef]
- Ge, S.F.; Zhu, Z.L.; Peng, L.; Chen, Q.; Jiang, Y.M. Soil nutrient status and leaf nutrient diagnosis in the main apple producing regions in China. Hortic. Plant J. 2018, 4, 89–93. [Google Scholar] [CrossRef]
- Li, J.L.; He, M.; Sun, S.Q.; Han, W.; Zhang, Y.C.; Mao, X.H.; Gu, Y.F. Effect of the behavior and availability of heavy metals on the characteristics of the coastal soils developed from alluvial deposits. Environ. Monit. Assess. 2009, 156, 91–98. [Google Scholar] [CrossRef]
- Maida, J.H.A. Phosphorus status of some Malawi soils. Afr. J. Agric. Res. 2013, 8, 4308–4317. [Google Scholar]
- Ma, Y.Z.; Chen, J.; Cao, Z.Q.; Zhang, T. Effects of different substrates on the growth of Quercus variabilis seedlings. J. Green Sci. Technol. 2021, 23, 151–153. [Google Scholar] [CrossRef]
- Huang, G.M.; Zou, Y.N.; Wu, Q.S.; Xu, Y.J.; Kuča, K. Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant Soil Environ. 2020, 66, 295–302. [Google Scholar] [CrossRef]
- Wang, X.W. Effects of Drought Stress and Rehydration on the Growth, Physiology and Biochemistry Indexes of Quercus variabilis Seedlings. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2020. [Google Scholar]
- Dai, Y.J.; Shen, Z.G.; Liu, Y.; Wang, L.L.; Hannaway, D.; Lu, H.F. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot. 2009, 65, 177–182. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Cui, J.; Wang, X.; Xi, R.J.; Fu, Y.C.; Yang, W.; Wang, X.S.; Qiu, N.W. Comparative study on three methods of chlorophyll content determination of tree leaves. For. Sci. Technol. 2016, 41, 42–45. [Google Scholar]
- Yang, Y.W.; Wu, X.D. Effect of the different planting densities on the photosynthetic characteristics, chlorophyll fluorescence parameters and yield of Waxy Maize. J. Anhui Agric. Sci. 2009, 37, 8403–8405. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef]
- Apprill, A.; McNally, S.; Parsons, R.; Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 2015, 75, 129–137. [Google Scholar] [CrossRef]
- Li, R.Q.; Liu, X.; Qiu, H.Z.; Zhang, W.M.; Zhang, C.H.; Wang, D.; Zhang, J.L.; Shen, Q.R. Rapid detection of Rhizoctonia in rhizosphere soil of potato using real-time quantitative PCR. Acta Prataculturae Sin. 2013, 22, 136–144. [Google Scholar]
- Lu, Q.T.; Li, G.L.; Liu, J.J.; Ma, C.M. The effect of different container sizes on the early stage of the Quecrus variabilis seedling growth. For. Resour. Manag. 2015, 5, 166–171. [Google Scholar] [CrossRef]
- Li, Q.H.; Sun, X.N.; Ru, H. Research progress on natural regeneration of Quercus variabilis. J. Temperate For. Res. 2022, 5, 36–38. [Google Scholar]
- Olaria, M.; Nebot, J.F.; Molina, H.O.; Troncho, P.; Lapeña, L.; Llorens, E. Effect of different substrates for organic agriculture in seedling development of traditional species of Solanaceae. Span. J. Agric. Res. 2016, 14, e0801. [Google Scholar] [CrossRef]
- Borji, H.; Mohammadighesareh, A.; Jafarpour, M. Effect of date-palm and perlite substrates on nutrients content and quality of tomato grown in soilless culture. Resour. Crops 2012, 13, 258–261. [Google Scholar]
- Schafer, G.; Lerne, B.L. Physical and chemical characteristics and analysis of plant substrate. Ornamental Hortic. 2022, 28, 181–192. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, Z.; Li, J.; Zhang, H.O.; Lu, Y.J.; Shi, C.D.; Cao, T.T. Effects of Perlite, Grass Charcoal and Vermiculite on Root Growth of Isatis (Isatis tinctoria L. Woad) and Soil Nutrient Migration. Bangladesh J. Bot. 2021, 50, 947–954. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Talukder, M.R.; Tanaka, H.; Ueno, M.; Kawaguchi, M.; Yano, S.; Ban, T.; Asao, T. Production of low-potassium content melon through hydroponic nutrient management using perlite substrate. Front. Plant Sci. 2018, 9, 1382. [Google Scholar] [CrossRef]
- South, D.B.; Harris, S.W.; Barnett, J.P.; Hainds, M.J.; Gjerstad, D.H. Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, U.S.A. For. Ecol. Manag. 2005, 204, 385–398. [Google Scholar] [CrossRef]
- Bougoul, S.; Boulard, T. Water dynamics in two rockwool slab growing substrates of contrasting densities. Sci. Hortic. 2006, 107, 399–404. [Google Scholar] [CrossRef]
- Shen, Y.; Umaña, M.N.; Li, W.B.; Fang, M.; Chen, Y.X.; Lu, H.P.; Yu, S.X. Linking soil nutrients and traits to seedling growth: A test of the plant economics spectrum. For. Ecol. Manag. 2022, 505, 119941. [Google Scholar] [CrossRef]
- Freschet, G.T.; Swart, E.M.; Cornelissen, J.H.C. Integrated plant phenotypic responses to contrasting above- and below-ground resources: Key roles of specific leaf area and root mass fraction. New Phytol. 2015, 206, 1247–1260. [Google Scholar] [CrossRef]
- Mäkelä, P.S.A.; Wasonga, D.O.; Solano Hernandez, A.; Santanen, A. Seedling Growth and Phosphorus Uptake in Response to Different Phosphorus Sources. Agronomy 2020, 10, 1089. [Google Scholar] [CrossRef]
- Onanuga, A.O.; Jiang, P.A.; Adl, S. Phosphorus, potassium and phytohormones promote chlorophyll production differently in two cotton (Gossypium hirsutum) varieties grown in hydroponic nutrient solution. J. Agric. Sci. 2012, 4, 157. [Google Scholar] [CrossRef]
- Jongmans, A.G.; Pulleman, M.M.; Marinissen, J.C.Y. Soil structure and earthworm activity in a marine silt loam under pasture versus arable land. Biol. Fertil. Soils 2001, 33, 279–285. [Google Scholar] [CrossRef]
- Du, K.; Wang, J.H.; Ma, J.W.; Zhang, H.J.; Sha, H. Effect of different substrates on seedling growth of three species of oak. J. Northeast For. Univ. 2012, 40, 12–15. [Google Scholar] [CrossRef]
- Wang, Z.T.; Liu, L.; Chen, Q.; Wen, X.X.; Liu, Y.; Han, J.; Liao, Y.C. Conservation tillage enhances the stability of the rhizosphere bacterial community responding to plant growth. Agron. Sustain. Dev. 2017, 37, 44. [Google Scholar] [CrossRef]
- Fan, K.K.; Delgado-Baquerizo, M.; Guo, X.S.; Wang, D.Z.; Zhu, Y.G.; Chu, H.Y. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 2021, 15, 550–561. [Google Scholar] [CrossRef]
- Fan, K.K.; Delgado-Baquerizo, M.; Zhu, Y.G.; Chu, H.Y. Crop production correlates with soil multitrophic communities at the large spatial scale. Soil Biol. Biochem. 2020, 151, 108047. [Google Scholar] [CrossRef]
- Fan, K.K.; Delgado-Baquerizo, M.; Guo, X.S.; Wang, D.Z.; Zhu, Y.G.; Chu, H.Y. Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biol. Biochem. 2020, 141, 107679. [Google Scholar] [CrossRef]
- Finn, D.; Kopittke, P.M.; Dennis, P.G.; Dalal, R.C. Microbial energy and matter transformation in agricultural soils. Soil Biol. Biochem. 2017, 111, 176–192. [Google Scholar] [CrossRef]
- Wessén, E.; Hallin, S.; Philippot, L. Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management. Soil Biol. Biochem. 2010, 42, 1759–1765. [Google Scholar] [CrossRef]
- Neufeld, J.D.; Mohn, W.W. Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl. Environ. Microbiol. 2005, 71, 5710–5718. [Google Scholar] [CrossRef]
- Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front. Microbiol. 2011, 2, 94. [Google Scholar] [CrossRef] [PubMed]
- Itakura, M.; Saeki, K.; Omori, H.; Yokoyama, T.; Kaneko, T.; Tabata, S.; Ohwada, T.; Tajima, S.; Uchiumi, T.; Honnma, K.; et al. Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. ISME J. 2009, 3, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Martineau, C.; Mauffrey, F.; Villemur, R. Comparative Analysis of Denitrifying Activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl. Environ. Microbiol. 2015, 81, 5003–5014. [Google Scholar] [CrossRef]
- Jones, R.T.; Robeson, M.S.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, Y.X.; Huang, H.; Yang, F. Deciphering soil bacterial community structure in subsidence area caused by underground coal mining in arid and semiarid area. Appl. Soil Ecol. 2021, 163, 103916. [Google Scholar] [CrossRef]
- Shi, Y.H.; Pan, Y.S.; Li, X.; Zhu, Z.H.; Fu, W.B.; Hao, G.F.; Geng, Z.C.; Chen, S.L.; Li, Y.Z.; Han, D.F. Assembly of rhizosphere microbial communities in Artemisia annua: Recruitment of plant growth-promoting microorganisms and inter-kingdom interactions between bacteria and fungi. Plant Soil 2022, 470, 127–139. [Google Scholar] [CrossRef]
- Takeuchi, M.; Sakane, T.; Yanagi, M.; Yamasato, K.; Hamana, K.; Yokota, A. Taxonomic study of bacteria isolated from plants: Proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int. J. Syst. Bacteriol. 1995, 45, 334–341. [Google Scholar] [CrossRef]
- Adhikari, T.B.; Joseph, C.M.; Yang, G.P.; Phillips, D.A.; Nelson, L.M. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can. J. Microbiol. 2001, 47, 916–924. [Google Scholar] [CrossRef]
Physicochemical Indices | H | S | CK |
---|---|---|---|
AN (mg∙kg−1) | 874.71 ± 7.68 b | 603.95 ± 19.76 a | 589.43 ± 14.46 a |
AP (mg∙kg−1) | 38.79 ± 2.56 b | 12.87 ± 1.17 a | 153.18 ± 2.16 c |
AK (mg∙kg−1) | 1 208.49 ± 48.95 c | 494.11 ± 7.16 a | 821.01 ± 141.70 b |
OM (%) | 77.24 ± 0.57 b | 49.45 ± 8.90 a | 61.11 ± 2.07 a |
TN (%) | 1.76 ± 0.07 c | 1.59 ± 0.04 b | 0.98 ± 0.04 a |
TP (%) | 0.06 ± 0.004 a | 0.10 ± 0.005 c | 0.08 ± 0.001 b |
TK (%) | 0.48 ± 0.02 b | 1.72 ± 0.05 c | 0.37 ± 0.02 a |
H | S | CK | ||
---|---|---|---|---|
Seedling growth indices | Plant height (cm) | 20.00 ± 1.60 b | 16.80 ± 2.69 a | 17.35 ± 2.36 a |
Ground diameter (cm) | 0.20 ± 0.03 b | 0.11 ± 0.03 a | 0.09 ± 0.02 a | |
Root fresh weight (g) | 6.30 ± 1.18 b | 5.78 ± 0.91 b | 4.39 ± 1.44 a | |
Root dry weight (g) | 2.40 ± 0.53 b | 2.13 ± 0.41 ab | 1.79 ± 0.76 a | |
Shoot fresh weight (g) | 4.69 ± 1.63 b | 4.87 ± 1.68 b | 2.40 ± 0.51 a | |
Shoot dry weight (g) | 1.95 ± 0.76 b | 2.07 ± 0.79 b | 0.94 ± 0.22 a | |
Root water content (%) | 0.62 ± 0.03 a | 0.63 ± 0.02 a | 0.60 ± 0.08 a | |
Thick roots | Root length (cm) | 6.26 ± 3.10 a | 5.42 ± 1.72 a | 4.09 ± 1.46 a |
Root surface area (cm2) | 5.41 ± 2.13 a | 5.02 ± 1.65 a | 4.53 ± 1.56 a | |
Root volume (cm3) | 0.40 ± 0.15 a | 0.39 ± 0.18 a | 0.41 ± 0.16 a | |
Fine roots | Root length (cm) | 137.53 ± 25.49 b | 133.12 ± 52.56 b | 65.17 ± 7.41 a |
Root surface area (cm2) | 21.47 ± 3.95 b | 17.47 ± 6.16 ab | 12.93 ± 2.16 a | |
Root volume (cm3) | 0.40 ± 0.08 a | 0.30 ± 0.14 a | 0.32 ± 0.15 a | |
Physiological indices | Protein content (mg∙g−1) | 0.020 ± 0.003 ab | 0.025 ± 0.005 b | 0.019 ± 0.004 a |
Chlorophyll content (mg∙dm−2) | 7.61 ± 0.99 b | 7.19 ± 0.81 ab | 5.66 ± 1.29 a | |
Chlorophyll fluorescence-FV/FM | 0.84 ± 0.02 b | 0.84 ± 0.02 b | 0.82 ± 0.01 a | |
Net photosynthetic rate (μmol∙m−2∙s−1) | 7.18 ± 1.20 a | 8.01 ± 0.64 a | 11.19 ± 2.31 b | |
Transpiration rate (mmol∙m−2∙s−1) | 1.25 ± 0.46 b | 0.65 ± 0.11 a | 0.75 ± 0.14 a | |
Stomatal conductance (mmol∙m−2∙s−1) | 50.80 ± 10.48 a | 49.93 ± 9.39 a | 53.10 ± 11.04 a | |
Intercellular CO2 concentration (μmol∙m−2∙s−1) | 343.08 ± 61.95 c | 185.80 ± 33.52 b | 130.20 ± 15.01 a |
Number of Soil Bacteria (Copies·g−1 Substrate) | Richness | Chao1 | Simpson | Shannon-2 | |
---|---|---|---|---|---|
H | 0.42 × 105 | 1 852.60 ± 28.79 b | 1 853.76 ± 28.77 b | 0.003 2 ± 0.0002 b | 9.59 ± 0.046 a |
S | 14.56 × 105 | 1 902.60 ± 16.06 b | 1 903.56 ± 16.18 b | 0.002 5 ± 0.0001 a | 9.76 ± 0.029 b |
CK | 7.81 × 105 | 1 705.60 ± 43.82 a | 1 706.76 ± 43.91 a | 0.002 8 ± 0.0002 a | 9.64 ± 0.067 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, Y.; Kong, Y.; Song, S.; Yi, X.; Zhou, J.; Liu, B. Effect of Cork Flour Supplementation on the Growth Indices and Rhizosphere Bacterial Communities of Quercus variabilis Seedlings. Forests 2023, 14, 892. https://doi.org/10.3390/f14050892
Che Y, Kong Y, Song S, Yi X, Zhou J, Liu B. Effect of Cork Flour Supplementation on the Growth Indices and Rhizosphere Bacterial Communities of Quercus variabilis Seedlings. Forests. 2023; 14(5):892. https://doi.org/10.3390/f14050892
Chicago/Turabian StyleChe, Yuying, Yong Kong, Shangwen Song, Xianfeng Yi, Jing Zhou, and Baoxuan Liu. 2023. "Effect of Cork Flour Supplementation on the Growth Indices and Rhizosphere Bacterial Communities of Quercus variabilis Seedlings" Forests 14, no. 5: 892. https://doi.org/10.3390/f14050892
APA StyleChe, Y., Kong, Y., Song, S., Yi, X., Zhou, J., & Liu, B. (2023). Effect of Cork Flour Supplementation on the Growth Indices and Rhizosphere Bacterial Communities of Quercus variabilis Seedlings. Forests, 14(5), 892. https://doi.org/10.3390/f14050892