Efficiency Evaluation and the Impact Factors of Sustainable Forestry Development in China: Adoption of Super-Efficiency Data Envelopment Analysis and Malmquist Index Methods
Abstract
:1. Introduction
2. Literature
3. Materials and Methods
3.1. Super Efficiency DEA Model
3.2. Malmquist Productivity Index
4. Selection of Input-Output Indicators and Data Sources
4.1. Evaluation Indicators
4.2. Input and Output Indicators
4.3. Data Sources
5. Empirical Results
5.1. Super-Efficiency DEA Static Efficiency Evaluation
5.2. Malmquist Dynamic Efficiency Evaluation
5.3. Robustness Test Result Based on Stochastic Frontier Analysis
6. Discussion
7. Conclusions
7.1. Countermeasures and Suggestions
7.2. Limitations of the Study and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DEA | Data Envelopment Analysis |
BCC | Banker, Charnes, and Cooper |
SFA | Stochastic Frontier Analysis |
TFP | Total factor productivity |
PTE | Pure technical efficiency |
SE | Scale efficiency |
EVA | Economic value added |
CCR | Charnes, Cooper, and Rhodes |
DMU | Decision-making unit |
EC | Efficiency change |
TP | Technological progress |
DEAP | Data Envelopment Analysis Program |
CRSTE | Comprehensive scale technical efficiency |
VRSTE | Variable return to scale technical efficiency |
RTS | Return to scale |
IRS | Increasing return to scale |
DRS | Decreasing return to scale |
References
- Delahais, T.; Toulemonde, J. Making rigorous causal claims in a real-life context: Has research contributed to sustainable forest management? Evaluation 2017, 23, 370–388. [Google Scholar] [CrossRef]
- Duan, Q.; Kan, L.; Tsai, S.-B. Analysis on Forestry Economic Growth Index Based on Internet Big Data. Math. Probl. Eng. 2021, 2021, 2286629. [Google Scholar] [CrossRef]
- Marucci, A.; Carlini, M.; Castellucci, S.; Cappuccini, A. Energy Efficiency of a Greenhouse for the Conservation of Forestry Biodiversity. Math. Probl. Eng. 2013, 2013, 768658. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Deng, X. Modelling Analysis of Forestry Input-Output Elasticity in China. Int. J. For. Res. 2016, 2016, 4970801. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, N.; Shan, W.U.H. Eco-Efficiency of Industrial Investment and Its Influencing Factors in China Based on a New SeUo-SBM-DEA Model and Tobit Regression. Math. Probl. Eng. 2021, 2021, 5329714. [Google Scholar] [CrossRef]
- Yun, T.; Li, W.; Sun, Y.; Xue, L. Study of Subtropical Forestry Index Retrieval Using Terrestrial Laser Scanning and Hemispherical Photography. Math. Probl. Eng. 2015, 2015, 206108. [Google Scholar] [CrossRef]
- Chen, W.; Xu, D.; Liu, J. The forest resources input-output model: An application in China. Ecol. Indic. 2015, 51, 87–97. [Google Scholar] [CrossRef]
- Oliveira, G.M.V.; de Mello, J.M.; de Mello, C.R.; Scolforo, J.R.S.; Miguel, E.P.; Monteiro, T.C. Behavior of wood basic density according to environmental variables. J. For. Res. 2021, 33, 497–505. [Google Scholar] [CrossRef]
- Li, M. Carbon stock and sink economic values of forest ecosystem in the forest industry region of Heilongjiang Province, China. J. For. Res. 2021, 33, 875–882. [Google Scholar] [CrossRef]
- Pan, X.-C. Research on Ecological Civilization Construction and Environmental Sustainable Development in the New Era. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 062080. [Google Scholar] [CrossRef]
- Danso Marfo, T.; Datta, R.; Vranová, V.; Ekielski, A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition. Agriculture 2019, 9, 228. [Google Scholar] [CrossRef]
- Ullah, S.; Noor, R.S.; Abid, A.; Mendako, R.K.; Waqas, M.M.; Shah, A.N.; Tian, G. Socio-Economic Impacts of Livelihood from Fuelwood and Timber Consumption on the Sustainability of Forest Environment: Evidence from Basho Valley, Baltistan, Pakistan. Agriculture 2021, 11, 596. [Google Scholar] [CrossRef]
- Brack, D. Sustainable Consumption and Production of Forest Products; United Nations Forum on Forests: New York, NY, USA, 2018; pp. 1–74. [Google Scholar]
- Selecky, T.; Bellingrath-Kimura, S.D.; Kobata, Y.; Yamada, M.; Guerrini, I.A.; Umemura, H.M.; Dos Santos, D.A. Changes in Carbon Cycling during Development of Successional Agroforestry. Agriculture 2017, 7, 25. [Google Scholar] [CrossRef]
- Shao, Q.; Janus, T.; Punt, M.J.; Wesseler, J. The Conservation Effects of Trade with Imperfect Competition and Biased Policymakers. Agriculture 2018, 8, 108. [Google Scholar] [CrossRef]
- Agyeman, F.O.; Zhiqiang, M.; Li, M.; Sampene, A.K.; Dapaah, M.F.; Kedjanyi, E.A.; Buabeng, P.; Li, Y.; Hakro, S.; Heydari, M. Probing the Effect of Governance of Tourism Development, Economic Growth, and Foreign Direct Investment on Carbon Dioxide Emissions in Africa: The African Experience. Energies 2022, 15, 4530. [Google Scholar] [CrossRef]
- Niedermaier, K.M.; Atkins, J.W.; Grigri, M.S.; Bond-lamberty, B.; Gough, C.M. Structural complexity and primary production resistance are coupled in a temperate forest. Front. For. Glob. Chang. 2022, 5, 941851. [Google Scholar] [CrossRef]
- Fu, T.; Ke, J.H.; Zhou, S.; Xie, G.H. Estimation of the quantity and availability of forestry residue for bioenergy production in China. Resour. Conserv. Recycl. 2020, 162, 104993. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Ulgiati, S. Efficiency and sustainability indicators for papermaking from virgin pulp—An emergy-based case study. Resour. Conserv. Recycl. 2018, 131, 313–328. [Google Scholar] [CrossRef]
- Sun, R.; Liu, X.; Li, D.; Zhuang, J.; Qi, S.; Meng, B.; Liu, M. Optimization of China’s pig production system to reduce environmental impacts based on a data envelopment and life cycle analysis model. Resour. Conserv. Recycl. 2022, 185, 106483. [Google Scholar] [CrossRef]
- Liu, L.; Di, B.; Zhang, M. The tradeoff between ecological protection and economic growth in China’s county development: Evidence from the soil and water conservation projects during 2011–2015. Resour. Conserv. Recycl. 2020, 156, 104745. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J.; Yang, H.; Sun, L.; Varis, O. Socioeconomic drivers of provincial-level changes in the blue and green water footprints in China. Resour. Conserv. Recycl. 2021, 175, 105834. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, F.; Cheng, B.; Yu, C. Identifying factors influencing the forestry production efficiency in Northwest China. Resour. Conserv. Recycl. 2018, 130, 12–19. [Google Scholar] [CrossRef]
- Wang, S.; Van Kooten, G.C.; Wilson, B. Mosaic of reform: Forest policy in post-1978 China. For. Policy Econ. 2004, 6, 71–83. [Google Scholar] [CrossRef]
- Linton, J.D.; Walsh, S.T.; Kirchhoff, B.A.; Morabito, J.; Merges, M. Analysis, Ranking and Selection of R&D projects in a portfolio. In Proceedings of the 2000 IEEE Engineering Management Society. EMS-2000, Albuquerque, NM, USA, 15 August 2000; Volume 32, pp. 506–511. [Google Scholar] [CrossRef]
- Peng, Y.; Tao, K.; Zhang, K. Performance Evaluation Research on Forest Listed Companies—Based on DEA and Malmquist Model. For. Econ. 2017, 94–98. [Google Scholar]
- Li, Y.X.; Zhang, Z.G. Performance Evaluation and Optimization of Listed Forestry Companies in China—Based on GRA Index Screening and Data Envelopment Analysis. For. Econ. 2019, 9, 60–66. [Google Scholar] [CrossRef]
- Grilo, A.; Santos, J. Measuring efficiency and productivity growth of new technology-based firms in business incubators: The portuguese case study of madan parque. Sci. World J. 2015, 2015, 936252. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, H.; Agyeman, F.O.; Su, J.; Hu, W. Efficiency Measurement and Heterogeneity Analysis of Chinese Cultural and Creative Industries: Based on Three-Stage Data Envelopment Analysis Modified by Stochastic Frontier Analysis. Front. Psychol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Wysocka-fijorek, E.; Dobrowolska, E.; Budniak, P.; Korzeniewski, K.; Czubak, D. Forest Resources Projection Tools: Comparison of Available Tools and Their Adaptation to Polish Conditions. Forests 2023, 14, 548. [Google Scholar] [CrossRef]
- Gottardini, E.; Cristofolini, F.; Cristofori, A. Forests Attenuate Temperature and Air Pollution Discomfort in Montane Tourist Areas. Forests 2023, 14, 545. [Google Scholar] [CrossRef]
- Bělín, M.; Hanousek, J. SFA robustness to violated distributional assumptions: Theory, simulations and empirical evidence. Appl. Econ. 2021, 53, 4544–4559. [Google Scholar] [CrossRef]
- Alqahtani, F.; Mayes, D.G.; Brown, K. Islamic bank efficiency compared to conventional banks during the global crisis in the GCC region. J. Int. Financ. Mark. Inst. Money 2017, 51, 58–74. [Google Scholar] [CrossRef]
- Sengupta, J.K. Comparing dynamic efficiency using a two-stage model. Appl. Econ. Lett. 2000, 7, 521–523. [Google Scholar] [CrossRef]
- Sengupta, J.K. A model of dynamic efficiency measurement. Appl. Econ. Lett. 1994, 1, 119–121. [Google Scholar] [CrossRef]
- Pastor, J.; Aparicio, J. Performance Measurement: Methodological and Empirical Issues. Indian Econ. Rev. 2010, 45, 193–231. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Lovell, C.A.K.; Rouse, A.P.B. Equivalent standard DEA models to provide super-efficiency scores. J. Oper. Res. Soc. 2003, 54, 101–108. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Creutzburg, L.; Lieberherr, E. To log or not to log? Actor preferences and networks in Swiss forest policy. For. Policy Econ. 2021, 125, 102395. [Google Scholar] [CrossRef]
- Zhang, Y.; Tachibana, S.; Nagata, S. Impact of socio-economic factors on the changes in forest areas in China. For. Policy Econ. 2006, 9, 63–76. [Google Scholar] [CrossRef]
- Moran, E.V.; Vannest, N.; Aubry-Kientz, M. Modeling the forest dynamics of the Sierra Nevada under climate change using SORTIE-ND. Ann. For. Sci. 2021, 78, 75. [Google Scholar] [CrossRef]
- Yousefpour, R.; Gray, D.R. Managing forest risks in uncertain times of climate change. Ann. For. Sci. 2022, 79, 16. [Google Scholar] [CrossRef]
- Schulze, E.D.; Bouriaud, O.; Irslinger, R.; Valentini, R. The role of wood harvest from sustainably managed forests in the carbon cycle. Ann. For. Sci. 2022, 79, 17. [Google Scholar] [CrossRef]
- Toma, P.; Miglietta, P.P.; Morrone, D.; Porrini, D. Environmental risks and efficiency performances: The vulnerability of Italian forestry firms. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 2793–2803. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Carbon sinks and output of China’s forestry sector: An ecological economic development perspective. Sci. Total Environ. 2019, 655, 1169–1180. [Google Scholar] [CrossRef]
- Xinhua China’s Forestry Output Hits 7.56 tln Yuan in 2019. China Daily. 2020. Available online: http://www.chinadaily.com.cn/a/202001/03/WS5e0ee452a310cf3e35582583.html (accessed on 13 February 2023).
- Hardcastle, P.; Zabel, A. Initial Assessment of the Impact of COVID-19 on Sustainable Forest Management: Western European and Other States. Western Europe, 2021. Available online: https://www.un.org/esa/forests/wp-content/uploads/2021/01/Covid-19-SFM-impact-WEOG.pdf (accessed on 13 February 2023).
- United Nations Department of Economic and Social Affairs United Nations Forum on Forests Secretariat (2021). The Global Forest Goals Report 2021. 2021. Available online: https://www.un.org/esa/forests/wp-content/uploads/2021/08/Global-Forest-Goals-Report-2021.pdf (accessed on 13 February 2023).
- Oteng Agyeman, F.; Ma, Z.; Li, M.; Kwasi Sampene, A.; Adikah, I.; Frimpong Dapaah, M. Relevance of COVID-19 vaccine on the tourism industry: Evidence from China. PLoS ONE 2022, 17, e0269200. [Google Scholar]
- Weinbrenner, H.; Breithut, J.; Hebermehl, W.; Kaufmann, A.; Klinger, T.; Palm, T.; Wirth, K. “The Forest Has Become Our New Living Room”—The Critical Importance of Urban Forests During the COVID-19 Pandemic. Front. For. Glob. Chang. 2021, 4, 68. [Google Scholar] [CrossRef]
- Wenfa, X.; Guangcui, D.; Sheng, Z. China’s Strategy and Financing for Forestry Sustainable Development. United Nations Forum on Forests, China, 2010. Available online: https://www.un.org/esa/forests/wp-content/uploads/2014/12/China_case_study.pdf (accessed on 13 February 2023).
- Ying, J.; Zhang, X.; Zhang, Y.; Bilan, S. Green infrastructure: Systematic literature review. Econ. Res. Istraživanja 2021, 35, 343–366. [Google Scholar] [CrossRef]
- Jerome, G.; Sinnett, D.; Burgess, S.; Calvert, T.; Mortlock, R. A framework for assessing the quality of green infrastructure in the built environment in the UK. Urban For. Urban Green. 2019, 40, 174–182. [Google Scholar] [CrossRef]
- Rutt, R.L.; Gulsrud, N.M. Green justice in the city: A new agenda for urban green space research in Europe. Urban For. Urban Green. 2016, 19, 123–127. [Google Scholar] [CrossRef]
- Jucker, T.; Jackson, T.D.; Zellweger, F.; Swinfield, T.; Gregory, N.; Williamson, J.; Slade, E.M.; Phillips, J.W.; Bittencourt, P.R.L.; Blonder, B.; et al. A Research Agenda for Microclimate Ecology in Human-Modified Tropical Forests. Front. For. Glob. Chang. 2020, 2, 92. [Google Scholar] [CrossRef]
- Nordh, H.; Grahn, P.; Währborg, P. Meaningful activities in the forest, a way back from exhaustion and long-term sick leave. Urban For. Urban Green. 2009, 8, 207–219. [Google Scholar] [CrossRef]
- Pei, N.; Wang, C.; Sun, R.; Xu, X.; He, Q.; Shi, X.; Gu, L.; Jin, J.; Liao, J.; Li, J.; et al. Towards an integrated research approach for urban forestry: The case of China. Urban For. Urban Green. 2019, 46, 126472. [Google Scholar] [CrossRef]
- Abbas, D.; Hodges, D.; Heard, J. Costing the forest operations and the supply of hardwood in Tennessee. Croat. J. For. Eng. 2019, 40, 49–54. [Google Scholar]
- Strange, N.; Bogetoft, P.; Aalmo, G.O.; Talbot, B.; Holt, A.H.; Astrup, R. Applications of DEA and SFA in benchmarking studies in forestry: State-of-the-art and future directions. Int. J. For. Eng. 2021, 32, 87–96. [Google Scholar] [CrossRef]
- Lun, R.; Jin-lin, L. The Application of Factor Analysis in the Evaluation of Comprehensive Performance of Listed Companies on the Small and Medium-sized Enterprises Board. Appl. Stat. Manag. 2005, 1, 75–80. [Google Scholar]
- Huang, Z.; Zhang, B. Performance evaluation of listed logistics companies in China. In Proceedings of the Statistics and Decision, Piscataway, NJ, USA, 6–12 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 83–85. [Google Scholar]
- Zhang, M.; Li, M.; Sun, H.; Agyeman, F.O. Investigation of Nexus between Knowledge Learning and Enterprise Green Innovation Based on Meta-Analysis with a Focus on China. Energies 2022, 15, 159. [Google Scholar] [CrossRef]
- Rudinskaya, T.; Boskova, I. Asymmetric price transmission and farmers’ response in the Czech dairy chain. Agric. Econ.-Czech 2021, 2021, 163–172. [Google Scholar] [CrossRef]
- Lemm, R.; Blattert, C.; Holm, S.; Bont, L.; Thees, O. Improving economic management decisions in forestry with the sorsim assortment model. Croat. J. For. Eng. 2020, 41, 71–83. [Google Scholar] [CrossRef]
- Grădinaru, S.R.; Hersperger, A.M. Green infrastructure in strategic spatial plans: Evidence from European urban regions. Urban For. Urban Green. 2019, 40, 17–28. [Google Scholar] [CrossRef]
- Dong, P.; Zhuang, S.; Lin, X.; Zhang, X. Economic evaluation of forestry industry based on ecosystem coupling. Math. Comput. Model. 2013, 58, 1010–1017. [Google Scholar] [CrossRef]
- Li, L.; Hao, T.; Chi, T. Evaluation on China’s forestry resources efficiency based on big data. J. Clean. Prod. 2017, 142, 513–523. [Google Scholar] [CrossRef]
- Viitala, E.-J.; Hänninen, H. Measuring the efficiency of public forestry organizations. For. Sci. 1998, 44, 298–307. [Google Scholar]
- Liu, Y.; Zhang, L.; Xue, Y. Performance evaluation of Chinese listing corporation based on DEA—Agricultural listing corporation as an example. In Proceedings of the 2014 International Conference on Management Science & Engineering 21st Annual Conference Proceedings, Helsinki, Finland, 17–19 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1462–1468. [Google Scholar]
- Sheng Bao, J.; Xiaoke, Z.; Haibin, Z. Performance evaluation and influencing factors of China’s machinery and equipment industry—Based on the super-efficient DEA-Tobit model. J. Shanxi Univ. Financ. Econ. 2011, 33, 64–71. [Google Scholar]
- Liu, L.; Zhan, X. Analysis of financing efficiency of Chinese agricultural listed companies based on machine learning. Complexity 2019, 2019, 9190273. [Google Scholar] [CrossRef]
- Tian, S.Y.; Xu, W.L. Evaluation of China’s forestry input-output efficiency based on DEA modeling. Resour. Sci. 2012, 34, 1944–1950. [Google Scholar]
- Golshani, H.; Khoveyni, M.; Valami, H.B.; Eslami, R. A slack-based super efficiency in a two-stage network structure with intermediate measures. Alex. Eng. J. 2019, 58, 393–400. [Google Scholar] [CrossRef]
- Biao, X.; Fengjun, L.; Zetian, F. Evaluation on Business Performance and Efficiency of Agriculture Industry. Agric. Technol. Econ. 2000, 4, 36–39. [Google Scholar]
- Wang, P.X.; Lin, C.; Li, B.X. Study on the Integrated EVA Performance Measurement of Listed Companies. Appl. Stat. Manag. 2006, 25, 186–194. [Google Scholar]
- Zheng, R. Analysis of Performance Evaluation of China’s Agricultural Listed Companies: Based on the Perspective of EVA model. Agric. Technol. Econ. 2011, 194, 95–102. [Google Scholar] [CrossRef]
- Huang, X.-J.; An, R.; Yu, M.-M.; He, F.-F. Tourism efficiency decomposition and assessment of forest parks in China using dynamic network data envelopment analysis. J. Clean. Prod. 2022, 363, 132405. [Google Scholar] [CrossRef]
- An, R.; Huang, X. Forest park Efficiency and Influencing Factors in Fujian Province-Based on Dynamic Network DEA and Micro Data. For. Chem. Rev. 2021, 42, 1510–1524. [Google Scholar]
- Toloo, M.; Nalchigar, S. A new integrated DEA model for finding most BCC-efficient DMU. Appl. Math. Model. 2009, 33, 597–604. [Google Scholar] [CrossRef]
- Chen, S.; Yao, S. Evaluation of Forestry Ecological Efficiency: A Spatiotemporal Empirical Study Based on China’s Provinces. Forest 2021, 12, 142. [Google Scholar] [CrossRef]
- Heshmati, A. Productivity Growth, Efficiency and Outsourcing in. J. Econ. Surv. 2000, 17, 79–112. [Google Scholar] [CrossRef]
- Hossain, M.K.; Kamil, A.A.; Baten, M.A.; Mustafa, A. Stochastic Frontier Approach and Data Envelopment Analysis to Total Factor Productivity and Efficiency Measurement of Bangladeshi Rice. PLoS ONE 2012, 7, e46081. [Google Scholar] [CrossRef]
- Parmeter, C.F.; Zelenyuk, V. Combining the virtues of stochastic frontier and data envelopment analysis. Oper. Res. 2019, 67, 1628–1658. [Google Scholar] [CrossRef]
- Lee, J.-Y. Comparing SFA and DEA methods on measuring production efficiency for forest and paper companies. For. Prod. J. 2005, 55, 51–56. [Google Scholar]
- Ali, M.; Debela, M.; Bamud, T. Technical efficiency of selected hospitals in Eastern Ethiopia. Health Econ. Rev. 2017, 7, 24. [Google Scholar] [CrossRef]
- Zhong, K.; Li, C.; Wang, Q. Evaluation of Bank Innovation Efficiency with Data Envelopment Analysis: From the Perspective of Uncovering the Black Box between Input and Output. Mathematics 2021, 9, 3318. [Google Scholar] [CrossRef]
- Bing, C.; Sheng Bao, J. Performance evaluation and influencing factors of listed companies in China’s pharmaceutical industry: DEA-Tobit empirical study based on panel data. J. Cent. Univ. Financ. Econ. 2013, 312, 62–68. [Google Scholar]
- Bing, C.; Sheng Bao, J. Performance Evaluation of Chinese Agricultural Listed Companies: Based on the SORM-BCC Super Efficiency Model and Malmquist’s DEA-Tobit Analysis. Agric. Technol. Econ. 2012, 4, 114–127. [Google Scholar]
- Ying, Z.; Po, C. Performance Evaluation and Influencing Factors of Chinese Sports Industry Listed Companies: An Empirical Study of DEA-Tobit Based on Panel Data. J. Wuhan Inst. Phys. Educ. 2016, 50, 34–41. [Google Scholar] [CrossRef]
- Wenhe, L. Evaluation on the Business Performance of Forestry Listing Corporation in China. Issues For. Econ. 2015, 35, 543–547. [Google Scholar] [CrossRef]
- Yuan, S. Research on Financial Performance Evaluation of Listed Agricultural Companies in China—Based on VRS-DEA and Malmquist Index. Proc. Bus. Econ. Stud. 2020, 3, 10–16. [Google Scholar] [CrossRef]
- Abbas, D.; Di Fulvio, F.; Marchi, E.; Spinelli, R.; Schmidt, M.; Bilek, T.; Han, H.S. A proposal for an integrated methodological and scientific approach to cost used forestry machines. Croat. J. For. Eng. 2021, 42, 63–75. [Google Scholar] [CrossRef]
- Li, Y.; Gao, L. Corporate social responsibility of forestry companies in China: An analysis of contents, levels, strategies, and determinants. Sustainability 2019, 11, 4379. [Google Scholar] [CrossRef]
- Jialu, S.; Zhiqiang, M.; Mingxing, L.; Agyeman, F.O.; Yue, Z. Efficiency Evaluation and Influencing Factors of Government Financial Expenditure on Environmental Protection: An SBM Super-efficiency Model Based on Undesired Outputs. Probl. Ekorozw. 2022, 17, 140–150. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Tavana, M.; Saati, S.; Agrell, P.J. Positive and normative use of fuzzy DEA-BCC models: A critical view on NATO enlargement. Int. Trans. Oper. Res. 2013, 20, 411–433. [Google Scholar] [CrossRef]
- Cifuentes-Faura, J. Determinants of the efficiency of Spanish public broadcasting channels: A data envelopment analysis bootstrapping approach. Manag. Decis. Econ. 2022, 43, 3568–3575. [Google Scholar] [CrossRef]
- Mehdiloozad, M.; Roshdi, I. Analyzing the concept of super-efficiency in data envelopment analysis: A directional distance function approach. arXiv 2014, arXiv:1407.2599. [Google Scholar]
- Stiakakis, E.; Sifaleras, A. Combining the priority rankings of DEA and AHP methodologies: A case study on an ICT industry. Int. J. Data Anal. Tech. Strateg. 2013, 5, 101–114. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Chen, J.; Wei, F. Performance Ranking Method Based on Superefficiency with Directional Distance Function in DEA. Math. Probl. Eng. 2020, 2020, 2458343. [Google Scholar] [CrossRef]
- Noura, A.A.; Hosseinzadeh Lotfi, F.; Jahanshahloo, G.R.; Fanati Rashidi, S. Super-efficiency in DEA by effectiveness of each unit in society. Appl. Math. Lett. 2011, 24, 623–626. [Google Scholar] [CrossRef]
- Yang, Q.; Wan, X.; Ma, H. Assessing Green Development Efficiency of Municipalities and Provinces in China Integrating Models of Super-Efficiency DEA and Malmquist Index. Sustainability 2015, 7, 4492–4510. [Google Scholar] [CrossRef]
- Toloo, M.; Nalchigar, S. On Ranking Discovered Rules of Data Mining by Data Envelopment Analysis: Some Models with Wider Applications. In New Fundamental Technologies in Data Mining; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Zhou, X. Sustainability assessment and improvement strategies research for typical arid and resource-developing regions. PLoS ONE 2021, 16, e0251088. [Google Scholar] [CrossRef]
- Lee, H.-S. An integrated model for SBM and Super-SBM DEA models. J. Oper. Res. Soc. 2021, 72, 1174–1182. [Google Scholar] [CrossRef]
- Gan, G.-Y.; Lee, H.-S. Resolving the infeasibility of the super-efficiency DEA based on DDF. Ann. Oper. Res. 2021, 307, 139–152. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, L. Super-efficiency DEA in the presence of infeasibility: One model approach. Eur. J. Oper. Res. 2011, 213, 359–360. [Google Scholar] [CrossRef]
- Zrelli, H.; Alsharif, A.H.; Tlili, I. Malmquist Indexes of Productivity Change in Tunisian Manufacturing Industries. Sustainability 2020, 12, 1367. [Google Scholar] [CrossRef]
- Afsharian, M.; Ahn, H. The overall Malmquist index: A new approach for measuring productivity changes over time. Ann. Oper. Res. 2015, 226, 1–27. [Google Scholar] [CrossRef]
- Malmquist, S. Index numbers and indifference surfaces. Trab. Estadística 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Grifell-Tatjé, E.; Lovell, C.A.K. A generalized Malmquist productivity index. Top 1999, 7, 81–101. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and productivity. Econom. J. Econom. Soc. 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Lu, Y.; Chen, Y. Is China’s agricultural enterprise growing steadily? Evidence from listed agricultural companies. Chin. J. Popul. Resour. Environ. 2021, 19, 203–212. [Google Scholar] [CrossRef]
- Alimohammadlou, M.; Mohammadi, S. Evaluating the productivity using Malmquist index based on double frontiers data. Procedia-Soc. Behav. Sci. 2016, 230, 58–66. [Google Scholar] [CrossRef]
- Färe, R.; Grifell-Tatjé, E.; Grosskopf, S.; Knox Lovell, C.A. Biased technical change and the Malmquist productivity index. Scand. J. Econ. 1997, 99, 119–127. [Google Scholar] [CrossRef]
- Dan, S.; Yin-sheng, Y. Effect of Agricultural Products E-commerce Industry Agglomeration on Total Factor Productivity in Jilin Province: Based on Alibaba Platform Data. J. Appl. Stat. Manag. 2020, 39, 385–396. [Google Scholar]
- Zhong, S.; Wang, H. The effect of total factor productivity of forestry industry on CO2 emissions: A spatial econometric analysis of China. Sci. Rep. 2021, 11, 14200. [Google Scholar] [CrossRef]
- Yu, S.; Li, C. Evaluation and Influence of Chinese Enterprises’; Financial Efficiency Based on the Malmquist Index. Discret. Dyn. Nat. Soc. 2021, 2021, 4682524. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Yang, J.-B. Measuring the performances of decision-making units using interval efficiencies. J. Comput. Appl. Math. 2007, 198, 253–267. [Google Scholar] [CrossRef]
- Zerafat Angiz, M.; Mustafa, A.; Kamali, M.J. Cross-ranking of Decision Making Units in Data Envelopment Analysis. Appl. Math. Model. 2013, 37, 398–405. [Google Scholar] [CrossRef]
- Participatory Assessment Monitoring and Evaluation The New Generation of Forestry Projects: Their Role in Sustainable Development. Available online: https://www.fao.org/3/t1081e/t1081e03.htm (accessed on 22 January 2022).
- Zanboori, E.; Rostamy-Malkhalifeh, M.; Jahanshahloo, G.R.; Shoja, N. Calculating super efficiency of DMUs for ranking units in data envelopment analysis based on SBM model. Sci. World J. 2014, 2014, 382390. [Google Scholar] [CrossRef]
- Hong, J.-D.; Jeong, K. Cross-evaluation based super efficiency DEA approach to designing disaster recovery center location-allocation-routing network schemes. J. Humanit. Logist. Supply Chain Manag. 2020, 10, 485–508. [Google Scholar] [CrossRef]
- Han, X.; Frey, G.E.; Geng, Y.; Cubbage, F.W.; Zhang, Z. Reform and efficiency of state-owned forest enterprises in Northeast China as “social firms”. J. For. Econ. 2018, 32, 18–33. [Google Scholar] [CrossRef]
- Xie, Q.; Dai, Q.; Li, Y.; Jiang, A. Increasing the Discriminatory Power of DEA Using Shannon’s Entropy. Entropy 2014, 16, 1571–1585. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, B.; Li, S. Spatial effect analysis of total factor productivity and forestry economic growth. Forests 2021, 12, 702. [Google Scholar] [CrossRef]
- Zhang, P.; He, Y.; Feng, Y.; De La Torre, R.; Jia, H.; Tang, J.; Cubbage, F. An analysis of potential investment returns of planted forests in South China. New For. 2019, 50, 943–968. [Google Scholar] [CrossRef]
- Grosskopf, S. Some Remarks on Productivity and its Decompositions. J. Product. Anal. 2003, 20, 459–474. [Google Scholar] [CrossRef]
- Leite, D.; Pessanha, J.; Simes, P.; Calili, R.; Souza, R. A stochastic frontier model for definition of non-technical loss targets. Energies 2020, 13, 3227. [Google Scholar] [CrossRef]
- Pilar, P.G.; Marta, A.P.; Antonio, A. Profit efficiency and its determinants in small and medium-sized enterprises in Spain. BRQ Bus. Res. Q. 2018, 21, 238–250. [Google Scholar] [CrossRef]
- Arbelo, A.; Arbelo-Pérez, M.; Pérez-Gómez, P. Profit Efficiency as a Measure of Performance and Frontier Models: A Resource-Based View. BRQ Bus. Res. Q. 2020, 24, 143–159. [Google Scholar] [CrossRef]
- Aghlmand, S.; Feizollahzadeh, S.; Fathi, B.; Yusefzadeh, H.; Alinejhad, M. The stochastic frontier analysis technique in measuring the technical and economic efficiency of hospital diagnostic laboratories: A case study in Iran. Cost Eff. Resour. Alloc. 2022, 20, 65. [Google Scholar] [CrossRef] [PubMed]
Literature | Region/Country | Methodology Used | Variables Analyzed | Key Related Findings |
---|---|---|---|---|
[1] | Congo | Contribution analysis approach | Timber organizations, government agencies, and NGOs | Contribution analysis is critical for tracing several causal pathways through a web of interactions for marginal and indirect contributions. |
[3] | Central Italy | Conservation methods | Multi-span greenhouse | The conservation approach is suitable for sustainable building systems, energy efficiency, and reduction in energy consumption. |
[4] | China | The extended economic model and space econometrics | Forestry products, Labor and Capital | The study revealed a statistically significant spatial correlation in China’s forestry products. |
[6] | China | Terrestrial laser scanning and hemispherical photography | Forest canopy, woods | The findings revealed the ability of terrestrial-based algorithms to capture the leaf area index of forest stands at varying densities. |
[7] | China | Entity value input-output models, Forest resource input-output model | Paper products, furniture, and other timber products | The study showed that the demand for forest products differs significantly across industries in China. |
[12] | Pakistan | Interview, questionnaire survey, textbooks, and Internet materials | Forest products: timber and fuelwood | The study showed that forest is beneficial in controlling erosion, improving aesthetic beautification, and regulating temperature. |
[27] | China | Grey relation analysis and DEA approach | Forest products | The findings revealed the average comprehensive efficiency of fourteen companies represented by 93% and 7% of waste resources. |
[28] | Portugal | DEA and Malmquist’s index models | Technology firms of Madan Parque | DEA and Malmquist index models are relevant for measuring firms’ efficiency and productivity change. |
[29] | China | Three-stage DEA and stochastic frontier analysis | Cultural and creative industries | Three-stage DEA and stochastic frontier methods are critical for analyzing enterprises’ efficiencies. |
[57] | United Kingdom | Case study | Forest products, ecosystem, and services | The study revealed that improving our comprehension of human-modified tropical forest ecology with microclimate knowledge supports ecosystem conservation and restoration. |
[58] | Sweden | Survey and triangulation approach | Forest products | Rehabilitation in forest management improves the mental and physical health of individuals. |
[59] | China | Case study | Forest products, landscape, and ecosystem dimensions | Urban forestry is an approach to adapting natural resource management. |
[60] | Tennessee | Harvesting and transportation survey | Forest products | The research findings reveal the variations in the input used for costing harvesting operations and the difficulty of harvesting systems. |
[61] | United States of America (USA), Canada, Taiwan | Data envelopment analysis and stochastic frontier analysis | Forestry product data from Web of Science | The study revealed that forest industries are interested in competitive benchmarking, while forest management organizations focused on applied benchmarking for internal analysis. |
[62] | United States of America | Network data envelopment analysis and slacked-based network model of super efficiency | Data from real commercial banks in the USA | Network DEA has the propensity to rank efficient DMUs than the conventional DEA. |
[63] | China | Super efficiency slacked-based measure model | Forestry ecological efficiency, forestry fixed assets | The findings demonstrated China’s forestry ecological efficiency is low in the northeast but increased in the south of China. |
Company | Year | Mean Value | Rank | |||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |||
Fujian Jinsen | 2.804 | 1.863 | 2.232 | 4.273 | 4.002 | 1.326 | 2.750 | 1 |
Meike Home | 1.390 | 1.467 | 1.430 | 1.274 | 1.265 | 1.235 | 1.343 | 2 |
Sophia | 1.514 | 1.451 | 1.124 | 1.352 | 1.210 | 1.393 | 1.341 | 3 |
Baby rabbit | 1.215 | 1.210 | 1.386 | 1.343 | 1.263 | 1.271 | 1.281 | 4 |
Sun Paper | 0.998 | 1.194 | 1.203 | 1.044 | 1.066 | 1.438 | 1.157 | 5 |
Da Ya Shengxiang | 1.070 | 1.227 | 1.109 | 1.135 | 1.138 | 1.015 | 1.116 | 6 |
Shun Hao | 2.410 | 0.864 | 0.905 | 0.823 | 0.831 | 0.827 | 1.110 | 7 |
Del Future | 1.601 | 1.351 | 1.247 | 0.849 | 0.807 | 0.785 | 1.107 | 8 |
Jingxing Paper | 0.779 | 0.830 | 0.931 | 1.231 | 1.182 | 1.222 | 1.029 | 9 |
Hexing Packaging | 0.967 | 0.850 | 0.781 | 0.931 | 1.203 | 1.383 | 1.019 | 10 |
Chenming Paper | 0.807 | 1.035 | 1.053 | 1.060 | 1.025 | 1.064 | 1.007 | 11 |
Qifeng New Material | 1.121 | 0.968 | 0.879 | 0.887 | 0.892 | 0.929 | 0.946 | 12 |
Zhongshun Jiezuo | 0.846 | 0.874 | 0.919 | 0.904 | 1.006 | 1.116 | 0.944 | 13 |
Mountain Eagle Paper | 0.750 | 0.823 | 0.862 | 0.926 | 1.287 | 0.936 | 0.931 | 14 |
Huatai shares | 0.796 | 0.822 | 0.860 | 0.933 | 0.967 | 0.980 | 0.893 | 15 |
MeiYingSen | 1.008 | 0.824 | 0.729 | 0.822 | 0.865 | 1.099 | 0.891 | 16 |
Fenglin Group | 0.868 | 0.849 | 0.899 | 0.871 | 0.871 | 0.953 | 0.885 | 17 |
Bohui Paper | 0.802 | 0.887 | 0.895 | 0.941 | 0.845 | 0.936 | 0.884 | 18 |
Yueyang Forest & Paper | 0.757 | 0.810 | 0.837 | 0.873 | 0.913 | 0.901 | 0.848 | 19 |
Annie shares | 0.763 | 0.853 | 0.789 | 0.812 | 0.889 | 0.881 | 0.831 | 20 |
Guanhao High-tech | 0.732 | 0.779 | 0.845 | 0.795 | 0.870 | 0.964 | 0.831 | 21 |
Kane | 0.865 | 0.812 | 0.795 | 0.816 | 0.818 | 0.853 | 0.827 | 22 |
Xilinmen | 0.859 | 0.861 | 0.792 | 0.808 | 0.790 | 0.838 | 0.825 | 23 |
Yibin Paper | 0.955 | 1.218 | 0.494 | 0.717 | 0.761 | 0.770 | 0.819 | 24 |
Hengfeng Paper | 0.836 | 0.810 | 0.783 | 0.780 | 0.769 | 0.805 | 0.797 | 25 |
Minfeng Special Paper | 0.788 | 0.767 | 0.790 | 0.769 | 0.748 | 0.778 | 0.773 | 26 |
Weihua | 0.821 | 0.767 | 0.732 | 0.733 | 0.792 | 0.762 | 0.768 | 27 |
Merryun | 0.549 | 1.177 | 0.602 | 0.685 | 0.712 | 0.723 | 0.741 | 28 |
Zhejiang Yongqiang | 0.715 | 0.765 | 0.729 | 0.720 | 0.715 | 0.794 | 0.740 | 29 |
Qingshan Paper | 0.689 | 0.711 | 0.778 | 0.733 | 0.745 | 0.716 | 0.729 | 30 |
Jilin Senkou | 0.591 | 0.570 | 0.564 | 0.738 | 0.845 | 0.964 | 0.712 | 31 |
Pingtan Development | 0.749 | 0.730 | 0.689 | 0.662 | 0.714 | 0.706 | 0.708 | 32 |
Average | 1.013 | 0.969 | 0.927 | 1.008 | 1.025 | 0.980 | 0.987 |
Serial No. | Company | crste | vrste | Scale | rts |
---|---|---|---|---|---|
1 | Pingtan Development | 0.706 | 0.720 | 0.980 | irs |
2 | Zhejiang Yongqiang | 0.794 | 0.814 | 0.975 | irs |
3 | Xilinmen | 0.838 | 0.854 | 0.981 | irs |
4 | Weihua | 0.762 | 0.782 | 0.973 | irs |
5 | Bunny | 1.271 | 1.348 | 0.943 | irs |
6 | Sophia | 1.393 | 1.645 | 0.847 | drs |
7 | Qifeng New Material | 0.929 | 0.963 | 0.964 | irs |
8 | Meike Home | 1.235 | 1.271 | 0.972 | drs |
9 | Jilin Senkou | 0.964 | 0.978 | 0.986 | drs |
10 | Fujian Jinsen | 1.326 | 6.400 | 0.207 | irs |
11 | Fenglin Group | 0.953 | 0.988 | 0.964 | irs |
12 | Del Future | 0.785 | 0.843 | 0.930 | irs |
13 | Da Ya Shengxiang | 1.015 | 1.016 | 0.999 | irs |
14 | Sun Paper | 1.438 | 3.033 | 0.474 | drs |
15 | Shun Hao | 0.827 | 0.859 | 0.964 | irs |
16 | Shan Ying Paper | 0.936 | 0.942 | 0.993 | drs |
17 | Qingshan Paper | 0.716 | 0.717 | 0.998 | drs |
18 | Chenming Paper | 1.064 | 1.000 | 1.064 | drs |
19 | Yibin Paper | 0.770 | 0.829 | 0.929 | irs |
20 | Zhongshun Jiezuo | 1.116 | 1.127 | 0.991 | irs |
21 | Yueyang Forest Paper | 0.901 | 0.908 | 0.993 | irs |
22 | Minfeng Special Paper | 0.778 | 0.909 | 0.857 | irs |
23 | Meiying Sen | 1.099 | 1.116 | 0.985 | irs |
24 | Merryun | 0.723 | 0.754 | 0.959 | irs |
25 | Kane | 0.853 | 1.155 | 0.739 | irs |
26 | Jingxing Paper | 1.222 | 1.276 | 0.958 | irs |
27 | Huatai | 0.980 | 1.095 | 0.895 | drs |
28 | Hengfeng Paper | 0.805 | 0.860 | 0.936 | irs |
29 | Hexing Packaging | 1.383 | 1.685 | 0.821 | drs |
30 | Guanhao High-tech | 0.964 | 1.011 | 0.954 | irs |
31 | Bohui Paper | 0.936 | 0.937 | 0.999 | irs |
32 | Annie shares | 0.881 | 0.928 | 0.949 | irs |
Average | 0.980 | 1.243 | 0.912 |
Total Factor Productivity | Technical Efficiency Change Index | Technological Progress Change Index | Pure Technical Efficiency Change Index | Scale Efficiency Change Index | |
---|---|---|---|---|---|
Pingtan Development | 0.986 | 0.989 | 0.996 | 0.982 | 1.008 |
Zhejiang Yongqiang | 1.027 | 1.023 | 1.004 | 1.025 | 1.023 |
Xilinmen | 1.014 | 0.996 | 1.018 | 0.984 | 1.014 |
Weihua shares | 0.999 | 0.986 | 1.012 | 0.986 | 1.004 |
Bunny | 1.071 | 1.000 | 1.071 | 1.000 | 1.000 |
Sophia | 1.006 | 1.000 | 1.006 | 1.000 | 1.000 |
Qifeng New Material | 0.984 | 0.986 | 0.998 | 0.994 | 0.993 |
Meike Home | 0.988 | 1.000 | 0.988 | 1.000 | 1.000 |
Jilin Forest Industry | 1.108 | 1.110 | 0.997 | 1.106 | 1.005 |
Fujian Jinsen | 0.902 | 1.000 | 0.902 | 1.000 | 1.000 |
Fenglin Group | 1.039 | 1.020 | 1.020 | 1.021 | 1.002 |
Del Future | 0.887 | 0.954 | 0.932 | 0.968 | 0.990 |
Da Ya Shengxiang | 1.051 | 1.000 | 1.051 | 1.000 | 1.000 |
Sun Paper | 1.074 | 1.000 | 1.074 | 1.000 | 1.000 |
Shun Hao | 0.917 | 0.965 | 0.943 | 0.973 | 0.993 |
Shan Ying Paper | 1.071 | 1.047 | 1.018 | 1.017 | 1.029 |
Qingshan Paper | 1.036 | 1.009 | 1.026 | 1.002 | 1.006 |
Chenming Paper | 1.088 | 1.048 | 1.046 | 1.000 | 1.048 |
Yibin Paper | 0.944 | 1.013 | 0.923 | 1.011 | 0.996 |
Zhongshun Jiezuo | 1.056 | 1.035 | 1.021 | 1.034 | 1.001 |
Yueyang Forest Paper | 1.030 | 1.036 | 0.994 | 1.008 | 1.030 |
Minfeng Special Paper | 1.011 | 0.998 | 1.013 | 1.019 | 0.982 |
Meiying Sen | 1.013 | 1.009 | 1.007 | 1.008 | 1.000 |
Merryun | 1.150 | 1.123 | 1.009 | 1.060 | 1.036 |
Kane | 1.011 | 0.998 | 1.013 | 1.013 | 0.991 |
Jingxing Paper | 1.155 | 1.052 | 1.093 | 1.046 | 1.007 |
Huatai | 1.070 | 1.043 | 1.025 | 1.026 | 1.018 |
Hengfeng Paper | 1.010 | 0.993 | 1.018 | 1.001 | 0.993 |
Hop Hing Packaging | 1.052 | 1.013 | 1.036 | 1.008 | 1.008 |
Guanhao High-tech | 1.055 | 1.059 | 0.998 | 1.057 | 1.001 |
Bohui Paper | 1.073 | 1.034 | 1.038 | 1.017 | 1.016 |
Annie shares | 1.039 | 1.031 | 1.006 | 0.991 | 1.048 |
2014–2015 | 1.019 | 1.033 | 0.984 | 1.006 | 1.026 |
2015–2016 | 0.995 | 0.971 | 1.022 | 0.970 | 1.004 |
2016–2017 | 1.142 | 1.036 | 1.102 | 1.043 | 0.993 |
2017–2018 | 1.020 | 1.025 | 0.995 | 1.019 | 1.006 |
2018–2019 | 0.968 | 1.025 | 0.944 | 1.017 | 1.009 |
Mean value | 1.029 | 1.018 | 1.009 | 1.011 | 1.008 |
Stock Code | Year | Average | Rank | |||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |||
000910 | 0.994 | 0.994 | 0.994 | 0.995 | 0.995 | 0.995 | 0.995 | 1 |
600337 | 0.989 | 0.990 | 0.991 | 0.991 | 0.992 | 0.992 | 0.991 | 2 |
002078 | 0.964 | 0.966 | 0.968 | 0.971 | 0.973 | 0.974 | 0.969 | 3 |
002511 | 0.964 | 0.966 | 0.968 | 0.970 | 0.972 | 0.974 | 0.969 | 4 |
002572 | 0.945 | 0.948 | 0.952 | 0.955 | 0.958 | 0.961 | 0.953 | 5 |
600567 | 0.893 | 0.900 | 0.907 | 0.913 | 0.919 | 0.924 | 0.909 | 6 |
000488 | 0.883 | 0.891 | 0.898 | 0.905 | 0.911 | 0.917 | 0.901 | 7 |
600308 | 0.854 | 0.864 | 0.873 | 0.881 | 0.889 | 0.897 | 0.876 | 8 |
002228 | 0.848 | 0.858 | 0.868 | 0.877 | 0.885 | 0.892 | 0.871 | 9 |
002043 | 0.844 | 0.854 | 0.864 | 0.873 | 0.881 | 0.889 | 0.868 | 10 |
603008 | 0.834 | 0.845 | 0.856 | 0.865 | 0.874 | 0.882 | 0.859 | 11 |
600966 | 0.831 | 0.842 | 0.852 | 0.862 | 0.871 | 0.880 | 0.856 | 12 |
002067 | 0.817 | 0.829 | 0.840 | 0.851 | 0.861 | 0.870 | 0.845 | 13 |
002521 | 0.803 | 0.816 | 0.828 | 0.839 | 0.850 | 0.860 | 0.833 | 14 |
002565 | 0.790 | 0.804 | 0.817 | 0.829 | 0.841 | 0.851 | 0.822 | 15 |
600963 | 0.789 | 0.803 | 0.816 | 0.828 | 0.840 | 0.850 | 0.821 | 16 |
002303 | 0.781 | 0.795 | 0.809 | 0.821 | 0.833 | 0.844 | 0.814 | 17 |
002631 | 0.730 | 0.747 | 0.764 | 0.780 | 0.794 | 0.808 | 0.771 | 18 |
600433 | 0.727 | 0.745 | 0.762 | 0.778 | 0.792 | 0.806 | 0.768 | 19 |
600356 | 0.709 | 0.728 | 0.746 | 0.763 | 0.779 | 0.794 | 0.753 | 20 |
601996 | 0.705 | 0.724 | 0.743 | 0.760 | 0.776 | 0.790 | 0.750 | 21 |
002489 | 0.704 | 0.724 | 0.742 | 0.759 | 0.775 | 0.790 | 0.749 | 22 |
600103 | 0.692 | 0.713 | 0.732 | 0.749 | 0.766 | 0.781 | 0.739 | 23 |
002240 | 0.678 | 0.700 | 0.719 | 0.738 | 0.755 | 0.771 | 0.727 | 24 |
600235 | 0.669 | 0.691 | 0.711 | 0.731 | 0.748 | 0.765 | 0.719 | 25 |
002012 | 0.656 | 0.679 | 0.700 | 0.720 | 0.739 | 0.756 | 0.708 | 26 |
600189 | 0.557 | 0.586 | 0.613 | 0.639 | 0.663 | 0.685 | 0.624 | 27 |
000592 | 0.503 | 0.536 | 0.567 | 0.595 | 0.622 | 0.647 | 0.578 | 28 |
000815 | 0.469 | 0.504 | 0.537 | 0.568 | 0.596 | 0.623 | 0.550 | 29 |
002235 | 0.463 | 0.499 | 0.532 | 0.563 | 0.592 | 0.619 | 0.545 | 30 |
600793 | 0.437 | 0.474 | 0.509 | 0.541 | 0.572 | 0.600 | 0.522 | 31 |
002679 | 0.206 | 0.258 | 0.308 | 0.353 | 0.396 | 0.436 | 0.326 | 32 |
Mean Eff. | 0.742 | 0.759 | 0.775 | 0.790 | 0.803 | 0.816 | 0.781 |
Stock Code | Year | Average | Rank | |||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |||
002078 | 0.918 | 0.924 | 0.931 | 0.937 | 0.942 | 0.947 | 0.933 | 1 |
002572 | 0.880 | 0.890 | 0.899 | 0.908 | 0.915 | 0.923 | 0.902 | 2 |
000910 | 0.746 | 0.767 | 0.787 | 0.805 | 0.821 | 0.836 | 0.794 | 3 |
600567 | 0.745 | 0.767 | 0.786 | 0.804 | 0.821 | 0.836 | 0.793 | 4 |
600337 | 0.676 | 0.703 | 0.728 | 0.751 | 0.772 | 0.791 | 0.737 | 5 |
002303 | 0.654 | 0.683 | 0.709 | 0.733 | 0.756 | 0.776 | 0.718 | 6 |
000488 | 0.641 | 0.671 | 0.699 | 0.724 | 0.747 | 0.768 | 0.709 | 7 |
002511 | 0.552 | 0.590 | 0.624 | 0.656 | 0.685 | 0.711 | 0.636 | 8 |
002043 | 0.536 | 0.575 | 0.610 | 0.643 | 0.673 | 0.700 | 0.623 | 9 |
002067 | 0.471 | 0.516 | 0.556 | 0.593 | 0.627 | 0.659 | 0.570 | 10 |
002521 | 0.422 | 0.470 | 0.515 | 0.555 | 0.593 | 0.627 | 0.530 | 11 |
002489 | 0.402 | 0.452 | 0.498 | 0.540 | 0.578 | 0.613 | 0.514 | 12 |
603008 | 0.328 | 0.384 | 0.435 | 0.483 | 0.526 | 0.566 | 0.454 | 13 |
002631 | 0.298 | 0.357 | 0.411 | 0.460 | 0.505 | 0.547 | 0.430 | 14 |
600308 | 0.271 | 0.332 | 0.388 | 0.439 | 0.486 | 0.529 | 0.408 | 15 |
002228 | 0.260 | 0.322 | 0.379 | 0.431 | 0.478 | 0.522 | 0.399 | 16 |
600966 | 0.259 | 0.321 | 0.378 | 0.430 | 0.478 | 0.521 | 0.398 | 17 |
601996 | 0.247 | 0.310 | 0.368 | 0.421 | 0.469 | 0.514 | 0.388 | 18 |
600433 | 0.244 | 0.307 | 0.365 | 0.418 | 0.467 | 0.511 | 0.385 | 19 |
600356 | 0.191 | 0.258 | 0.320 | 0.377 | 0.429 | 0.477 | 0.342 | 20 |
600103 | 0.124 | 0.198 | 0.265 | 0.326 | 0.383 | 0.434 | 0.288 | 21 |
002565 | 0.072 | 0.150 | 0.221 | 0.286 | 0.346 | 0.401 | 0.246 | 22 |
600963 | 0.064 | 0.142 | 0.214 | 0.280 | 0.340 | 0.396 | 0.239 | 23 |
600793 | 0.051 | 0.130 | 0.203 | 0.270 | 0.331 | 0.387 | 0.229 | 24 |
000592 | 0.007 | 0.078 | 0.155 | 0.226 | 0.290 | 0.350 | 0.182 | 25 |
002012 | 0.015 | 0.070 | 0.148 | 0.219 | 0.284 | 0.344 | 0.175 | 26 |
002240 | 0.105 | 0.012 | 0.072 | 0.150 | 0.221 | 0.286 | 0.102 | 27 |
600235 | 0.189 | 0.089 | 0.002 | 0.085 | 0.162 | 0.232 | 0.034 | 28 |
002679 | 0.274 | 0.167 | 0.069 | 0.020 | 0.102 | 0.177 | 0.035 | 29 |
000815 | 0.552 | 0.422 | 0.303 | 0.194 | 0.094 | 0.002 | 0.261 | 30 |
002235 | 0.568 | 0.437 | 0.317 | 0.206 | 0.105 | 0.013 | 0.274 | 31 |
600189 | 0.764 | 0.617 | 0.481 | 0.357 | 0.244 | 0.140 | 0.434 | 32 |
Mean Eff. | 0.237 | 0.301 | 0.359 | 0.413 | 0.462 | 0.507 | 0.380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, X.; Agyeman, F.O.; Gao, Y.; Sarfraz, M. Efficiency Evaluation and the Impact Factors of Sustainable Forestry Development in China: Adoption of Super-Efficiency Data Envelopment Analysis and Malmquist Index Methods. Forests 2023, 14, 909. https://doi.org/10.3390/f14050909
Li M, Wang X, Agyeman FO, Gao Y, Sarfraz M. Efficiency Evaluation and the Impact Factors of Sustainable Forestry Development in China: Adoption of Super-Efficiency Data Envelopment Analysis and Malmquist Index Methods. Forests. 2023; 14(5):909. https://doi.org/10.3390/f14050909
Chicago/Turabian StyleLi, Mingxing, Xinxing Wang, Fredrick Oteng Agyeman, Ya Gao, and Muddassar Sarfraz. 2023. "Efficiency Evaluation and the Impact Factors of Sustainable Forestry Development in China: Adoption of Super-Efficiency Data Envelopment Analysis and Malmquist Index Methods" Forests 14, no. 5: 909. https://doi.org/10.3390/f14050909
APA StyleLi, M., Wang, X., Agyeman, F. O., Gao, Y., & Sarfraz, M. (2023). Efficiency Evaluation and the Impact Factors of Sustainable Forestry Development in China: Adoption of Super-Efficiency Data Envelopment Analysis and Malmquist Index Methods. Forests, 14(5), 909. https://doi.org/10.3390/f14050909