Flammability and Acetic Acid Emissions from Acetylated Wood under Well-Ventilated Burning Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mantanis, G.I. Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioResources 2017, 12, 4478–4489. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, W. Zur Kenntnis des genuinen Lignins, I.: Die Acetylierung des Fichtenholzes. Ber. Der Dtsch. Chem. Ges. A B Ser. 1928, 61, 948–951. [Google Scholar] [CrossRef]
- Rowell, R.M. Chemical Modification of Wood. For. Prod. Abstr. 1983, 6, 363–382. [Google Scholar]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: West Sussex, UK, 2006; Volume 5. [Google Scholar]
- Ogilvie, S. Trading Update: Accys Technologies PLC. Number 6627V; Accys Technologies: London, UK, 2021; Released 16 April 2021; Available online: https://www.accsysplc.com/app/uploads/2021/04/20210416-AXS-April-2021-Trading-Update.pdf (accessed on 7 May 2021).
- Hill, C.A. Why does acetylation protect wood from microbiological attack? Wood Mater. Sci. Eng. 2009, 4, 37–45. [Google Scholar] [CrossRef]
- Ohkoshi, M.; Kato, A.; Suzuki, K.; Hayashi, N.; Ishihara, M. Characterization of acetylated wood decayed by brown-rot and white-rot fungi. J. Wood Sci. 1999, 45, 69–75. [Google Scholar] [CrossRef]
- Peterson, M.; Thomas, R. Protection of wood from decay fungi by acetylation—An ultrastructural and chemical study. Wood Fiber Sci. 1978, 10, 149–163. [Google Scholar]
- Ibach, R.E.; Rowell, R.M. Improvements in decay resistance based on moisture exclusion. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 2000, 353, 23–33. [Google Scholar] [CrossRef]
- Ringman, R.; Beck, G.; Pilgård, A. The Importance of Moisture for Brown Rot Degradation of Modified Wood: A Critical Discussion. Forests 2019, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Ringman, R.; Pilgård, A.; Brischke, C.; Richter, K. Mode of action of brown rot decay resistance in modified wood: A review. Holzforschung 2014, 68, 239–246. [Google Scholar] [CrossRef]
- Zelinka, S.L.; Ringman, R.; Pilgård, A.; Thybring, E.E.; Jakes, J.E.; Richter, K. The role of chemical transport in the brown-rot decay resistance of modified wood. Int. Wood Prod. J. 2016, 7, 66–70. [Google Scholar] [CrossRef]
- Beck, G.; Hegnar, O.A.; Fossdal, C.G.; Alfredsen, G. Acetylation of Pinus radiata delays hydrolytic depolymerisation by the brown-rot fungus Rhondonia placenta. Int. Biodeterior. Biodegrad. 2018, 135, 39–52. [Google Scholar] [CrossRef]
- Alfredsen, G.; Pilgård, A.; Fossdal, C.G. Characterisation of Postia placenta colonisation during 36 weeks in acetylated southern yellow pine sapwood at three acetylation levels including genomic DNA and gene expression quantification of the fungus. Holzforschung 2016, 70, 1055–1065. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.A.; Forster, S.; Farahani, M.; Hale, M.; Ormondroyd, G.; Williams, G. An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. Int. Biodeterior. Biodegrad. 2005, 55, 69–76. [Google Scholar] [CrossRef]
- Guo, J.; Wang, C.; Li, C.; Liu, Y. Effect of Acetylation on the Physical and Mechanical Performances of Mechanical Densified Spruce Wood. Forests 2022, 13, 1620. [Google Scholar] [CrossRef]
- Zelinka, S.L.; Altgen, M.; Emmerich, L.; Guigo, N.; Keplinger, T.; Kymäläinen, M.; Thybring, E.E.; Thygesen, L.G. Review of Wood Modification and Wood Functionalization Technologies. Forests 2022, 13, 1004. [Google Scholar] [CrossRef]
- Dietenberger, M.; Hasburgh, L. Wood products: Thermal degradation and fire. Ref. Modul. Mater. Sci. Mater. Eng. 2016, 1–8. [Google Scholar] [CrossRef]
- Dietenberger, M.; Hasburgh, L.E.; Yedinak, K.M. Chapter 18. Fire Safety of Wood Construction. In Wood Handbook, Wood as an Engineering Material; FPL-GTR-282; Ross, R.J., Ed.; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021. [Google Scholar]
- Morozovs, A.; Bukšāns, E. Fire performance characteristics of acetylated ash (Fraxinus excelsior L.) wood. Wood Mater. Sci. Eng. 2009, 4, 76–79. [Google Scholar] [CrossRef]
- Mohebby, B.; Talaii, A.; Najafi, S.K. Influence of acetylation on fire resistance of beech plywood. Mater. Lett. 2007, 61, 359–362. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Tountziarakis, P.; Pougioula, G. Fire resistance of two panel products made from chemically modified raw material. Maderas. Cienc. Y Tecnol. 2010, 12, 53–55. [Google Scholar] [CrossRef]
- Rabe, S.; Klack, P.; Bahr, H.; Schartel, B. Assessing the fire behavior of woods modified by N-methylol crosslinking, thermal treatment, and acetylation. Fire Mater. 2020, 44, 530–539. [Google Scholar] [CrossRef] [Green Version]
- ISO 11925-3; Reaction to Fire Tests-Ignitability of Building Products Subjected to Direct Impingement of Flame—Part 3: Multi-Source Test. International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO 9239-1; Reaction to Fire Tests for Floorings—Part 1: Determination of the Burning Behaviour Using a Radiant Heat Source. International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 5660-1; Reaction-to-Fire tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organization for Standardization: Geneva, Switzerland, 2002.
- Anon. National Design Specification (NDS) for Wood Construction; American Wood Council: Leesburg, VA, USA, 2018. [Google Scholar]
- ASTM E1354-17; Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter. ASTM International: West Conshohocken, PA, USA, 2017.
- Parker, W.J. Calculations of the Heat Release Rate by Oxygen Consumption for Various Applications. J. Fire Sci. 1984, 2, 380–395. [Google Scholar] [CrossRef]
- Lindholm, J.; Brink, A.; Hupa, M. Cone Calorimeter—A Tool for Measuring Heat Release Rate; Åbo Akademi Process Chemistry Centre: Turku, Finland, 2009; p. 9. [Google Scholar]
- Dietenberger, M.A.; White, R.H. Reaction-to-fire testing and modeling for wood products. In Proceedings of the Twelfth Annual BCC Conference on Flame Retardancy, Stamford, CT, USA, 21–23 May 2001; pp. 54–69. [Google Scholar]
- White, R.H.; Sumathipala, K. Cone calorimeter tests of wood composites. In Proceedings of the Fire and Materials 2013 Conference, San Francisco, CA, USA, 28–30 January 2013; pp. 401–412. [Google Scholar]
- Sanned, E.; Mensah, R.A.; Försth, M.; Das, O. The curious case of the second/end peak in the heat release rate of wood: A cone calorimeter investigation. Fire Mater. 2022, 47, 498–513. [Google Scholar] [CrossRef]
- Wilkie, C.A. TGA/FTIR: An extremely useful technique for studying polymer degradation. Polym. Degrad. Stab. 1999, 66, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Luo, J.; Wu, Y.; Qu, W. The influence of ammonium polyphosphate on the smoke toxicity of wood materials. Thermochim. Acta 2023, 725, 179534. [Google Scholar] [CrossRef]
- Fateh, T.; Richard, F.; Batiot, B.; Rogaume, T.; Luche, J.; Zaida, J. Characterization of the burning behavior and gaseous emissions of pine needles in a cone calorimeter–FTIR apparatus. Fire Saf. J. 2016, 82, 91–100. [Google Scholar] [CrossRef]
- Fateh, T.; Rogaume, T.; Luche, J.; Richard, F.; Jabouille, F. Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter–FTIR apparatus. J. Anal. Appl. Pyrolysis 2014, 107, 87–100. [Google Scholar] [CrossRef]
- Edye, L.A.; Richards, G.N. Analysis of condensates from wood smoke. Components derived from polysaccharides and lignins. Environ. Sci. Technol. 1991, 25, 1133–1137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasburgh, L.E.; Zelinka, S.L. Flammability and Acetic Acid Emissions from Acetylated Wood under Well-Ventilated Burning Conditions. Forests 2023, 14, 1186. https://doi.org/10.3390/f14061186
Hasburgh LE, Zelinka SL. Flammability and Acetic Acid Emissions from Acetylated Wood under Well-Ventilated Burning Conditions. Forests. 2023; 14(6):1186. https://doi.org/10.3390/f14061186
Chicago/Turabian StyleHasburgh, Laura E., and Samuel L. Zelinka. 2023. "Flammability and Acetic Acid Emissions from Acetylated Wood under Well-Ventilated Burning Conditions" Forests 14, no. 6: 1186. https://doi.org/10.3390/f14061186
APA StyleHasburgh, L. E., & Zelinka, S. L. (2023). Flammability and Acetic Acid Emissions from Acetylated Wood under Well-Ventilated Burning Conditions. Forests, 14(6), 1186. https://doi.org/10.3390/f14061186