Fusion Approaches to Individual Tree Species Classification Using Multisource Remote Sensing Data †
Abstract
:1. Introduction
2. Study Area and Data Pre-Processing
2.1. Study Area
2.2. Data Used and Pre-Processing
3. Methodology
3.1. Feature Extraction
3.2. Feature Selection
3.3. Classification
3.3.1. Classification Techniques
3.3.2. Fusion Approaches
3.3.3. Classification Accuracy Assessment
4. Result
4.1. Classification Using Individual Spectral, Textural, and Structural Features
4.2. Classification Using Feature-Level Fusion
4.3. Classification Using the Decision-Level Fusion Approach
5. Discussion
5.1. Contribution of Structural and Textural Features
5.2. Comparison of Feature-Level Fusion and Decision-Level Fusion
5.3. Limitation of the Current Study and Future Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, X. Single Tree Urban Inventory Updates. 2019. Available online: https://hdl.handle.net/1807/93303 (accessed on 1 January 2019).
- Fitzky, A.C.; Sandén, H.; Karl, T.; Fares, S.; Calfapietra, C.; Grote, R.; Saunier, A.; Rewald, B. The interplay between ozone and urban vegetation—BVOC emissions, ozone deposition, and tree ecophysiology. Front. For. Glob. Chang. 2019, 2, 50. [Google Scholar] [CrossRef]
- Felton, A.; Löfroth, T.; Angelstam, P.; Gustafsson, L.; Hjältén, J.; Felton, A.M.; Simonsson, P.; Dahlberg, A.; Lindbladh, M.; Svensson, J. Keeping pace with forestry: Multi-scale conservation in a changing production forest matrix. Ambio 2020, 49, 1050–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Wang, K.; Wang, T.; Liu, X. A Review: Individual Tree Species Classification Using Integrated Airborne LiDAR and Optical Imagery with a Focus on the Urban Environment. Forests 2018, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Mojaddadi Rizeei, H.; Pradhan, B.; Saharkhiz, M.A. Urban object extraction using Dempster Shafer feature-based image analysis from worldview-3 satellite imagery. Int. J. Remote Sens. 2019, 40, 1092–1119. [Google Scholar] [CrossRef]
- Li, J.; Hu, B.; Noland, T.L. Classification of tree species based on structural features derived from high density LiDAR data. Agric. For. Meteorol. 2013, 171–172, 104–114. [Google Scholar] [CrossRef]
- Li, J.; Hu, B.; Woods, M. A Two-Level Approach for Species Identification of Coniferous Trees in Central Ontario Forests Based on Multispectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1487–1497. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Bianconi, F.; Aguilar, F.J.; Fernández, I. Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sens. 2014, 6, 3554–3582. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, T.W.; de Goede, J.; Aguilar, L.; Jenerette, G.D.; Fricker, G.A.; Avolio, M.L.; Pincetl, S.; Johnston, T.; Clarke, L.W.; Pataki, D.E. Predicting tree species richness in urban forests. Urban Ecosyst. 2017, 20, 839–849. [Google Scholar] [CrossRef]
- Hartling, S.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Carron, J. Urban tree species classification using a worldview-2/3 and liDAR data fusion approach and deep learning. Sensors 2019, 19, 1284. [Google Scholar] [CrossRef] [Green Version]
- Hartling, S.; Sagan, V.; Maimaitijiang, M. Urban tree species classification using UAV-based multi-sensor data fusion and machine learning. GIScience Remote Sens. 2021, 58, 1250–1275. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Franklin, S.E.; Maudie, A.J.; Lavigne, M.B. Using spatial co-occurrence texture to increase forest structure and species composition classification accuracy. Photogramm. Eng. Remote Sens. 2001, 67, 849–856. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Aval, J.; Fabre, S.; Zenou, E.; Sheeren, D.; Fauvel, M.; Briottet, X. Object-based fusion for urban tree species classification from hyperspectral, panchromatic and nDSM data. Int. J. Remote Sens. 2019, 40, 5339–5365. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Wagner, F.H.; Aragão, L.E.O.C.; Shimabukuro, Y.E.; de Souza Filho, C.R. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis. ISPRS J. Photogramm. Remote Sens. 2019, 149, 119–131. [Google Scholar] [CrossRef]
- Stavrakoudis, D.G.; Dragozi, E.; Gitas, I.Z.; Karydas, C.G. Decision fusion based on hyperspectral and multispectral satellite imagery for accurate forest species mapping. Remote Sens. 2014, 6, 6897–6928. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Zhao, Y.; Li, B.; Ma, Y.; Li, R.; Jing, J.; Dian, Y. Tree species classification by employing multiple features acquired from integrated sensors. J. Sens. 2019, 2019, 3247946. [Google Scholar] [CrossRef]
- Lin, Y.; Hyyppä, J. A comprehensive but efficient framework of proposing and validating feature parameters from airborne LiDAR data for tree species classification. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 45–55. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, T.; Skidmore, A.K.; Heurich, M. Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS J. Photogramm. Remote Sens. 2018, 137, 163–174. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Dalponte, M.; Frizzera, L.; Gianelle, D. Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data. PeerJ 2019, 2019, e6227. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Coops, N.C.; Aven, N.W.; Pang, Y. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sens. Environ. 2017, 200, 170–182. [Google Scholar] [CrossRef]
- Shojanoori, R.; Shafri, H.Z.M. Review on the use of remote sensing for urban forest monitoring. Arboric. Urban For. 2016, 42, 400–417. [Google Scholar] [CrossRef]
- Li, H.; Hu, B.; Li, Q.; Jing, L. CNN-based individual tree species classification using high-resolution satellite imagery and airborne LiDAR data. Forests 2021, 12, 1697. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Li, Q.; Hall, G.B. A decision-level fusion approach to tree species classification from multi-source remotely sensed data. ISPRS Open J. Photogramm. Remote Sens. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351, Greenbelt, MD, USA, 10–14 December 1974; pp. 301–317. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Wu, C.; Gonsamo, A.; Gough, C.M.; Chen, J.M.; Xu, S. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sens. Environ. 2014, 147, 79–88. [Google Scholar] [CrossRef]
- Soh, L.K.; Tsatsoulis, C. Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 1999, 37, 780–795. [Google Scholar] [CrossRef] [Green Version]
- Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 2002, 28, 45–62. [Google Scholar] [CrossRef]
- Zheng, D.; Zhao, Y.; Wang, J. Features extraction using a Gabor filter family. In Proceedings of the Sixth IASTED International Conference on Signal and Image Processing, Wuxi, China, 8–10 July 2004; pp. 139–144. [Google Scholar]
- Heiskanen, J.; Korhonen, L.; Hietanen, J.; Pellikka, P.K.E. Use of airborne lidar for estimating canopy gap fraction and leaf area index of tropical montane forests. Int. J. Remote Sens. 2015, 36, 2569–2583. [Google Scholar] [CrossRef]
- Reitberger, J.; Schnörr, C.; Krzystek, P.; Stilla, U. 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 561–574. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Demarchi, L.; Kania, A.; Ciezkowski, W.; Piórkowski, H.; Oświecimska-Piasko, Z.; Chormański, J. Recursive feature elimination and random forest classification of natura 2000 grasslands in lowland river valleys of poland based on airborne hyperspectral and LiDAR data fusion. Remote Sens. 2020, 12, 1842. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIScience Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- RStudio. Open Source & Professional Software for Data Science Teams—RStudio; Version 1.2.1335; RStudio Team: Vienna, Austria, 2018. [Google Scholar]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, R Package Version 1.7-3. 2019. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 2 July 2023).
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 1999, 10, 61–74. [Google Scholar]
- Wu, T.-F.; Lin, C.-J.; Weng, R.C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 2004, 5, 975–1005. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Waser, L.T.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the potential of worldview-2 data to classify tree species and different levels of ash mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Krzystek, P.; Heurich, M. Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens. Environ. 2012, 123, 368–380. [Google Scholar] [CrossRef]
Common Name | Scientific Name | Tree Type | Samples Number | Proportion (%) |
---|---|---|---|---|
Norway maple | Acer platanoides | Broadleaf | 188 | 25 |
Honey locust | Gleditsia triacanthos | Broadleaf | 180 | 24 |
Austrian pine | Pinus nigra | Conifer | 159 | 21 |
Blue spruce | Picea pungens | Conifer | 115 | 15 |
White spruce | Picea glauca | Conifer | 109 | 15 |
Total | 751 | 100 |
Species | Ground Photos | Spectral Curve of MSI | PAN Image | LiDAR Points |
---|---|---|---|---|
Norway maple | ||||
Honey locust | ||||
Austrian pine | ||||
Blue spruce | ||||
White spruce |
Dataset | Feature Group | Representatives of Individual Tree Crowns’ Characteristics | Selected Features | No. |
---|---|---|---|---|
MSI | Spectral features | Mean and standard deviation of the reflectance of tree crown using eight bands | Reflectance_B4,6,7,8; SD_B2,6,7,8 | 11 |
Vegetation indices combining reflectance of different bands (EVI, GNDVI, RNDVI) | EVI, GNDVI, RE_NDVI | |||
PAN | Textural features | Two-dimensional GLCM-based texture analysis describes the variations in the intensity of pixels belonging to tree crowns in PAN | 2D-Correlation, 2D-ClusterProminence, 2D-ClusterShade, 2D-Entropy, 2D-InverseDifferenceMoment, 2D-SumVariance, 2D-MaximumProbability, 2D-DifferenceEntropy, 2D-InformationMeasureofCorrelation1, 2D-InformationMeasureofCorrelation2, 2D-InverseDifferenceNormalized | 11 |
Gabor-filter-based textural features provide robustness against varying brightness and contrast of pixels within the tree crown in PAN | GaborFilter-SquareEnergy 1,2,17,18,21,22,24GaborFilter-MeanAmplitude1,21 | 9 | ||
LiDAR point clouds | Structural features | Normalized number of points at horizontal layers using the total number of individual tree points, presenting the branch and foliage distribution at vertical profile | Density_Layer1,2,3,4,5,9 | 6 |
Crown area and the ratio of the crown areas to the maximum crown area at horizontal layers, presenting the vertical foliage clusters at these layers | Area, Vertical_cluster1,2,5,9,10 | 6 | ||
The proportion of first, second, and third returns subtracted from 1, presenting gap distributions within the tree crown opposite to foliage covers | Gap_distribution1, Gap_distribution2, Gap_distribution3 | 3 | ||
Measures of the 3D spatial relationship of neighboring voxels with different LiDAR point numbers in a tree crown, characterizing the arrangement of foliage, twigs, and branch | 3D-Contrast, 3D-SumMean, 3D-ClusterShade, 3D-ClusterTendency | 4 | ||
CHM | Structural features | Absolute tree height statistics and the combinations with area information | Max_H/Area, Max_H*Area, SD_H/Max_H, Mean_H, (Max_H-Min_H)/Max_H, Max_H, Mean_H, (Max_H-Mean_H)/Max_H, Max_H-Mean_H, SD_H | 10 |
Features Combination | No. |
---|---|
Spectral and textural features | 31 |
Spectral and structural features | 40 |
Textural and structural features | 49 |
All features | 60 |
SVM | RF | ||||
---|---|---|---|---|---|
Feature Groups | Overall Accuracy | Kappa | Overall Accuracy | Kappa | |
Case A | Spectral features | 0.70 | 0.62 | 0.70 | 0.62 |
Textural features | 0.76 | 0.70 | 0.75 | 0.68 | |
Structural features | 0.78 | 0.72 | 0.76 | 0.69 | |
Case B | Selected spectral features | 0.70 | 0.62 | 0.65 | 0.56 |
Selected textural features | 0.74 | 0.68 | 0.72 | 0.64 | |
Selected structural features | 0.80 * | 0.74 * | 0.78 * | 0.72 * |
Norway Maple | Honey Locust | Austrian Pine | Blue Spruce | White Spruce | OA | |
---|---|---|---|---|---|---|
SVM Classification | ||||||
SF | 0.87 | 0.71 | 0.69 | 0.58 | 0.49 | 0.70 |
TF_GLCM | 0.91 | 0.67 | 0.65 | 0.68 | 0.54 | 0.71 |
TF_GABOR | 0.80 | 0.38 | 0.69 | 0.40 | 0.60 * | 0.60 |
TF | 0.89 | 0.70 | 0.74 | 0.72 * | 0.58 | 0.74 |
STF_CHM | 0.90 | 0.70 | 0.74 | 0.54 | 0.49 | 0.71 |
STF_3D | 0.85 | 0.67 | 0.86 | 0.62 | 0.56 | 0.74 |
STF | 0.93 * | 0.80 * | 0.90 * | 0.67 | 0.53 | 0.80 * |
RF Classification | ||||||
SF | 0.88 | 0.69 | 0.65 | 0.46 | 0.35 | 0.65 |
TF_GLCM | 0.88 | 0.67 | 0.62 | 0.60 | 0.46 | 0.67 |
TF_GABOR | 0.82 | 0.33 | 0.63 | 0.42 | 0.59 * | 0.58 |
TF | 0.90 | 0.67 | 0.71 | 0.65 * | 0.54 | 0.72 |
STF_CHM | 0.91 | 0.73 | 0.72 | 0.57 | 0.48 | 0.72 |
STF_3D | 0.88 | 0.70 | 0.82 | 0.61 | 0.53 | 0.74 |
STF | 0.93 * | 0.77 * | 0.86 * | 0.63 | 0.51 | 0.78 * |
Feature Combinations | SVM | RF | ||
---|---|---|---|---|
Accuracy | Kappa | Accuracy | Kappa | |
Spectral + textural | 0.81 | 0.76 | 0.80 | 0.75 |
Spectral + structural | 0.83 | 0.78 | 0.81 | 0.76 |
Textural + structural | 0.82 | 0.77 | 0.81 | 0.76 |
Spectral + textural + structural | 0.85 * | 0.81 * | 0.83 * | 0.78 * |
Predicted tree species | Actual Tree Species | ||||||
Tree Species | Norway Maple | Honey Locust | Austrian Pine | Blue Spruce | White Spruce | UA (%) | |
SVM_RBF | |||||||
Norway maple | 53 | 4 | 92.98 | ||||
Honey locust | 3 | 46 | 2 | 3 | 85.18 | ||
Austrian pine | 2 | 46 | 1 | 2 | 90.19 | ||
Blue spruce | 26 | 8 | 76.47 | ||||
White spruce | 2 | 5 | 20 | 74.07 | |||
PA (%) | 94.64 | 85.19 | 95.83 | 74.29 | 66.67 | ||
Overall accuracy | 85.65% | ||||||
Kappa coefficient | 0.82 | ||||||
RF | |||||||
Norway maple | 50 | 3 | 94.34 | ||||
Honey locust | 5 | 46 | 2 | 1 | 85.19 | ||
Austrian pine | 1 | 3 | 46 | 1 | 3 | 85.19 | |
Blue spruce | 27 | 9 | 75.00 | ||||
White spruce | 2 | 6 | 18 | 69.23 | |||
PA (%) | 89.29 | 85.19 | 95.83 | 77.14 | 60.00 | ||
Overall accuracy | 83.86% | ||||||
Kappa coefficient | 0.79 |
Tree ID: 705 | SVM-Based Posterior Probabilities | ||||
---|---|---|---|---|---|
Classification Schemes | Norway Maple | Honey Locust | Austrian Pine | Blue Spruce | White Spruce |
Spectral feature | 0.14 | 0.73 | 0.01 | 0.07 | 0.05 |
Textural feature | 0.00 | 0.01 | 0.00 | 0.64 | 0.35 |
Structural feature | 0.00 | 0.00 | 0.00 | 0.47 | 0.53 |
Feature-level fusion | 0.00 | 0.00 | 0.00 | 0.47 | 0.52 |
Decision-level fusion | 0.00 | 0.00 | 0.00 | 0.68 | 0.32 |
Tree ID: 311 | SVM-Based Posterior Probabilities | ||||
---|---|---|---|---|---|
Classification Schemes | Norway Maple | Honey Locust | Austrian Pine | Blue Spruce | White Spruce |
Spectral feature | 0.06 | 0.51 | 0.08 | 0.27 | 0.08 |
Textural feature | 0.00 | 0.14 | 0.85 | 0.00 | 0.00 |
Structural feature | 0.06 | 0.47 | 0.46 | 0.00 | 0.00 |
Feature-level fusion | 0.03 | 0.49 | 0.48 | 0.00 | 0.00 |
Decision-level fusion | 0.00 | 0.52 | 0.48 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Hu, B.; Shang, J.; Li, H. Fusion Approaches to Individual Tree Species Classification Using Multisource Remote Sensing Data. Forests 2023, 14, 1392. https://doi.org/10.3390/f14071392
Li Q, Hu B, Shang J, Li H. Fusion Approaches to Individual Tree Species Classification Using Multisource Remote Sensing Data. Forests. 2023; 14(7):1392. https://doi.org/10.3390/f14071392
Chicago/Turabian StyleLi, Qian, Baoxin Hu, Jiali Shang, and Hui Li. 2023. "Fusion Approaches to Individual Tree Species Classification Using Multisource Remote Sensing Data" Forests 14, no. 7: 1392. https://doi.org/10.3390/f14071392
APA StyleLi, Q., Hu, B., Shang, J., & Li, H. (2023). Fusion Approaches to Individual Tree Species Classification Using Multisource Remote Sensing Data. Forests, 14(7), 1392. https://doi.org/10.3390/f14071392