Effect of Changing Substrate Density and Water Application Method on Substrate Physical Properties and Container-Grown Seedling Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Experiment
2.2. Seedling Experiment
2.3. Data Analysis
3. Results
3.1. Preliminary Experiment
3.2. Seedling Experiment
4. Discussion
5. Conclusions
- ○
- The increased compaction of the substrate during container filling was maintained throughout the growth period of pine, spruce, and beech seedlings, as evidenced by the differences in the physical–mechanical parameters of the substrate in the compacted and uncompacted variants.
- ○
- The increased compaction of the substrate led to an increase in the dry mass of the substrate, resulting in the desired effect of increasing water capacity and decreasing air capacity for pine, spruce, and beech seedlings. However, this effect was not observed in oak seedlings, which could be attributed to the sorting practices implemented for this species at a later stage. Furthermore, the increased substrate compaction had a positive impact on important seedling parameters, but only in pine seedlings at the end of the growth period. These improvements included an increase in diameter at the root neck, dry mass of the root system, leaf area, and total seedling mass, as well as a lower (improved) sturdiness quotient.
- ○
- The increase in substrate consumption justified the need for denser filling of containers only for pine seedlings. However, for the other species, increasing substrate compaction would result in a waste of substrate. Therefore, the current level of substrate compaction used in HIKO nursery containers appears to be optimal for the overall growth of the seedlings.
- ○
- The implementation of precise water dosing during irrigation, based on a systematic water balance analysis, resulted in a reduction in water consumption of approximately 8.0%. This approach also led to a noticeable improvement in the sturdiness quotient of pine seedlings and the development of a more robust root system. However, no significant differences were observed for spruce, beech, and oak seedlings.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rolbiecki, S.; Musiał, M.; Fórmaniak, A.; Ryterska, H. Próba porównania potrzeb nawadniania szkółek leśnych w latach 2000–2009 w okolicach Bydgoszczy, Chojnic i Tomnia. An attempt to compare the needs of forest nursery irrigation in the years 2000–2009 in the vicinity of Bydgoszcz, Chojnice and Toruń. Infrastruct. Ecol. Rural. Areas PAN 2010, 14, 23–30. (In Polish) [Google Scholar]
- Leciejewski, P. Nawodnienia w Szkółkach Leśnych. Irrigation of Forest Nurseries; Biblioteczka Leśniczego, SITLiD Publishing House: Warsaw, Poland, 2011; p. 330. (In Polish) [Google Scholar]
- Cabrera, P.I.; Johnson, J.R. Fundamentals of Container Media Management: Part 1. Greenhouse and Nursery Crops Fact Sheets & Bulletins; Rutgers Fact Sheet FS 812; The State University of New Jersey: New Brunswick, NJ, USA, 2014; p. 3. [Google Scholar]
- De Boodt, M.; Verdonck, O. The Physical Properties of the Substrates in Horticulture. Acta Hortic. 1972, 26, 37–44. [Google Scholar] [CrossRef]
- Fernandes, C.; Cora, J.E. Bulk density and relationship air/water of horticulture substrate. Sci Agric. 2004, 61, 446–450. [Google Scholar] [CrossRef] [Green Version]
- Szabla, K.; Pabian, R. Szkółkarstwo Kontenerowe: Nowe Technologie i Techniki w Szkółkarstwie Leśnym; Container Nursery. New Technologies and Techniques in Forestry Nursery; State Forests Information Centre: Warsaw, Poland, 2003; p. 212. ISBN 83-88478-43-5. (In Polish) [Google Scholar]
- Paquet, J.M.; Caron, J.; Banton, O. In situ determination of the water desorption characteristics of peat substrates. Can. J. Soil. Sci. 1993, 73, 329–339. [Google Scholar] [CrossRef]
- Bilderback, T.; Warren, S.; Owen, J.; Albano, J.P. Healthy substrates need Physicals too! HortTechnology 2005, 15, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.; Bilderback, T.; Lorscheider, M. Physical property mesurements in container substrates: A field Quantification strategy. SNA Res. Conf. 2004, 49, 102–104. [Google Scholar]
- Allaire, S.E.; Caron, J.; Duchesne, I.; Parent, L.É.; Rioux, J.A. Air-filled porosity, gas relative diffusivity, and tortuosity: Indices of Prunus × Cistena sp. growth in peat substrates. J. Am. Soc. Hortic. Sci. 1996, 121, 236–242. [Google Scholar] [CrossRef]
- Kormanek, M.; Małek, S.; Banach, J.; Jagiełło-Leńczuk, K.; Dudek, K. Seasonal changes of perlite-peat substrate properties in seedlings grown in different sized container trays. New For. 2021, 52, 271–283. [Google Scholar] [CrossRef]
- Strojny, Z. Podłoże w pojemnikowej produkcji szkółkarskiej. Substrate in container nursery production. Nursery 2003, 4, 61–67. (In Polish) [Google Scholar]
- Mathers, H.M.; Yeager, T.H.; Case, L.T. Improving irrigation water use in container nurseries. HortTechnology 2005, 15, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.R.; Gachukia, M.M. Physical properties of sphagnum peat– based root substrates amended with perlite or parboiled fresh rice hulls. HortTechnology 2007, 17, 312–315. [Google Scholar] [CrossRef] [Green Version]
- Altland, T.E.; Owen, J.O.; Gabriel, M.Z. Influence of Pumice and Plant Roots on Substrate Physical Properties. HortTechnology 2011, 21, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Pierzgalski, E.; Tyszka, J.; Boczoń, A.; Wiśniewki, S.; Jeznach, J.; Żakowicz, S. Wytyczne Nawadniania Szkółek Leśnych na Powierzchniach Otwartych; Guidelines for the Use of Sprinklers in Forest Nurseries of the Nursery Trees; State Forests Information Centre: Warsaw, Poland, 2002; p. 64. (In Polish) [Google Scholar]
- Sun, Q.; Dumroese, R.K.; Liu, Y. Container volume and subirrigation schedule influence Quercus variabilis seedling growth and nutrient status in the nursery and field. Scand. J. For. Res. 2018, 33, 560–567. [Google Scholar] [CrossRef]
- Landis, T.D. Chapter 1 Containers: Types and Functions. In Container Tree Nursery Manual, Volume II—Containers and Growing Media; Agriculture Handbook 674; USDA Forest Services: Washington, DC, USA, 1990; pp. 1–39. [Google Scholar]
- Beeson, R.C. Relationship of plant growth and actual evapotranspiration to irrigation frequency based on management allowed deficits for container nursery stock. J. Amer. Soc. Hort. Sci. 2006, 131, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Luna, T.; Landis, T.D.; Dumroese, R.K. Nursery Manual for Native Plants: A Guide for Tribal Nurseries—Volume 1: Nursery Management; USDA Forest Services: Washington, DC, USA, 2009; pp. 95–111. [Google Scholar]
- Heiskanen, J. Water status of sphagnum peat and a peat–perlite mixture in containers subjected to irrigation regimes. HortSciences 1995, 30, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Kormanek, M.; Durło, G.; Małek, S.; Banach, J. System modyfikacji pola nawożenia i nawadniania w zasięgu rampy deszczującej HAB T–1 BCC na przykładzie gospodarstwa szkółkarskiego w Nędzy. Field modification system for fertilization and irrigation within the reach of the HAB T–1 BCC boom on the example of a nursery farm in Nędza. In The Use of Agricultural and Forestry Machinery—Research and Didactics; Tylek, P., Owoc, D., Eds.; PIMR: Poznań, Poland, 2018; pp. 71–79. ISBN 978-83-940788-9-8. (In Polish) [Google Scholar]
- Landis, T.D.; Dumroese, R.K. Monitoring Electrical Conductivity in Soils and Growing Media; Report number: R6-CP-TP-04-2006; USDA Forest Services, Pacific Northwest Region, State and Private Forestry, Cooperative Programs: Portland, OR, USA, 2006; pp. 6–10. [Google Scholar]
- Landis, T.D.; Dumroese, R.K.; Haase, D.L. The Container Tree Nursery Manual: Volume 7, Seedling Processing, Storage, and Outplanting; Agriculture Handbook 674; USDA Forest Services: Washington, DC, USA, 2010; p. 200. [Google Scholar]
- Lea-Cox, J.D.; Ristvey, A.G.; Ross, D.; Kantor, G.F. Deployment of wireless sensor networks for irrigation and nutrient management in nursery and greenhouse operations. SNA Res. Conf. 2009, 54, 28–34. [Google Scholar]
- Durło, G.; Jagiełło-Leńczuk, K.; Kormanek, M.; Małek, S.; Banach, J. Supplementary irrigation at container nursery. For. Res. Pap. 2018, 79, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Nkongolo, N.V.; Caron, J. Bark particle sizes and the modification of the physical properties of peat substrates. Can. J. Soil Sci. 1999, 79, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Kipp, J.A.; Wever, G.; De Kreij, C. International substrate manual. Analysis, charakteristics and recommendations. PBK Naaldwijk 2000, 8, 3. [Google Scholar]
- Kormanek, M.; Małek, S.; Banach, J.; Durło, G. System Zraszania, Zwłaszcza Sadzonek w Szkółkach Leśnych i Ogrodniczych. Sprinkling System, Especially for Seedlings in Forest and Horticultural Nurseries. Patent of Republic of Poland 421958, 18 October 2018. [Google Scholar]
- Snyder, R.L.; Pruitt, W.O. Evapotranspiration Data Management in California. In Irrigation and Drainage: Saving a Threatened Resource—In Search of Solutions; ASCE: Baltimore, MD, USA, 1992; Volume 1, pp. 128–133. ISBN 9780784414057. [Google Scholar]
- ASAE S313.3 FEB1999 (R2018); ASAE Standards Soil Cone Penetrometer. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1999; pp. 820–821.
- Ferree, D.C.; Streeter, J.G.; Yuncong, Y. Response of container-grown apple trees to soil compaction. HortScience 2004, 39, 40–48. [Google Scholar] [CrossRef]
- Maciak, F.; Liwski, S. Ćwiczenia z Torfoznawstwa. Peat Deposits Exercises; Szkoła Główna Gospodarstwa Wiejskiego: Warsaw, Poland, 1996; pp. 1–128. ISBN 83-00-02968-0. (In Polish) [Google Scholar]
- Caron, J.; Elric, C.E.; Michel, J.C.; Naasz, R. Physical properties of organic soils and growing media: Water and air storage and flow dynamics. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 885–912. ISBN 13-978-0-8493-3586-0. [Google Scholar]
- PN–EN 13041; Środki Poprawiające Glebę i Podłoża Uprawowe—Oznaczanie Właściwości Fizycznych—Gęstość Objętościowa Suchej Próbki, Pojemność Powietrzna, Pojemność Wodna, Kurczliwość i Porowatość Ogólna. Soil Improvers and Growing—Determination of Physical Properties—Dry Bulk Density, Air Capacity, Water Capacity, Shrinkage and Total Porosity. Polski Komitet Normalizacyjny: Warsaw, Poland, 2011; p. 26. (In Polish)
- Cannavo, P.; Hafdhi, H.; Michal, J.C. Impact of root growth on the physical properties of peat substrate under a constant water regimen. HortScience 2011, 46, 1394–1399. [Google Scholar] [CrossRef] [Green Version]
- Cannavo, P.; Michel, J.C. Peat particle size effects on spatial root distribution, and changes on hydraulic and aeration properties. Sci. Hortic. 2013, 151, 11–21. [Google Scholar] [CrossRef]
- StatSoft. Electronic Statistics Manual PL, Krakow. 2006. Available online: http://www.statsoft.pl/textbook/stathome.html (accessed on 13 April 2020).
- Banach, J.; Kormanek, M.; Małek, S.; Duro, G.; Skrzyszewska, K. Effect of the changing seedlings density of Quercus robur L. grown in nursery containers on their morphological traits and planting suitability. Sylwan 2023, 167, 1–12. [Google Scholar] [CrossRef]
- Wesoły, W.; Hauke, M. Szkółkarstwo Kontenerowe od Ado Z. Forest Nursery from A to Z; State Forest Information Centre: Warsaw, Poland, 2009; p. 412. ISBN 978-83-89744-81-4. (In Polish) [Google Scholar]
- Onweremadu, E.U.; Eshett, E.T.; Ofoh, M.C.; Nwufo, M.I.; Obiefuna, J.C. Seedling performance asaffected by bulk density and soil moisture on a Typic Tropaquept. J. Plant Sci. 2008, 3, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Marshall, V.G. Impacts of forest harvesting on biological processes in northern forest soils. For. Ecol. Manag. 1999, 133, 43–60. [Google Scholar] [CrossRef]
- Gajda, A.; Przewłoka, B. Soil biological activity as affected by tillage intensity. Int. Agrophys. 2012, 26, 15–23. [Google Scholar] [CrossRef]
- Pająk, K.; Małek, S.; Kormanek, M.; Jasik, M. The effect of peat substrate compaction on the macronutrient content of Scots pine Pinus sylvestris L. container seedlings. Sylwan 2022, 3, 211–223. [Google Scholar] [CrossRef]
- Pająk, K.; Małek, S.; Kormanek, M.; Jasik, M.; Banach, J. Macronutrient Content in European Beech (Fagus sylvatica L.) Seedlings Grown in Differently Compacted Peat Substrates in a Container Nursery. Forests 2022, 13, 1793. [Google Scholar] [CrossRef]
- Brais, S. Persistence of Soil Compaction and Effects on Seedling Growth in Northwestern Quebec. Soil Sci. Soc. Am. J. 2001, 65, 1263–1271. [Google Scholar] [CrossRef]
- Owen, J.S., Jr. Container Height and Douglas Fir Bark Texture Affect Substrate Physical Properties. HortScience 2008, 43, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Alameda, D.; Anten, N.P.R.; Villar, R. Soil compaction effects on growth and root traits of tobacco depend on light, water regime and mechanical stress. Soil Tillage Res. 2012, 120, 121–129. [Google Scholar] [CrossRef]
- Kormanek, M.; Banach, J.; Sowa, P. Effect of soil bulk density on forest tree seedlings. Int. Agrophys. 2015, 29, 67–74. [Google Scholar] [CrossRef]
- Lipiec, J.; Horn, R.; Pietrusiewicz, J.; Siczek, A. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil Tillage Res. 2012, 121, 74–81. [Google Scholar] [CrossRef]
- Lipiec, J.; Hajnos, M.; Świeboda, R. Estimating effects of compaction on pore size distribution of soil aggregates by merkury porosimeter. Geoderma 2012, 179–180, 20–27. [Google Scholar] [CrossRef]
- Jourgholami, M.; Abari, M.A. Effectiveness of sawdust and straw mulching on postharvest runoff and soil erosion of a skid trail in a mixed forest. Ecol. Eng. 2017, 109, 15–24. [Google Scholar] [CrossRef]
- Banach, J.; Małek, S.; Kormanek, M.; Durło, G. Growth of Fagus sylvatica L. and Picea abies (L.) Karst. Seedlings Grown in Hiko Containers in the First Year after Planting. Sustainability 2020, 12, 7155. [Google Scholar] [CrossRef]
- Kormanek, M.; Głąb, T.; Banach, J.; Szewczyk, G. Effects of soil bulk density on sessile oak Quercus petraea Liebl. seedlings. Eur. J. Forest. Res. 2015, 134, 969–979. [Google Scholar] [CrossRef] [Green Version]
- Tworkoski, T.J.; Burger, J.A.; Smith, D.W. Soil texture and bulk density affect early growth of white oak seedlings. Tree Plant. Notes 1983, 34, 22–25. [Google Scholar]
- Zisa, R.P.; Halverson, H.G.; Stout, B.B. Establishment and Early Growth of Conifers on Compact Soils in Urban Areas; Research Paper NE-451; Forest Service, Northeastern Forest Experiment Station; U.S. Department of Agriculture: Broomall, PA, USA, 1980; p. 8. [Google Scholar]
- Misra, R.K.; Goibbons, A.K. Growth and morphology of eucalypt seedling–roots in relation to soil strength arising from compaction. Plant Soil 1996, 182, 1–11. [Google Scholar] [CrossRef]
- Mosena, M.; Dillenburg, L.R. Early growth of Brazilian pine (Araucaria angustifolia [Bertol.] Kunze) in response to soil compaction and drought. Plant Soil 2004, 258, 293–306. [Google Scholar] [CrossRef]
- Blouin, V.M.; Schmidt, M.G.; Bulmer, C.E.; Krzic, M. Effects of compaction and water content on lodgepole pine seedling growth. For. Ecol. Manag. 2008, 255, 2444–2452. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Villar, R.; Murillo, A.M.; Quero, J.L. Effects of soil compaction and light on growth of Quercus pyrenaica Willd. (Fagaceae) seedlings. Soil Tillage Res. 2010, 110, 108–114. [Google Scholar] [CrossRef]
- Boja, N.; Boja, F. Variation of soil compaction in forest nurseries. Res. J. Agric. Sci. 2011, 43, 23–30. [Google Scholar]
- Choi, J.H.; Ha, S.Y.; Jung, J.Y.; Nam, J.B.; Kim, J.S.; Yang, J.K. Optimum Mixing Ratio of Growing Media and Soil for Water Maintenance in Pot Culture. J. Agirc. Life Sci. 2016, 50, 69–80. [Google Scholar] [CrossRef]
- Pająk, K.; Kormanek, M.; Małek, S.; Banach, J. Effect of Peat-Perlite Substrate Compaction in Hiko V265 Trays on the Growth of Fagus sylvatica L. Seedlings. Sustainability 2022, 14, 4585. [Google Scholar] [CrossRef]
- Pająk, K.; Małek, S.; Kormanek, M.; Banach, J. Effect of peat substrate compaction on growth parameters and root system morphology of Scots pine Pinus sylvestris L. seedlings. Sylwan 2022, 166, 2537–2550. [Google Scholar]
- Allaire–Leung, S.E.; Caron, J.; Parent, L.E. Changes in physical properties of peat substrates during plant growth. Can. J. Soil Sci. 1999, 137–139. [Google Scholar] [CrossRef]
- Kormanek, M.; Banach, J.; Ryba, M. Influence of substrate compaction in nursery containers on the growth of Scots pine (Pinus sylvestris L.) seedlings. For. Res. Pap. 2013, 74, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Kormanek, M.; Banach, J.; Leńczuk, D. Influence of soil compaction on the growth of silver fir (Abies alba Mill.) under a forest canopy. Ecol. Quest. 2015, 22, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Zahreddine, H.G.; Struve, D.K.; Quigley, M. Growing Pinus nigra seedlings in Spinout−treated containers reduces root malformation and increases regrowth potential. J. Environ. Hortic. 2004, 22, 176–182. [Google Scholar] [CrossRef]
Species | Tray Type | Substrate Filling/Seeds Sowing | Procedure after Sowing | Fertilizers Doses (dm3·m−2) |
---|---|---|---|---|
Scots pine (Sp) | Hiko V120SS 10.9 × 35.2 × 21.6 cm (W × D × S), 40 cells, volume 120 cm3 | 14 April/ 14 April (automatic seeder) | Vegetation hall (8 weeks) than open production field | Bioekor: 0.0085 × 1 Floralesad: 0.0085 × 1 |
Norway spruce (Ns) | 18 April/ 18 April (automatic seeder) | Bioekor: 0.050 × 5 Floralesad: 0.11 × 14 | ||
European beech (Eb) | Hiko V265 15.0 × 35.2 × 21.6 cm (W × D × S), 28 cells, volume 265 cm3 | 19 April/22 April (sown manually) | Open nursery bed (2 weeks), vegetation hall (6 weeks), then open nursery bed In July, oak seedlings were sorted by transferring the low ones to a new container | Bioekor: 0.072 × 5 Floralesad: 0.02 × 10 |
Pedunculate oak (Po) | 14 April/15 April (sown manually) | Bioekor: 0.038 × 4 Floralesad: 0.073 × 8 |
Try Type | Control Parameters | Substrate Parameters (Diff. Sig. at p < 0.05) | ||||||
---|---|---|---|---|---|---|---|---|
Speed | Depth | bd | po | wc | Ac | dms | pr | |
V120SS | StdSp | StdD | 0.083 ± 0.004 a | 93.5 ± 0.3 b | 55.5 ± 3.6 b | 38.0 ± 3.9 a | 9.5 ± 0.45 | 47.1 ± 10.8 |
15D | 0.089 ± 0.002 ac | 93.0 ± 0.2 bc | 63.9 ± 1.5 a | 29.1 ± 1.6 ab | 10.3 ± 0.23 | 60.8 ± 11.0 | ||
30D | 0.095 ± 0.005 bc | 92.6 ± 0.4 ac | 70.0 ± 2.7 cd | 22.6 ± 3.1 | 10.3 ± 1.30 | 64.4 ± 10.1 | ||
LowSp | StdD | 0.087 ± 0.004 a | 93.2 ± 0.3 b | 59.2 ± 2.9 ab | 34.0 ± 3.2 c | 9.8 ± 0.49 | 48.2 ± 9.1 | |
15D | 0.099 ± 0.003 b | 92.3 ± 0.3 a | 72.1 ± 2.5 d | 20.2 ± 2.7 a | 10.8 ± 0.39 | 85.8 ± 11.8 | ||
30D | 0.101 ± 0.002 b | 92.1 ± 0.2 a | 64.8 ± 2.4 ac | 27.3 ± 2.5 b | 11.2 ± 0.28 | 90.0 ± 12.2 | ||
V265 | StdSp | StdD | 0.087 ± 0.006 a | 88.3 ± 0.4 b | 54.6 ± 4.3 a | 33.7 ± 4.6 a | 21.3 ± 1.3 | 40.0 ± 10.1 |
15D | 0.097 ± 0.005 b | 93.0 ± 0.4 a | 59.1 ± 3.3 b | 33.9 ± 3.0 a | 22.1 ± 1.4 | 55.8 ± 10.4 | ||
30D | 0.096 ± 0.010 b | 92.6 ± 0.8 a | 58.8 ± 2.1 b | 33.8 ± 2.3 a | 22.6 ± 2.3 | 69.9 ± 10.9 | ||
LowSp | StdD | 0.095 ± 0.006 a | 92.8 ± 0.5 c | 55.2 ± 3.2 a | 37.6 ± 3.2 a | 22.0 ± 1.6 | 46.3 ± 14.9 | |
15D | 0.099 ± 0.012 b | 92.4 ± 0.8 ab | 67.5 ± 1.9 c | 24.9 ± 1.9 c | 21.6 ± 2.1 | 57.3 ± 10.3 | ||
30D | 0.101 ± 0.011 c | 92.2 ± 0.8 ab | 61.9 ± 1.5 b | 30.3 ± 1.2 b | 22.8 ± 2.5 | 68.9 ± 16.1 |
Parameter | Variant | Variant | ||||
---|---|---|---|---|---|---|
V1 | V2 | V3 | V1 | V2 | V3 | |
Scots pine (Sp) | Norway spruce (Ns) | |||||
po | 93.4 ± 0.70 a | 93.4 ± 0.89 a | 93.0 ± 0.93 b | 93.4 ± 0.87 a | 93.4 ± 0.86 a | 93.0 ± 0.76 b |
wc | 68.3 ± 9.0 b | 69.2 ± 9.1 b | 71.8 ± 7.7 a | 68.3 ± 9.01 b | 69.2 ± 9.12 b | 71.8 ± 7.36 a |
ac | 25.1 ± 9.6b a | 24.1 ± 9.8 a | 21.1 ± 7.8 b | 25.1 ± 9.63 a | 24.1 ± 9.76 a | 21.2 ± 7.82 b |
bd | 0.095 ± 0.013 b | 0.096 ± 0.013 b | 0.101 ± 0.012 a | 0.095 ± 0.013 b | 0.096 ± 0.013 b | 0.101 ± 0.12 a |
dms | 9.7 ± 0.90 b | 9.8 ± 0.89 b | 10.5 ± 0.93 a | 9.8 ± 0.92 b | 9.8 ± 0.87 b | 10.5 ± 0.74 a |
pr | 179.3 ± 60.1 b | 179.7 ± 65.1 b | 201.7 ± 51.3 a | 179.3 ± 60.12 b | 179.7 ± 65.10 b | 201.7 ± 51.36 a |
European beech (Eb) | Pedunculate oak (Po) | |||||
po | 92.9 ± 0.66 a | 92.9 ± 0.58 a | 92.5 ± 0.68 b | 92.5 ± 1.03 | 92.5 ± 1.02 | 92.1 ± 1.1 |
wc | 66.3 ± 4.69 b | 65.4 ± 4.47 b | 68.9 ± 6.41 a | 69.6 ± 5.16 | 68.5 ± 6.0 | 70.8 ± 3.7 |
ac | 26.7 ± 4.93 a | 27.5 ± 4.76 a | 23.6 ± 6.71 b | 21.9 ± 5.27 | 21.7 ± 3.87 | 23.8 ± 6.75 |
bd | 0.102 ± 0.09 b | 0.102 ± 0.008 b | 0.108 ± 0.01 a | 0.107 ± 2.35 b | 0.108 ± 2.31 b | 0.110 ± 2.33 a |
dms | 22.1 ± 1.4 b | 21.9 ± 1.1 b | 23.2 ± 1.35 a | 21.8 ± 0.014 b | 21.7 ± 0.015 b | 23.0 ± 0.018 a |
pr | 178.5 ± 46.4 b | 175.3 ± 62.9 b | 201.6 ± 50.6 a | 177.8 ± 60.4 b | 175.6 ± 61.7 b | 196.1 ± 49.9 a |
Parameter | Variant | Variant | ||||
---|---|---|---|---|---|---|
V1 | V2 | V3 | V1 | V2 | V3 | |
Scots pine (Sp) | Norway spruce (Ns) | |||||
ls | 11.1 ± 1.85 a | 9.7 ± 1.48 b | 9.6 ± 1.57 b | 16.9 ± 2.94 a | 17.8 ± 3.22 b | 18.1 ± 2.97 b |
lr | 11.9 ± 2.03 | 11.6 ± 1.66 | 11.6 ± 1.80 | 11.0 ± 1.54 a | 11.0 ± 1.62 a | 10.5 ± 1.71 b |
rcd | 1.5 ± 0.35 b | 1.5 ± 0.29 b | 1.6 ± 0.30 a | 1.8 ± 0.25 b | 1.8 ± 0.30 b | 1.9 ± 0.30 a |
SQ | 71.9 ± 1.91 a | 63.3 ± 1.25 b | 58.9 ± 2.24 c | 84.7 ± 15.2 c | 88.4 ± 14.54 b | 92.2 ± 18.36 a |
dms | 0.196 ± 0.080 | 0.159 ± 0.048 | 0.165 ± 0.048 | 0.361 ± 0.114 | 0.403 ± 0.123 | 0.404 ± 0.130 |
dmr | 0.187 ± 0.0.74 b | 0.187 ± 0.059 b | 0.195 ± 0.058 a | 0.207 ± 0.062 b | 0.228 ± 0.078 b | 0.254 ± 0.099 a |
dmaa | 0.364 ± 0.130 | 0.335 ± 0.094 | 0.346 ± 0.087 | 0.451 ± 0.126 b | 0.480 ± 0.146 b | 0.491 ± 0.149 a |
dmw | 0.749 ± 0.259 | 0.681 ± 0.173 | 0.705 ± 0.169 | 1.020 ± 0.256 | 1.111 ± 0.273 | 1.149 ± 0.299 |
European beech (Eb) | Pedunculate oak (Po) | |||||
ls | 31.0 ± 8.8 a | 29.4 ± 7.83 b | 28.6 ± 9.18 c | 22.8 ± 8.68 | 23.1 ± 8.97 | 22.5 ± 8.60 |
lr | 14.9 ± 1.53 | 14.5 ± 1.54 | 14.3 ± 1.59 | 14.8 ± 1.43 | 14.8 ± 1.47 | 14.9 ± 1.43 |
rcd | 3.4 ± 0.88 b | 3.4 ± 0.79 b | 3.5 ± 0.87 a | 4.8 ± 1.31 c | 4.9 ± 1.37 b | 4.95 ± 1.26 a |
SQ | 87.2 ± 16.32 | 82.7 ± 15.87 | 79.5 ± 17.37 | 48.2 ± 15.05 | 47.2 ± 15.09 | 47.8 ± 16.10 |
dms | 0.979 ± 0.663 | 0.966 ± 0.559 | 0.908 ± 0.585 | 1.039 ± 0.669 | 1.080 ± 0.705 | 1.142 ± 0.692 |
dmr | 0. 528 ± 0.372 | 0.569 ± 0.334 | 0.559 ± 0.381 | 2.564 ± 1.338 c | 2.615 ± 1.339 b | 2.811 ± 1.423 a |
dmaa | 0. 485 ± 0.259 | 0.468 ± 0.247 | 0.461 ± 0.295 | 0.721 ± 0.431 b | 0.713 ± 0.419 b | 0.746 ± 0.443 a |
dmw | 1.549 ± 0.906 | 1.517 ± 0.783 | 1.448 ± 0.856 | 4.324 ± 2.351 | 4.408 ± 2.449 | 4.699 ± 2.511 |
Factor | Parameter Analyzed | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
po | wc | ac | bd | dms | pr | po | wc | ac | bd | dms | pr | |
Scots pine (Sp) | Norway spruce (Ns) | |||||||||||
Timing (T) | * | * | * | * | * | * | * | * | * | * | * | * |
(V1 vs. V2 and V3) | * | * | * | * | * | ns | * | ns | ns | * | * | * |
(V1 and V2 vs. V3) | * | * | * | * | * | * | * | * | * | * | * | * |
European beech (Eb) | Pedunculate oak (Po) | |||||||||||
Timing (T) | * | * | * | * | * | * | * | ns | ns | * | * | * |
(V1 vs. V2 and V3) | * | ns | ns | * | * | * | ns | ns | ns | ns | ns | ns |
(V1 and V2 vs. V3) | * | * | * | * | * | * | ns | ns | ns | * | ns | * |
Factor | Parameter Analyzed | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ls | lr | rcd | SQ | dms | dmr | dmaa | dmw | ls | lr | rcd | SQ | dms | dmr | dmaa | dmw | |
Scots pine (Sp) | Norway spruce (Ns) | |||||||||||||||
(V1 vs. V2 and V3) | * | ns | ns | * | * | ns | ns | ns | ns | * | ns | * | ns | * | ns | ns |
(V1 and V2 vs. V3) | * | ns | * | * | ns | ns | ns | ns | ns | * | ns | * | ns | * | ns | ns |
European beech (Eb) | Pedunculate oak (Po) | |||||||||||||||
(V1 vs. V2 and V3) | ns | * | ns | * | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
(V1 and V2 vs. V3) | * | * | ns | * | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | ns |
Feature | Parameter Analyzed | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
po | wc | ac | bd | dms | pr | po | wc | ac | bd | dms | pr | |
Scots pine (Sp) | Norway spruce (Ns) | |||||||||||
T | −0.655 | 0.711 | −0.725 | 0.694 | −0.353 | 0.517 | −0.117 | 0.406 | −0.408 | 0.112 | ns | 0.713 |
po | 1.000 | −0.688 | 0.735 | −0.996 | −0.822 | −0.418 | 1.000 | −0.204 | 0.303 | −0.899 | −0.712 | −0.107 |
wc | 1.000 | −0.998 | 0.705 | 0.423 | 0.455 | 1.000 | −0.995 | 0.202 | ns | 0.348 | ||
ac | 1.000 | −0.751 | −0.471 | −0.463 | 1.000 | −0.290 | −0.120 | −0.350 | ||||
bd | 1.000 | 0.812 | 0.430 | 1.000 | 0.838 | ns | ||||||
dms | 1.000 | 0.268 | 1.000 | ns | ||||||||
ls | −0.620 | 0.662 | −0.676 | 0.656 | 0.300 | 0.488 | ns | 0.385 | −0.382 | ns | ns | 0.639 |
lr | −0.322 | 0.462 | −0.462 | 0.363 | 0.134 | 0.258 | ns | 0.280 | −0.280 | ns | ns | 0.411 |
rdc | −0.547 | 0.603 | −0.614 | 0.582 | 0.237 | 0.432 | −0.116 | 0.367 | −0.369 | 0.103 | ns | 0.590 |
SQ | −0.392 | 0.363 | −0.375 | 0.412 | 0.261 | 0.271 | ns | 0.312 | −0.307 | ns | ns | 0.538 |
sms | −0.603 | 0.610 | −0.626 | 0.626 | 0.290 | 0.469 | ns | 0.372 | −0.370 | ns | ns | 0.646 |
dmr | −0.605 | 0.600 | −0.617 | 0.631 | 0.331 | 0.459 | −0.134 | 0.340 | −0.345 | ns | ns | 0.633 |
dmaa | −0.645 | 0.673 | −0.688 | 0.679 | 0.338 | 0.468 | ns | 0.375 | −0.373 | ns | ns | 0.636 |
dmw | −0.646 | 0.658 | −0.674 | 0.675 | 0.335 | 0.483 | ns | 0.377 | −0.377 | ns | ns | 0.658 |
European beech (Eb) | Pedunculate oak (Po) | |||||||||||
T | ns | ns | ns | ns | −0.145 | 0.475 | −0.534 | ns | ns | 0.587 | −0.290 | 0.514 |
po | 1.000 | −0.538 | 0.613 | −0.983 | −0.683 | ns | 1.000 | −0.203 | 0.391 | −0.994 | −0.836 | −0.218 |
wc | 1.000 | −0.982 | 0.525 | 0.178 | ns | 1.000 | −0.981 | 0.197 | ns | −0.143 | ||
ac | 1.000 | −0.594 | −0.235 | ns | 1.000 | −0.385 | ns | ns | ||||
bd | 1.000 | 0.685 | ns | 1.000 | 0.819 | 0.242 | ||||||
dms | 1.000 | 0.154 | 1.000 | ns | ||||||||
ls | ns | ns | ns | −0.004 | ns | 0.407 | −0.432 | ns | ns | 0.456 | 0.313 | 0.374 |
lr | −0.138 | ns | ns | −0.092 | ns | 0.160 | ns | ns | ns | ns | ns | ns |
rdc | ns | ns | ns | 0.040 | 0.148 | 0.397 | −0.434 | ns | ns | 0.451 | 0.256 | 0.375 |
SQ | ns | ns | ns | −0.047 | ns | 0.196 | ns | ns | ns | ns | ns | ns |
sms | ns | ns | ns | 0.111 | 0.205 | 0.369 | −0.503 | ns | ns | 0.539 | 0.306 | 0.407 |
dmr | ns | ns | ns | 0.132 | 0.223 | 0.349 | −0.544 | ns | ns | 0.581 | 0.325 | 0.457 |
dmaa | ns | ns | ns | 0.035 | ns | 0.205 | −0.269 | ns | ns | 0.304 | ns | 0.358 |
dmw | ns | ns | ns | 0.111 | 0.194 | 0.360 | −0.518 | ns | ns | 0.556 | 0.306 | 0.452 |
Parameter | Water Control | Increased Compaction | Water Control | Increased Compaction | ||||
---|---|---|---|---|---|---|---|---|
V1 | V2 and 3 | V1 and 2 | V3 | V1 | V2 and 3 | V1 and 2 | V3 | |
Scots pine (Sp) | Norway spruce (Ns) | |||||||
ls | 17.0 ± 2.4 a | 15.4 ±2.5 b | 16.1 ± 2.5 | 15.6 ± 2.6 | 27.2 ± 5.0 | 27.2 ± 6.1 | 27.6 ± 5.5 | 26.6 ± 6.3 |
lr | 12.7 ± 1.4 | 12.5 ± 1.4 | 12.7 ± 1.4 | 12.4 ± 1.4 | 12.8 ± 1.3 a | 12.2 ± 1.4 b | 12.6 ± 1.4 a | 12.1 ± 1.3b |
rcd | 2.1 ± 0.5 | 2.1 ± 0.5 | 2.1 ± 0.5 b | 2.2 ±0.4 a | 2.6 ± 0.3 | 2.6 ± 0.5 | 2.6 ± 0.4 | 2.6 ± 0.6 |
SQ | 87.0 ± 19.6 a | 74.2 ± 17.1 b | 81.2 ± 18.8 a | 73.1 ± 18.1 b | 104.0 ± 19.1 | 107.1 ± 23.3 | 106.3 ± 19.5 | 105.9 ± 25.6 |
dms | 0.424 ± 0.172a | 0.385 ± 0.113 b | 0.393 ± 0.146 | 0.410 ± 0.115 | 0.897 ± 0.309 | 0.905 ± 0.346 | 0.923 ± 0.318 | 0.871 ± 0.356 |
dmr | 0.403 ± 0.152a | 0.466 ± 0.155 b | 0.426 ± 0.141 b | 0.483 ± 0.180 a | 0.544 ± 0.177 | 0.588 ± 0.185 | 0.546 ± 0.164 b | 0.721 ± 0.203 a |
dmaa | 0.612 ± 0.212 | 0.628 ± 0.181 | 0.602 ± 0.196 b | 0.665 ± 0.179 a | 0.932 ± 0.267 | 0.946 ± 0.306 | 0.943 ± 0.283 | 0.940 ± 0.311 |
dmw | 1.438 ± 0.482 | 1.479 ± 0.383 | 1.421 ± 0.417 b | 1.558 ± 0.413 a | 2.373 ± 0.598 | 2.439 ±0.698 | 2.412 ± 0.632 | 2.431 ± 0.725 |
European beech (Eb) | Pedunculate oak (Po) | |||||||
ls | 36.3 ± 14.1 a | 32.6 ± 11.8 b | 35.1 ± 12.5 a | 31.3 ± 12.2 b | 29.3 ± 11.3 | 27.7 ± 11.3 | 28.0 ± 11.5 | 28.3 ± 11.1 |
lr | 13.6 ± 1.9 a | 12.7 ± 1.7 b | 13.2 ± 1.8 a | 12.6 ± 1.6 b | 14.4 ± 1.3 | 14.0 ± 1.5 | 14.4 ± 1.4 a | 13.7 ± 1.4 b |
rcd | 3.9 ± 1.7 | 3.5 ± 1.6 | 3.8 ± 1.6 a | 3.3 ± 1.5 b | 6.0 ± 2.0 | 5.4 ± 2.3 | 5.8 ± 2.1 a | 5.2 ± 2.3 b |
SQ | 96.1 ± 18.7 | 98.6 ± 25.8 | 96.4 ± 19.3 a | 100.1 ± 27.9 a | 50.5 ± 16.5 | 55.1 ± 22.5 | 49.0 ± 15.7 b | 61.3 ± 25.6 a |
dms | 1.672 ± 1.536 | 1.451 ± 1.158 | 1.650 ± 1.360 a | 1.313 ± 1.088 b | 2.020 ± 1.268 | 1.961 ± 1.453 | 1.978 ± 1.346 a | 1.977 ± 1.486 a |
dmr | 0.937 ± 0.834 | 0.938 ± 0.681 | 0.965 ± 0.753 | 0.904 ± 0.671 | 4.915 ± 2.320 | 4.581± 2.718 | 4.89 ± 2.438 a | 3.346 ± 2.833 b |
dmaa | 0.600 ± 0.420 | 0.696 ± 0.456 | 0.640 ± 0.455 | 0.716 ± 0.440 | 1.015 ± 1.636 | 0.857 ± 0.568 | 0.925 ± 0.620 | 0.871 ± 0.552 |
dmw | 2.555 ± 1.578 | 2.561 ± 1.139 | 2.610 ± 1.388 | 2.495 ± 1.056 | 7.507 ± 3.638 | 7.062 ± 4.149 | 7.368 ± 3.851 | 6.918 ± 4.238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kormanek, M.; Małek, S.; Banach, J.; Durło, G. Effect of Changing Substrate Density and Water Application Method on Substrate Physical Properties and Container-Grown Seedling Growth. Forests 2023, 14, 1490. https://doi.org/10.3390/f14071490
Kormanek M, Małek S, Banach J, Durło G. Effect of Changing Substrate Density and Water Application Method on Substrate Physical Properties and Container-Grown Seedling Growth. Forests. 2023; 14(7):1490. https://doi.org/10.3390/f14071490
Chicago/Turabian StyleKormanek, Mariusz, Stanisław Małek, Jacek Banach, and Grzegorz Durło. 2023. "Effect of Changing Substrate Density and Water Application Method on Substrate Physical Properties and Container-Grown Seedling Growth" Forests 14, no. 7: 1490. https://doi.org/10.3390/f14071490
APA StyleKormanek, M., Małek, S., Banach, J., & Durło, G. (2023). Effect of Changing Substrate Density and Water Application Method on Substrate Physical Properties and Container-Grown Seedling Growth. Forests, 14(7), 1490. https://doi.org/10.3390/f14071490