Wildfire Detection via a Dual-Channel CNN with Multi-Level Feature Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of the Experimental Dataset
2.2. Essential Basic Knowledge
2.2.1. Feature Fusion
2.2.2. Transfer Learning
2.2.3. Attention Mechanism
2.3. Establishment of an Improved Single-Channel Model
2.4. Establishment of a Novel Dual-Channel Network
3. Results
3.1. Simulation Analysis of the Improved Single-Channel Model
3.2. Simulation Analysis of the New Dual-Channel Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Xu, Q.; Yi, J.; Liu, J. Predictive Model of Spatial Scale of Forest Fire Driving Factors: A Case Study of Yunnan Province, China. Sci. Rep. 2022, 12, 19029. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S.; Bhatia, T.; Verma, A.K. GIS-Based Evolutionary Optimized Gradient Boosted Decision Trees for Forest Fire Susceptibility Mapping. Nat. Hazards 2018, 92, 1399–1418. [Google Scholar] [CrossRef]
- Boer, M.M.; Resco De Dios, V.; Bradstock, R.A. Unprecedented Burn Area of Australian Mega Forest Fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global Warming under Old and New Scenarios Using IPCC Climate Sensitivity Range Estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Edwards, R.B.; Naylor, R.L.; Higgins, M.M.; Falcon, W.P. Causes of Indonesia’s Forest Fires. World Dev. 2020, 127, 104717. [Google Scholar] [CrossRef]
- Purnomo, H.; Shantiko, B.; Sitorus, S.; Gunawan, H.; Achdiawan, R.; Kartodihardjo, H.; Dewayani, A.A. Fire Economy and Actor Network of Forest and Land Fires in Indonesia. For. Policy Econ. 2017, 78, 21–31. [Google Scholar] [CrossRef]
- Abram, N.J.; Henley, B.J.; Sen Gupta, A.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of Climate Change and Variability to Large and Extreme Forest Fires in Southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Collins, L.; Bradstock, R.A.; Clarke, H.; Clarke, M.F.; Nolan, R.H.; Penman, T.D. The 2019/2020 Mega-Fires Exposed Australian Ecosystems to an Unprecedented Extent of High-Severity Fire. Environ. Res. Lett. 2021, 16, 044029. [Google Scholar] [CrossRef]
- Lukić, T.; Marić, P.; Hrnjak, I.; Gavrilov, M.B.; Mladjan, D.; Zorn, M.; Komac, B.; Milošević, Z.; Marković, S.B.; Sakulski, D.; et al. Forest Fire Analysis and Classification Based on a Serbian Case Study. Acta Geogr. Slov. 2017, 57, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Novković, I.; Goran, B.; Markovic, G.; Lukic, D.; Dragicevic, S.; Milosevic, M.; Djurdjic, S.; Samardžić, I.; Lezaic, T.; Tadic, M. GIS-Based Forest Fire Susceptibility Zonation with IoT Sensor Network Support, Case Study-Nature Park Golija, Serbia. Sensors 2021, 21, 6520. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to Coexist with Wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, F.; Shu, L.; Wang, M. Distribution Characteristics and the Influence Factors of Forest Fires in China. For. Ecol. Manag. 2013, 310, 460–467. [Google Scholar] [CrossRef]
- Page, S.; Siegert, F.; Rieley, J.; Boehm, H.-D.; Jaya, A.; Limin, S. The Amount of Carbon Released from Peat and Forest Fires in Indonesia During 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef]
- Odion, D.C.; Hanson, C.T.; Arsenault, A.; Baker, W.L.; DellaSala, D.A.; Hutto, R.L.; Klenner, W.; Moritz, M.A.; Sherriff, R.L.; Veblen, T.T.; et al. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America. PLoS ONE 2014, 9, e87852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosavec, R.; Barčić, D.; Španjol, Ž.; Oršanić, M.; Dubravac, T.; Antonović, A. Flammability and Combustibility of Two Mediterranean Species in Relation to Forest Fires in Croatia. Forests 2022, 13, 1266. [Google Scholar] [CrossRef]
- Tošić, I.; Mladjan, D.; Gavrilov, M.; Zivanovic, S.; Radaković, M.; Putniković, S.; Petrović, P.; Krstic-Mistridzelovic, I.; Markovic, S. Potential Influence of Meteorological Variables on Forest Fire Risk in Serbia during the Period 2000–2017. Open Geosci. 2019, 11, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Zhao, Y.; Zheng, Z. Novel Recursive BiFPN Combining with Swin Transformer for Wildland Fire Smoke Detection. Forests 2022, 13, 2032. [Google Scholar] [CrossRef]
- Sivrikaya, F.; Küçük, Ö. Modeling Forest Fire Risk Based on GIS-Based Analytical Hierarchy Process and Statistical Analysis in Mediterranean Region. Ecol. Inform. 2022, 68, 101537. [Google Scholar] [CrossRef]
- Ciprián-Sánchez, J.F.; Ochoa-Ruiz, G.; Gonzalez-Mendoza, M.; Rossi, L. FIRe-GAN: A Novel Deep Learning-Based Infrared-Visible Fusion Method for Wildfire Imagery. Neural Comput. Appl. 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Ta, N.; Zhao, X.; Xiao, M.; Wei, H. A Real-Time Deep Learning Forest Fire Monitoring Algorithm Based on an Improved Pruned + KD Model. J. Real-Time Image Proc. 2021, 18, 2319–2329. [Google Scholar] [CrossRef]
- Lou, L.; Chen, F.; Cheng, P.; Huang, Y. Smoke Root Detection from Video Sequences Based on Multi-Feature Fusion. J. For. Res. 2022, 33, 1841–1856. [Google Scholar] [CrossRef]
- Chen, T.-H.; Wu, P.-H.; Chiou, Y.-C. An Early Fire-Detection Method Based on Image Processing. In Proceedings of the 2004 International Conference on Image Processing, 2004, ICIP ’04, Singapore, 24–27 October 2004; Volume 3, pp. 1707–1710. [Google Scholar]
- Çelik, T.; Demirel, H. Fire Detection in Video Sequences Using a Generic Color Model. Fire Saf. J. 2009, 44, 147–158. [Google Scholar] [CrossRef]
- Emmy Prema, C.; Vinsley, S.S.; Suresh, S. Multi Feature Analysis of Smoke in YUV Color Space for Early Forest Fire Detection. Fire Technol. 2016, 52, 1319–1342. [Google Scholar] [CrossRef]
- Di Lascio, R.; Greco, A.; Saggese, A.; Vento, M. Improving Fire Detection Reliability by a Combination of Videoanalytics. In Image Analysis and Recognition, Proceedings of the 11th International Conference, ICIAR 2014, Vilamoura, Portugal, 22–24 October 2014; Campilho, A., Kamel, M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 477–484. [Google Scholar]
- Foggia, P.; Saggese, A.; Vento, M. Real-Time Fire Detection for Video-Surveillance Applications Using a Combination of Experts Based on Color, Shape, and Motion. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1545–1556. [Google Scholar] [CrossRef]
- Borges, P.V.K.; Izquierdo, E. A Probabilistic Approach for Vision-Based Fire Detection in Videos. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 721–731. [Google Scholar] [CrossRef]
- Rudz, S.; Chetehouna, K.; Hafiane, A.; Sero-Guillaume, O.; Laurent, H. On the Evaluation of Segmentation Methods for Wildland Fire. In Advanced Concepts for Intelligent Vision Systems, Proceedings of the 11th International Conference, ACIVS 2009 Bordeaux, France, 28 September–2 October 2009; Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 12–23. [Google Scholar]
- Matlani, P.; Shrivastava, M. An Efficient Algorithm Proposed for Smoke Detection in Video Using Hybrid Feature Selection Techniques. Eng. Technol. Appl. Sci. Res. 2019, 9, 3939–3944. [Google Scholar] [CrossRef]
- Dimitropoulos, K.; Barmpoutis, P.; Grammalidis, N. Spatio-Temporal Flame Modeling and Dynamic Texture Analysis for Automatic Video-Based Fire Detection. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 339–351. [Google Scholar] [CrossRef]
- Töreyin, B.U.; Dedeoğlu, Y.; Güdükbay, U.; Çetin, A.E. Computer Vision Based Method for Real-Time Fire and Flame Detection. Pattern Recognit. Lett. 2006, 27, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Günay, O.; Taşdemir, K.; Uğur Töreyin, B.; Çetin, A.E. Fire Detection in Video Using LMS Based Active Learning. Fire Technol. 2010, 46, 551–577. [Google Scholar] [CrossRef]
- Wang, D.; Cui, X.; Park, E.; Jin, C.; Kim, H. Adaptive Flame Detection Using Randomness Testing and Robust Features. Fire Saf. J. 2013, 55, 116–125. [Google Scholar] [CrossRef]
- Guan, Z.; Miao, X.; Mu, Y.; Sun, Q.; Ye, Q.; Gao, D. Forest Fire Segmentation from Aerial Imagery Data Using an Improved Instance Segmentation Model. Remote Sens. 2022, 14, 3159. [Google Scholar] [CrossRef]
- Zhou, X.; Mahalingam, S.; Weise, D. Modeling of Marginal Burning State of Fire Spread in Live Chaparral Shrub Fuel Bed. Combust. Flame 2005, 143, 183–198. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, S.; Luo, X.; Lei, J.; Chen, H.; Xie, X.; Zhang, L.; Tu, R. Interaction of Two Parallel Rectangular Fires. Proc. Combust. Inst. 2019, 37, 3833–3841. [Google Scholar] [CrossRef]
- Çolak, E.; Sunar, F. Evaluation of Forest Fire Risk in the Mediterranean Turkish Forests: A Case Study of Menderes Region, Izmir. Int. J. Disaster Risk Reduct. 2020, 45, 101479. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W. Image Fire Detection Algorithms Based on Convolutional Neural Networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Wang, Z.; Jiang, Y. YOLOv7-RAR for Urban Vehicle Detection. Sensors 2023, 23, 1801. [Google Scholar] [CrossRef]
- Sun, X.; Sun, L.; Huang, Y. Forest Fire Smoke Recognition Based on Convolutional Neural Network. J. For. Res. 2021, 32, 1921–1927. [Google Scholar] [CrossRef]
- Li, T.; Zhu, H.; Hu, C.; Zhang, J. An Attention-Based Prototypical Network for Forest Fire Smoke Few-Shot Detection. J. For. Res. 2022, 33, 1493–1504. [Google Scholar] [CrossRef]
- Kim, B.; Lee, J. A Video-Based Fire Detection Using Deep Learning Models. Appl. Sci. 2019, 9, 2862. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Shim, J. False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera Using Spatial and Temporal Features Based on Deep Learning. Electronics 2019, 8, 1167. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Z.; Zhang, H.; Guo, X. A Novel Fire Detection Approach Based on CNN-SVM Using Tensorflow. In Intelligent Computing Methodologies, Proceedings of the 13th International Conference, ICIC 2017, Liverpool, UK, 7–10 August 2017; Huang, D.-S., Hussain, A., Han, K., Gromiha, M.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 682–693. [Google Scholar]
- Frizzi, S.; Kaabi, R.; Bouchouicha, M.; Ginoux, J.-M.; Moreau, E.; Fnaiech, F. Convolutional Neural Network for Video Fire and Smoke Detection. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 877–882. [Google Scholar]
- Liu, Z.; Zhang, K.; Wang, C.; Huang, S. Research on the Identification Method for the Forest Fire Based on Deep Learning. Optik 2020, 223, 165491. [Google Scholar] [CrossRef]
- Guo, Y.-Q.; Chen, G.; Wang, Y.-N.; Zha, X.-M.; Xu, Z.-D. Wildfire Identification Based on an Improved Two-Channel Convolutional Neural Network. Forests 2022, 13, 1302. [Google Scholar] [CrossRef]
- Qian, J.; Lin, H. A Forest Fire Identification System Based on Weighted Fusion Algorithm. Forests 2022, 13, 1301. [Google Scholar] [CrossRef]
- Xie, C.; Tao, H. Generating Realistic Smoke Images with Controllable Smoke Components. IEEE Access 2020, 8, 201418–201427. [Google Scholar] [CrossRef]
- Ding, Z.; Zhao, Y.; Li, A.; Zheng, Z. Spatial–Temporal Attention Two-Stream Convolution Neural Network for Smoke Region Detection. Fire 2021, 4, 66. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y. Tender Leaf Identification for Early-Spring Green Tea Based on Semi-Supervised Learning and Image Processing. Agronomy 2022, 12, 1958. [Google Scholar] [CrossRef]
- Wu, X.; Lu, X.; Leung, H. An Adaptive Threshold Deep Learning Method for Fire and Smoke Detection. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 1954–1959. [Google Scholar]
- Wang, Y.; Dang, L.; Ren, J. Forest Fire Image Recognition Based on Convolutional Neural Network. J. Algorithms Comput. Technol. 2019, 13, 1748302619887689. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Zhao, Y.; Li, A.; Yu, Q. Wild Terrestrial Animal Re-Identification Based on an Improved Locally Aware Transformer with a Cross-Attention Mechanism. Animals 2022, 12, 3503. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, F.; Lou, L.; Cheng, P.; Huang, Y. Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution Neural Network. Remote Sens. 2022, 14, 536. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, J.; Li, X.; Zhang, J. Saliency Detection and Deep Learning-Based Wildfire Identification in UAV Imagery. Sensors 2018, 18, 712. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Jiang, Y.; Xu, Y. Design of Bird Sound Recognition Model Based on Lightweight. IEEE Access 2022, 10, 85189–85198. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J.; Zhang, D.; Lu, J. Feature Fusion: Parallel Strategy vs. Serial Strategy. Pattern Recognit. 2003, 36, 1369–1381. [Google Scholar] [CrossRef]
- Liu, J.; Fan, X.; Jiang, J.; Liu, R.; Luo, Z. Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 105–119. [Google Scholar] [CrossRef]
- Chaib, S.; Liu, H.; Gu, Y.; Yao, H. Deep Feature Fusion for VHR Remote Sensing Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4775–4784. [Google Scholar] [CrossRef]
- Zeng, N.; Wu, P.; Wang, Z.; Li, H.; Liu, W.; Liu, X. A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach with Application to Defect Detection. IEEE Trans. Instrum. Meas. 2022, 71, 3507014. [Google Scholar] [CrossRef]
- Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer Learning Using Computational Intelligence: A Survey. Knowl.-Based Syst. 2015, 80, 14–23. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Li, J.; Huang, R.; He, G.; Liao, Y.; Wang, Z.; Li, W. A Two-Stage Transfer Adversarial Network for Intelligent Fault Diagnosis of Rotating Machinery with Multiple New Faults. IEEE-ASME Trans. Mechatron. 2021, 26, 1591–1601. [Google Scholar] [CrossRef]
- Kaya, A.; Keceli, A.S.; Catal, C.; Yalic, H.Y.; Temucin, H.; Tekinerdogan, B. Analysis of Transfer Learning for Deep Neural Network Based Plant Classification Models. Comput. Electron. Agric. 2019, 158, 20–29. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, S.-H.; Fernandes, S.L.; Zhu, Z.; Zhang, Y.-D. AVNC: Attention-Based VGG-Style Network for COVID-19 Diagnosis by CBAM. IEEE Sens. J. 2022, 22, 17431–17438. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, L.; Xiong, B.; Kuang, G. Attention Receptive Pyramid Network for Ship Detection in SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2738–2756. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Badawi, D.; Cetin, A.E. Computationally Efficient Wildfire Detection Method Using a Deep Convolutional Network Pruned via Fourier Analysis. Sensors 2020, 20, 2891. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Verma, A.; Alex, J.S.R. Disease and Pest Infection Detection in Coconut Tree through Deep Learning Techniques. Comput. Electron. Agric. 2021, 182, 105986. [Google Scholar] [CrossRef]
- Arora, V.; Ng, E.Y.-K.; Leekha, R.S.; Darshan, M.; Singh, A. Transfer Learning-Based Approach for Detecting COVID-19 Ailment in Lung CT Scan. Comput. Biol. Med. 2021, 135, 104575. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yin, M.; Lang, C.; Li, Z.; Feng, S.; Wang, T. Recurrent Convolutional Network for Video-Based Smoke Detection. Multimed. Tools Appl. 2019, 78, 237–256. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, H.; Wang, P.; Ling, X. ATT Squeeze U-Net: A Lightweight Network for Forest Fire Detection and Recognition. IEEE Access 2021, 9, 10858–10870. [Google Scholar] [CrossRef]
- He, L.; Gong, X.; Zhang, S.; Wang, L.; Li, F. Efficient Attention Based Deep Fusion CNN for Smoke Detection in Fog Environment. Neurocomputing 2021, 434, 224–238. [Google Scholar] [CrossRef]
Module | Type | Input Size | Kernel Size | Kernel Number | Output Size | Stride | Padding |
---|---|---|---|---|---|---|---|
Channel | MaxPool | H × W × C | H × W | None | 1 × 1 × C | 1 | None |
AvgPool | H × W × C | H × W | None | 1 × 1 × C | 1 | None | |
Fc1 | C | None | None | C/16 | None | None | |
Fc2 | C/16 | None | None | C | None | None | |
Spatial | Conv1 | H × W × 2 | 7 × 7 | 1 | H × W × 1 | 1 | 3 |
Pool1 | 56 × 56 × 64 | 3 × 3 | None | 27 × 27 × 64 | 2 | 0 |
Type | Input Size | Kernel Size | Kernel Number | Output Size | Stride | Padding |
---|---|---|---|---|---|---|
Conv1 | 227 × 227 × 3 | 11 × 11 | 64 | 56 × 56 × 64 | 4 | 2 |
Pool1 | 56 × 56 × 64 | 3 × 3 | none | 27 × 27 × 64 | 2 | 0 |
Conv2 | 27 × 27 × 64 | 5 × 5 | 192 | 27 × 27 × 192 | 1 | 2 |
Pool2 | 27 × 27 × 192 | 3 × 3 | none | 13 × 13 × 192 | 2 | 0 |
Conv3 | 13 × 13 × 192 | 3 × 3 | 384 | 13 × 13 × 384 | 1 | 1 |
Conv4 | 13 × 13 × 384 | 3 × 3 | 256 | 13 × 13 × 256 | 1 | 1 |
Conv5 | 13 × 13 × 256 | 3 × 3 | 256 | 13 × 13 × 256 | 1 | 1 |
Conv6 | 13 × 13 × 192 | 1 × 1 | 384 | 13 × 13 × 384 | 1 | 0 |
Conv7 | 13 × 13 × 384 | 1 × 1 | 256 | 13 × 13 × 256 | 1 | 0 |
Conv8 | 336 × 336 × 3 | 11 × 11 | 64 | 83 × 83 × 64 | 4 | 2 |
Pool4 | 83 × 83 × 64 | 3 × 3 | none | 41 × 41 × 64 | 2 | 0 |
Conv9 | 41 × 41 × 64 | 5 × 5 | 192 | 41 × 41 × 192 | 1 | 2 |
Pool5 | 41 × 41 × 192 | 3 × 3 | none | 20 × 20 × 192 | 2 | 0 |
Conv10 | 20 × 20 × 192 | 3 × 3 | 384 | 20 × 20 × 384 | 1 | 1 |
Conv11 | 20 × 20 × 384 | 3 × 3 | 256 | 20 × 20 × 256 | 1 | 1 |
Conv12 | 20 × 20 × 256 | 3 × 3 | 256 | 20 × 20 × 256 | 1 | 1 |
Conv13 | 20 × 20 × 192 | 1 × 1 | 384 | 20 × 20 × 384 | 1 | 0 |
Conv14 | 20 × 20 × 384 | 1 × 1 | 256 | 20 × 20 × 256 | 1 | 0 |
Conv15 | 20 × 20 × 256 | 1 × 1 | 256 | 13 × 13 × 256 | 2 | 3 |
Pool3 | 13 × 13 × 256 | 3 × 3 | none | 6 × 6 × 256 | 2 | 0 |
Fc6 | 9216 | none | none | 4096 | none | none |
Fc7 | 4096 | none | none | 4096 | none | none |
Fc8 | 4096 | none | none | 2 | none | none |
The Relevant Literature | Models | Model Accuracy (%) |
---|---|---|
This paper | Novel dual-channel CNN | 98.90 |
[73] | VGG16 | 95.88 |
[74] | Resnet50 | 97.78 |
The Literature | TP | FN | FP | TN | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|
This paper | 1971 | 29 | 15 | 1985 | 98.90 | 99.24 | 98.55 |
[47] | 1968 | 32 | 29 | 1971 | 98.48 | 98.55 | 98.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Guo, Y.; Chen, G.; Xu, Z. Wildfire Detection via a Dual-Channel CNN with Multi-Level Feature Fusion. Forests 2023, 14, 1499. https://doi.org/10.3390/f14071499
Zhang Z, Guo Y, Chen G, Xu Z. Wildfire Detection via a Dual-Channel CNN with Multi-Level Feature Fusion. Forests. 2023; 14(7):1499. https://doi.org/10.3390/f14071499
Chicago/Turabian StyleZhang, Zhiwei, Yingqing Guo, Gang Chen, and Zhaodong Xu. 2023. "Wildfire Detection via a Dual-Channel CNN with Multi-Level Feature Fusion" Forests 14, no. 7: 1499. https://doi.org/10.3390/f14071499
APA StyleZhang, Z., Guo, Y., Chen, G., & Xu, Z. (2023). Wildfire Detection via a Dual-Channel CNN with Multi-Level Feature Fusion. Forests, 14(7), 1499. https://doi.org/10.3390/f14071499