A Forest Fire Susceptibility Modeling Approach Based on Integration Machine Learning Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Fire Point Data
2.2.2. Terrain Factors
2.2.3. Vegetation Factors
2.2.4. Human Activity Factors
2.2.5. Meteorological Factors
2.3. Research Method
2.3.1. Dataset Configuration
2.3.2. PSO-RF Model
3. Results
3.1. Correlation Analysis of Variables
3.2. Model Performance Evaluation
3.3. Prediction Results of Fire Risk Map Level
3.4. Importance Evaluation of Influencing Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perry, D.A.; Oren, R.; Hart, S.C. Forest Ecosystems; JHU Press: Baltimore, MD, USA, 2008. [Google Scholar]
- Zong, X.; Tian, X.; Liu, C. Method and Application of Forest Fire Risk Assessment on Forest Stand Scale. For. Res. 2021, 34, 69. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Zhang, L.; Fan, X.; Ye, Q.; Fu, L. Individual tree segmentation and tree-counting using supervised clustering. Comput. Electron. Agric. 2023, 205, 107629. [Google Scholar] [CrossRef]
- Stephens, S.L.; Ruth, L.W. Federal forest-fire policy in the United States. Ecol. Appl. 2005, 15, 532–542. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.H.; Fan, W.C.; Wang, Q.A. Experimental study on catastrophe characteristics of forest fire spread. Prog. Nat. Sci. 2000, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Lei, C.; Pan, Y. Forest fire monitoring based on satellite remote sensing technology. Geomat. Technol. Equip. 2022, 24, 15–19. [Google Scholar] [CrossRef]
- Guan, Z.; Miao, X.; Mu, Y.; Sun, Q.; Ye, Q.; Gao, D. Forest Fire Segmentation from Aerial Imagery Data Using an Improved Instance Segmentation Model. Remote Sens. 2022, 14, 3159. [Google Scholar] [CrossRef]
- Šerić, L.; Stipaničev, D.; Krstinić, D. ML/AI in intelligent forest fire observer network. In Proceedings of the MMS 2018: 3rd EAI International Conference on Management of Manufacturing Systems, European Alliance for Innovation, Dubrovnik, Croatia, 6–8 November 2018; p. 126. [Google Scholar]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef]
- Lozano, F.J.; Suárez-Seoane, S.; Kelly, M.; Luis, E. A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region. Remote Sens. Environ. 2008, 112, 708–719. [Google Scholar] [CrossRef]
- Chou, Y.H.; Minnich, R.A.; Chase, R.A. Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environ. Manag. 1993, 17, 129–140. [Google Scholar] [CrossRef]
- Vilar, L.; Woolford, D.G.; Martell, D.L.; Martín, M.P. A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain. Int. J. Wildland Fire 2010, 19, 325–337. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, H.; Zhang, M.; Li, C.; Chen, G. Research on generalized linear models applied to forest fire forecast. J. For. Eng. 2017, 2, 135–142. [Google Scholar]
- Zhou, Z.H. Machine Learning; Springer Nature: New York, NY, USA, 2021. [Google Scholar]
- Sousa, M.J.; Moutinho, A.; Almeida, M. Classification of potential fire outbreaks: A fuzzy modeling approach based on thermal images. Expert Syst. Appl. 2019, 129, 216–232. [Google Scholar] [CrossRef]
- Haksar, R.N.; Schwager, M. Distributed deep reinforcement learning for fighting forest fires with a network of aerial robots. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Madrid, Spain, 1–5 October 2018; pp. 1067–1074. [Google Scholar]
- Zhu, Z.; Zhao, P.; Wang, Q. Research Progress in Forest Fire Occurrence Prediction Models. World For. Res. 2022, 35, 6. [Google Scholar]
- Zhang, Z.; Yang, S.; Zhu, H. Applicability of mixed effect model in the prediction of forest fire. Chin. J. Appl. Ecol. 2022, 33, 1547–1554. [Google Scholar]
- Xiao, F. Forest fire disaster area prediction based on genetic algorithm and support vector machine. Adv. Mater. Res. 2012, 446, 3037–3041. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Mohajane, M.; Costache, R.; Karimi, F.; Bao Pham, Q.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Truong, X.L.; Mitamura, M.; Kono, Y.; Raghavan, V.; Yonezawa, G.; Truong, X.Q.; Do, T.H.; Tien Bui, D.; Lee, S. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Appl. Sci. 2018, 8, 1046. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Zhang, R.; Zhan, J.; Li, S.; Shama, A.; Zhan, R.; Wang, T.; Lv, J.; Bao, X.; Wu, R. Wildfire risk assessment in Liangshan Prefecture, China based on an integration machine learning algorithm. Remote Sens. 2022, 14, 4592. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Proceedings of the 26th Conference on Neural Information Processing Systems: Advances in Neural Information Processing Systems, Stateline, NV, USA, 3–8 December 2012; Volume 25. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar] [CrossRef]
- Elyan, E.; Gaber, M.M. A genetic algorithm approach to optimising random forests applied to class engineered data. Inf. Sci. 2017, 384, 220–234. [Google Scholar] [CrossRef]
- Abid, F. A survey of machine learning algorithms based forest fires prediction and detection systems. Fire Technol. 2021, 57, 559–590. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X. Protection and Development Strategy of Ornamental Plant Resources in Jiushan National Forest Park. J. Anhui Sci. Technol. Univ. 2010, 19, 24. [Google Scholar] [CrossRef]
- Bjånes, A.; De La Fuente, R.; Mena, P. A deep learning ensemble model for wildfire susceptibility mapping. Ecol. Inform. 2021, 65, 101397. [Google Scholar] [CrossRef]
- Fang, L.; Yang, J.; Zu, J.; Li, G.; Zhang, J. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 2015, 356, 2–12. [Google Scholar] [CrossRef]
- De Almeida Pereira, G.H.; Fusioka, A.M.; Nassu, B.T.; Minetto, R. Active fire detection in Landsat-8 imagery: A large-scale dataset and a deep-learning study. ISPRS J. Photogramm. Remote Sens. 2021, 178, 171–186. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Fraser, R.H.; Van der Sluijs, J.; Hall, R.J. Calibrating satellite-based indices of burn severity from UAV-derived metrics of a burned boreal forest in NWT, Canada. Remote Sens. 2017, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Moskal, L.M.; Batchelor, J.L.; Thau, D.; Hudak, A.T. Relationships between Satellite-Based Spectral Burned Ratios and Terrestrial Laser Scanning. Forests 2019, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Popescu, S.; Malambo, L. Feasibility of burned area mapping based on ICESAT- 2 photon counting data. Remote Sens. 2019, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Cheret, V.; Denux, J.P. Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GISci. Remote Sens. 2011, 48, 171–194. [Google Scholar] [CrossRef]
- Gao, D.; Yin, X.; Liu, Y. Prediction of forest fire using wireless sensor network. J. Trop. For. Sci. 2015, 27, 342–350. [Google Scholar]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Janiec, P.; Gadal, S. A comparison of two machine learning classification methods for remote sensing predictive modeling of the forest fire in the North-Eastern Siberia. Remote Sens. 2020, 12, 4157. [Google Scholar] [CrossRef]
- Ngoc Thach, N.; Bao-Toan Ngo, D.; Xuan-Canh, P.; Hong-Thi, N.; Hang Thi, B.; Nhat-Duc, H.; Dieu, T.B. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecol. Inform. 2018, 46, 74–85. [Google Scholar] [CrossRef]
- Tuyen, T.T.; Jaafari, A.; Yen, H.P.H.; Nguyen-Thoi, T.; Phong, T.V.; Nguyen, H.D.; Van Le, H.; Phuong, T.T.M.; Nguyen, S.H.; Prakash, I.; et al. Mapping forest fire susceptibility using spatially explicit ensemble models based on the locally weighted learning algorithm. Ecol. Inform. 2021, 63, 101292. [Google Scholar] [CrossRef]
- Bai, S.; Kuang, M. Design and Study of Forest Fire Forecasting Based on PSO and GA-BP Neural Network. J. Syst. Simul. 2018, 30, 1739. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, F.; Lin, H.; Xu, S. A Forest Fire Susceptibility Modeling Approach Based on Light Gradient Boosting Machine Algorithm. Remote Sens. 2022, 14, 4362. [Google Scholar] [CrossRef]
- Liang, H.; Lin, Y.; Yang, G.; Su, Z.; Wang, W.; Guo, F. Application of random forest algorithm on the forest fire prediction in Tahe area based on meteorological factors. Sci. Silvae Sin. 2016, 52, 89–98. [Google Scholar]
- Krus, P.; Andersson, J. Optimizing optimization for design optimization. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA, 2–6 September 2003; Volume 37009, pp. 951–960. [Google Scholar]
- Gao, C.; Lin, H.L.; Hu, H.Q.; Song, H. A review of models of forest fire occurrence prediction in China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2020, 31, 3227–3240. [Google Scholar]
- Iban, M.C.; Sekertekin, A. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey. Ecol. Inform. 2022, 69, 101647. [Google Scholar] [CrossRef]
- Satir, O.; Berberoglu, S.; Donmez, C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards Risk 2016, 7, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Schutze, H.; Manning, C.D.; Raghavan, P. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Sharples, J.J.; McRae, R.H.; Weber, R.; Gill, A.M. A simple index for assessing fire danger rating. Environ. Model. Softw. 2009, 24, 764–774. [Google Scholar] [CrossRef]
- Akıncı, H.A.; Akıncı, H. Machine learning based forest fire susceptibility assessment of Manavgat district (Antalya), Turkey. Earth Sci. Inform. 2023, 16, 397–414. [Google Scholar] [CrossRef]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.X.; Xu, C. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Sci. Total Environ. 2018, 630, 1044–1056. [Google Scholar] [CrossRef]
- Elia, M.; Giannico, V.; Spano, G.; Lafortezza, R.; Sanesi, G. Likelihood and frequency of recurrent fire ignitions in highly urbanised Mediterranean landscapes. Int. J. Wildland Fire 2020, 29, 120–131. [Google Scholar] [CrossRef]
- Jaafari, A.; Gholami, D.M.; Zenner, E.K. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol. Inform. 2017, 39, 32–44. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Aretano, R.; Semeraro, T. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol. Indic. 2016, 64, 72–84. [Google Scholar] [CrossRef]
- Kundert, K. Introduction to RF simulation and its application. IEEE J. Solid-State Circuits 1999, 34, 1298–1319. [Google Scholar] [CrossRef]
Data Type | Factors | Data Range | Data Source | |
---|---|---|---|---|
Min | Max | |||
Terrain factor | Slope | 0 | 39.5 | https://www.gscloud.cn, accessed on 10 July 2021 |
Aspect | 0 | 360 | ||
TWI | 3.29 | 24.6 | ||
Altitude | 51 | 339 | ||
Human activity | DTR | 400 | 1500 | https://www.webmap.cn, accessed on 10 July 2021 |
DTP | 500 | 5500 | ||
Vegetation | NDVI | −0.64 | 0.58 | https://earthexplorer.usgs.gov, accessed on 10 July 2021 |
Meteorological | MMT | 12.57 | 29.96 |
Relevant Factors | VIF | TOL |
---|---|---|
Slope | 4.1 | 0.24 |
Aspect | 3.1 | 0.32 |
TWI | 1.8 | 0.56 |
Altitude | 2.7 | 0.37 |
NDVI | 1.1 | 0.91 |
DTR | 2.4 | 0.42 |
DTP | 3.6 | 0.28 |
MMT | 3.5 | 0.29 |
Relevant Factors | Correlation Coefficient | p-Value |
---|---|---|
Slope | 0.26 | p < 0.01 |
Aspect | 0.04 | p < 0.01 |
TWI | 0.12 | p < 0.01 |
Altitude | 0.3 | p < 0.01 |
NDVI | 0.36 | p < 0.01 |
DTR | 0.39 | p < 0.01 |
DTP | 0.18 | p < 0.01 |
MMT | 0.28 | p < 0.01 |
Model | Sample Type | TP | TN | FP | FN | AUC | Precision | Recall | F Value |
---|---|---|---|---|---|---|---|---|---|
LR | Training set | 210 | 222 | 51 | 70 | 0.851 | 0.805 | 0.75 | 0.776 |
Validation set | 93 | 91 | 32 | 22 | 0.846 | 0.744 | 0.809 | 0.775 | |
SVM | Training set | 241 | 248 | 31 | 34 | 0.933 | 0.886 | 0.876 | 0.881 |
Validation set | 104 | 87 | 30 | 17 | 0.876 | 0.776 | 0.860 | 0.816 | |
RF | Training set | 275 | 259 | 11 | 9 | 0.999 | 0.962 | 0.968 | 0.965 |
Validation set | 94 | 100 | 26 | 18 | 0.877 | 0.783 | 0.839 | 0.810 | |
PSO-RF | Training set | 262 | 271 | 7 | 13 | 0.999 | 0.974 | 0.953 | 0.963 |
Validation set | 104 | 98 | 20 | 16 | 0.908 | 0.839 | 0.867 | 0.852 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Zhang, F. A Forest Fire Susceptibility Modeling Approach Based on Integration Machine Learning Algorithm. Forests 2023, 14, 1506. https://doi.org/10.3390/f14071506
Shi C, Zhang F. A Forest Fire Susceptibility Modeling Approach Based on Integration Machine Learning Algorithm. Forests. 2023; 14(7):1506. https://doi.org/10.3390/f14071506
Chicago/Turabian StyleShi, Changjiang, and Fuquan Zhang. 2023. "A Forest Fire Susceptibility Modeling Approach Based on Integration Machine Learning Algorithm" Forests 14, no. 7: 1506. https://doi.org/10.3390/f14071506