Hyperspectral Analysis and Regression Modeling of SPAD Measurements in Leaves of Three Mangrove Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.2.1. Hyperspectral Data Acquisition
2.2.2. SPAD Value Measurement
2.3. Data Pre-Processing
2.4. Model Building and Validation
3. Results
3.1. SPAD Statistical Analysis
3.2. Comparison of Spectral Curves
3.3. Successive Projection Algorithm for Filtering Feature Bands
3.4. Model Building
3.4.1. SPAD Regression Model of B. sexangula
3.4.2. SPAD Regression Model of C. tagal
3.4.3. SPAD Regression Model of R. apiculata
3.5. Evaluation of Model Validation Accuracy
4. Discussion
5. Conclusions
- The leaves of B. sexangula had lower SPAD measurements than those of C. tagal and R. apiculata, and plants with higher leaf SPAD measurements had less variation in SPAD measurements.
- The accuracy and stability of the model established using first-order differentially transformed spectral data were slightly higher than those established using the original spectral data. First-order differential transformation of the original spectral data can improve the model accuracy.
- The PLS model was found to be the most suitable model for the SPAD inversion of B. sexangula leaves, whereas the most suitable model for SPAD inversion of C. tagal and R. apiculata leaves was found to be the XGBoost model.
- The XGBoost model had better adaptability to the leaf SPAD inversion of different species, and its stability is the best.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, P.H.; Huang, W.D.; Zhang, Z.Y.; Cheng, J.X.; Xiao, Y.L. The carbon sink of mangrove ecological restoration between 1988–2020 in Qinglan Bay, Hainan Island, China. Forests 2022, 13, 1547. [Google Scholar] [CrossRef]
- Dali, G.L.A.; Aheto, D.W.; Blay, J. Mangrove resource utilization and impacts in the Pra and Kakum estuaries of Ghana. Reg. Stud. Mar. Sci. 2023, 63, 103035. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Pennings, S.C.; Glazner, R.M.; Hughes, Z.J.; Kominoski, J.S.; Armitage, A.R. Effects of mangrove cover on coastal erosion during a hurricane in Texas, USA. Ecology 2021, 102, e03309. [Google Scholar] [CrossRef]
- Cinco-Castro, S.; Herrera-Silveira, J. Vulnerability of mangrove ecosystems to climate change effects: The case of the Yucatan Peninsula. Ocean. Coast. Manag. 2020, 192, 105196. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.Y.; Tan, G.M.; Xia, J.Q.; Shu, C.W.; Chen, P.; Wu, M.W.; Wu, X.M. Dynamics of mangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017. J. Hydrol. 2020, 591, 125271. [Google Scholar] [CrossRef]
- Baloloy, A.B.; Blanco, A.C.; Ana, R.R.C.S.; Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 2020, 166, 95–117. [Google Scholar] [CrossRef]
- Li, W.; Cui, L.J.; Zhang, M.Y.; Wang, Y.F.; Zhang, Y.Q.; Lei, Y.R.; Zhao, X.S. Effect of mangrove restoration on crab burrow density in Luoyangjiang Estuary, China. For. Ecosyst. 2015, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rodríguez, J.A.; Mancera-Pineda, J.E.; Tavera, H. Mangrove restoration in Colombia: Trends and lessons learned. For. Ecol. Manag. 2021, 496, 119414. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amirruddin, A.D.; Muharam, F.M.; Ismail, M.H.; Ismail, M.F.; Tan, N.P.; Karam, D.S. Hyperspectral remote sensing for assessment of chlorophyll sufficiency levels in mature oil palm (Elaeis guineensis) based on frond numbers: Analysis of decision tree and random forest. Comput. Electron. Agric. 2020, 169, 105221. [Google Scholar]
- Wu, Q.; Zhang, Y.P.; Zhao, Z.W.; Xie, M.; Hou, D.Y. Estimation of relative chlorophyll content in spring wheat based on multi-temporal UAV remote sensing. Agronomy 2023, 13, 211. [Google Scholar] [CrossRef]
- Wang, Y.W.; Tan, S.Y.; Jia, X.N.; Qi, L.; Liu, S.S.; Lu, H.H.; Wang, C.G.; Liu, W.W.; Zhao, X.; He, L.X.; et al. Estimating relative chlorophyll content in rice leaves using unmanned aerial vehicle multi-spectral images and spectral–textural analysis. Agronomy 2023, 13, 1541. [Google Scholar] [CrossRef]
- Brown, L.A.; Williams, O.; Dash, J. Calibration and characterisation of four chlorophyll meters and transmittance spectroscopy for non-destructive estimation of forest leaf chlorophyll concentration. Agric. For. Meteorol. 2022, 323, 109059. [Google Scholar] [CrossRef]
- Connelly, X.M. The Use of a chlorophyll meter (SPAD-502) for field determinations of red mangrove (Rhizophora mangle L.) leaf chlorophyll amount. NASA Univ. Res. Cent. Technol. Adv. Educ. Aeronaut. Space Auton. Earth Environ. 1997, 1, 187–190. [Google Scholar]
- Neres, J.; Dodonov, P.; Mielke, M.S.; Strenzel, G.M.R. Relationships between portable chlorophyll meter estimates for the red mangrove tree (Rhizophora mangle L.). Ocean. Coast. Res. 2020, 68, e20308. [Google Scholar] [CrossRef]
- Liu, W.W.; Li, M.J.; Zhang, M.Y.; Wang, D.A.; Guo, Z.L.; Long, S.Y.; Yang, S.; Wang, H.N.; Li, W.; Hu, Y.K.; et al. Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance. Ecosyst. Health Sustain. 2020, 6, 1726211. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.Y.; Dou, Z.G.; Cui, L.J.; Liu, Z.J.; Gao, C.J.; Wang, J.J.; Li, J.; Lei, Y.R.; Zhao, X.S.; Zhai, X.J.; et al. Hyperspectral prediction of mangrove leaf stoichiometries in different restoration areas based on machine learning models. J. Appl. Remote Sens. 2022, 16, 034525. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Zhang, L.; Yan, M.; Qi, J.G.; Fu, T.M.; Fan, S.X.; Chen, B.W. High-resolution mangrove forests classification with machine learning using worldview and UAV hyperspectral data. Remote Sens. 2021, 13, 1529. [Google Scholar] [CrossRef]
- Zhao, C.P.; Qin, C.Z. Identifying large-area mangrove distribution based on remote sensing: A binary classification approach considering subclasses of non-mangroves. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102750. [Google Scholar]
- Yang, G.; Huang, K.; Sun, W.W.; Meng, X.C.; Mao, D.H.; Ge, Y. Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove. ISPRS J. Photogramm. Remote Sens. 2022, 189, 236–254. [Google Scholar] [CrossRef]
- Pandey, P.C.; Anand, A.; Srivastava, P.K. Spatial distribution of mangrove forest species and biomass assessment using field inventory and earth observation hyperspectral data. Biodivers. Conserv. 2019, 28, 2143–2162. [Google Scholar] [CrossRef]
- Dou, Z.G.; Cui, L.J.; Li, J.; Zhu, Y.N.; Gao, C.J.; Pan, X.; Lei, Y.R.; Zhang, M.Y.; Zhao, X.S.; Li, W. Hyperspectral estimation of the chlorophyll content in short-term and long-term restorations of mangrove in Quanzhou Bay estuary, China. Sustainability 2018, 10, 1127. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.J.; Xu, Y.; Wu, G.F. The integration of species information and soil properties for hyperspectral estimation of leaf biochemical parameters in mangrove forest. Ecol. Indic. 2020, 115, 106467. [Google Scholar] [CrossRef]
- Zhen, J.N.; Jiang, X.P.; Xu, Y.; Miao, J.; Zhao, D.M.; Wang, J.J.; Wang, J.Z.; Wu, G.F. Mapping leaf chlorophyll content of mangrove forests with sentinel-2 images of four periods. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102387. [Google Scholar] [CrossRef]
- Jiang, X.P.; Zhen, J.N.; Miao, J.; Zhao, D.M.; Shen, Z.; Jiang, J.C.; Gao, C.J.; Wu, G.F.; Wang, J.J. Newly-developed three-band hyperspectral vegetation index for estimating leaf relative chlorophyll content of mangrove under different severities of pest and disease. Ecol. Indic. 2022, 140, 108978. [Google Scholar] [CrossRef]
- Fu, B.L.; Deng, L.C.; Zhang, L.; Qin, J.L.; Liu, M.; Jia, M.M.; He, H.C.; Deng, T.F.; Gao, E.T.; Fan, D.L. Estimation of mangrove canopy chlorophyll content using hyperspectral image and stacking ensemble regression algorithm. Natl. Remote Sens. Bull. 2022, 26, 1182–1205. [Google Scholar] [CrossRef]
- Chen, X.H.; Chen, Z.Z.; Lei, J.R.; Wu, T.T.; Li, Y.L. Distribution characteristics of active organic carbon components in sediments of typical community types of mangrove wetland in Qinglan Port. Acta Ecol. Sin. 2022, 42, 4572–4581. [Google Scholar]
- Zhen, J.N.; Liao, J.J.; Shen, G.Z. Remote sensing monitoring and analysis on the dynamics of mangrove forests in Qinglan Habor of Hainan province since 1987. Wetl. Sci. 2019, 17, 44–51. [Google Scholar]
- Croft, H.; Chen, J.M.; Zhang, Y. The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecol. Complex. 2014, 17, 119–130. [Google Scholar] [CrossRef]
- Wu, J.D.; Wang, D.; Rosen, C.J.; Bauer, M.E. Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Res. 2007, 101, 96–103. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.J.; Xia, A.Q.; Zhang, K.Y.; Dong, X.Y.; Wu, K.P.; Wu, G.F. Continuous wavelet analysis of leaf reflectance improves classification accuracy of mangrove species. Remote Sens. 2019, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.J.; Cui, L.J.; Gao, W.X.; Shi, T.Z.; Chen, Y.Y.; Gao, Y. Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma 2014, 216, 1–9. [Google Scholar] [CrossRef]
- Yang, H.Y.; Du, J.M. Classification of desert steppe species based on unmanned aerial vehicle hyperspectral remote sensing and continuum removal vegetation indices. Optik 2021, 247, 167877. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Lu, J.Q.; Qiu, H.B.; Zhang, Q.; Lan, Y.B.; Wang, P.P.; Wu, Y.; Mo, J.W.; Chen, W.D.; Niu, H.Y.; Wu, Z.Y. Inversion of chlorophyll content under the stress of leaf mite for jujube based on model PSO-ELM method. Front. Plant Sci. 2022, 13, 1009630. [Google Scholar] [CrossRef]
- Cui, L.J.; Dou, Z.G.; Liu, Z.J.; Zuo, X.Y.; Lei, Y.R.; Li, J.; Zhao, X.S.; Zhai, X.J.; Pan, X.; Li, W. Hyperspectral inversion of Phragmites communis carbon, nitrogen, and phosphorus stoichiometry using three models. Remote Sens. 2020, 12, 1998. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhang, B.; Yang, W.G.; Chen, T.T.; Zhang, H.; Lin, Y.D.; Tan, J.T.; Li, X.; Gao, Y.; Yao, S.Z.; et al. Quantification of physiological parameters of rice varieties based on multi-spectral remote sensing and machine learning models. Remote Sens. 2023, 15, 453. [Google Scholar] [CrossRef]
- Wang, S.Q.; Li, Y.; Ju, W.M.; Chen, B.; Chen, J.H.; Croft, H.; Mickler, R.A.; Yang, F.T. Estimation of leaf photosynthetic capacity from leaf chlorophyll content and leaf age in a subtropical evergreen coniferous plantation. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005020. [Google Scholar] [CrossRef]
- Shi, S.; Xu, L.; Gong, W.; Chen, B.W.; Chen, B.W.; Qu, F.F.; Tang, X.T.; Sun, J.; Yang, J. A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102719. [Google Scholar] [CrossRef]
- Xu, L.; Shi, S.; Gong, W.; Shi, Z.X.; Qu, F.F.; Tang, X.T.; Chen, B.W.; Sun, J. Improving leaf chlorophyll content estimation through constrained PROSAIL model from airborne hyperspectral and LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103128. [Google Scholar] [CrossRef]
- Zhang, F.F.; Wu, S.W.; Liu, J.; Wang, C.K.; Guo, Z.Y.; Xu, A.A.; Pan, K.; Pan, X.Z. Predicting soil moisture content over partially vegetation covered surfaces from hyperspectral data with deep learning. Soil Sci. Soc. Am. J. 2021, 85, 989–1001. [Google Scholar] [CrossRef]
- Liu, J.B.; Xie, J.C.; Meng, T.T.; Dong, H. Organic matter estimation of surface soil using successive projection algorithm. Agron. J. 2021, 114, 1944–1951. [Google Scholar] [CrossRef]
- Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.P.; Mabhaudhi, T. A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data. Remote Sens. 2021, 13, 4091. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhou, Q.; Shang, J.L.; Liu, C.; Zhuang, T.X.; Ding, J.J.; Xian, Y.Y.; Zhao, L.T.; Wang, W.L.; Zhou, G.S.; et al. UAV- and machine learning-based retrieval of wheat SPAD values at the overwintering stage for variety screening. Remote Sens. 2021, 13, 5166. [Google Scholar] [CrossRef]
- Rischbeck, P.; Elsayed, S.; Mistele, B.; Barmeier, G.; Heil, K.; Schmidhalter, U. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur. J. Agron. 2016, 78, 44–59. [Google Scholar] [CrossRef]
- Ramzi, P.; Samadzadegan, F.; Reinartz, P. Classification of hyperspectral data using an AdaboostSVM technique applied on band clusters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2066–2079. [Google Scholar] [CrossRef]
- Wei, L.F.; Wang, Z.; Huang, C.; Zhang, Y.; Wang, Z.X.; Xia, H.Q.; Cao, L.Q. Transparency estimation of narrow rivers by uav-borne hyperspectral remote sensing imagery. IEEE Access 2020, 8, 168137–168153. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, C.Z.; Zhang, X.Y.; Cheng, X.H.; Feng, G.Z.; Wang, Y.; Gao, Q. Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images. Ecol. Indic. 2021, 129, 107985. [Google Scholar] [CrossRef]
- Tan, K.; Ma, W.B.; Chen, L.H.; Wang, H.M.; Du, Q.; Du, P.J.; Yan, B.K.; Liu, R.Y.; Li, H.D. Estimating the distribution trend of soil heavy metals in mining area from HYMAP airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021, 401, 123288. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Zhang, Y.; Jiang, D.Y.; Zhang, Z.Z.; Chang, Q.R. Quantitative assessment of apple mosaic disease severity based on hyperspectral images and chlorophyll content. Remote Sens. 2023, 15, 2202. [Google Scholar] [CrossRef]
- Lin, N.; Jiang, R.Z.; Li, G.J.; Yang, Q.; Li, D.L.; Yang, X.S. Estimating the heavy metal contents in farmland soil from hyperspectral images based on Stacked Adaboost ensemble learning. Ecol. Indic. 2022, 143, 109330. [Google Scholar] [CrossRef]
- Jiang, X.P.; Zhen, J.N.; Miao, J.; Zhao, D.M.; Wang, J.J.; Jia, S. Assessing mangrove leaf traits under different pest and disease severity with hyperspectral imaging spectroscopy. Ecol. Indic. 2021, 129, 107901. [Google Scholar] [CrossRef]
- George, R.; Padalia, H.; Sinha, S.K.; Kumar, A.S. Evaluating sensitivity of hyperspectral indices for estimating mangrove chlorophyll in middle Andaman Island, India. Environ. Monit. Assess. 2020, 191, 785. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.X.; Yan, C.H.; Lu, S.; Wang, P.; Qiu, G.Y.; Li, R.L. Estimation of chlorophyll content in intertidal mangrove leaves with different thicknesses using hyperspectral data. Ecol. Indic. 2019, 106, 105511. [Google Scholar] [CrossRef]
- Zhang, Y.; Hui, J.; Qin, Q.M.; Sun, Y.H.; Zhang, T.Y.; Sun, H.; Li, M.Z. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data. Remote Sens. Environ. 2021, 267, 112724. [Google Scholar] [CrossRef]
- Tian, Y.C.; Huang, H.; Zhou, G.Q.; Zhang, Q.; Tao, J.; Zhang, Y.L.; Lin, J.J. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Zhu, X.H.; Yang, Q.; Chen, X.Y.; Ding, Z.X. An approach for joint estimation of grassland leaf area index and leaf chlorophyll content from UAV hyperspectral data. Remote Sens. 2023, 15, 2525. [Google Scholar] [CrossRef]
- Sudu, B.; Rong, G.; Guga, S.; Li, K.; Zhi, F.; Guo, Y.; Zhang, J.; Bao, Y. Retrieving SPAD values of summer maize using UAV hyperspectral data based on multiple machine learning algorithm. Remote Sens. 2022, 14, 5407. [Google Scholar] [CrossRef]
- Dilmurat, K.; Sagan, V.; Moose, S. Ai-driven maize yield forecasting using unmanned aerial vehicle-based hyperspectral and LiDAR data fusion. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, V-3-2022, 193–199. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Xie, X.; Ou, J.; Zhang, Y.; Tao, J.; Lin, J. Mangrove biodiversity assessment using UAV LiDAR and hyperspectral data in China’s Pinglu canal estuary. Remote Sens. 2023, 15, 2622. [Google Scholar] [CrossRef]
Species | Minimum | Maximum | Average | Standard Deviation | Coefficient of Variation | Significant Difference |
---|---|---|---|---|---|---|
Bruguiera sexangula (B. sexangula) | 47.62 | 75.80 | 58.60 | 6.07 | 10.36% | a |
Ceriops tagal (C. tagal) | 49.94 | 69.74 | 61.56 | 5.16 | 8.39% | b |
Rhizophora apiculata (R. apiculata) | 57.63 | 75.71 | 66.57 | 4.39 | 6.59% | c |
Species | Processing Method | Number of Bands | Feature Band |
---|---|---|---|
B. sexangula | Original reflectance (OR) | 16 | 404, 418, 420, 444, 535, 650, 699, 736, 1389, 1663, 1893, 2186, 2347, 2428, 2435, 2445 |
First-order differential reflectance (FD) | 6 | 674, 703, 1666, 1803, 1805, 1842 | |
C. tagal | Original reflectance (OR) | 14 | 401, 407, 422, 424, 427, 504, 1421, 1694, 1864, 1997, 2145, 2399, 2420, 2436 |
First-order differential reflectance (FD) | 16 | 407, 415, 430, 432, 439, 467, 718, 1064, 1073, 1169, 1925, 1931, 2205, 2226, 2250, 2412 | |
R. apiculata | Original reflectance (OR) | 11 | 407, 413, 422, 435, 462, 637, 725, 775, 998, 1125, 2446 |
First-order differential reflectance (FD) | 14 | 405, 417, 423, 433, 464, 481, 887, 1656, 1923, 1931, 1934, 1941, 2220, 2223 |
Model | B. sexangula | C. tagal | R. apiculata | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | ||
XGBoost | OR | 0.72 | 3.23 | 2.79 | 0.58 | 3.84 | 3.18 | 0.36 | 3.38 | 2.61 |
FD | 0.65 | 3.48 | 2.87 | 0.64 | 3.52 | 2.89 | 0.35 | 3.43 | 2.80 | |
Random Forest | OR | 0.60 | 3.70 | 2.94 | 0.45 | 4.41 | 3.76 | 0.21 | 3.69 | 2.99 |
FD | 0.78 | 3.27 | 2.52 | 0.60 | 4.60 | 3.85 | 0.26 | 3.62 | 2.88 | |
Partial Least Squares | OR | 0.74 | 3.87 | 3.03 | 0.37 | 4.96 | 3.95 | 0.24 | 3.89 | 3.11 |
FD | 0.73 | 3.99 | 2.80 | 0.77 | 3.70 | 3.21 | 0.30 | 3.76 | 3.09 | |
AdaBoost | OR | 0.51 | 4.14 | 3.23 | 0.55 | 3.95 | 3.36 | 0.27 | 3.60 | 2.97 |
FD | 0.67 | 3.49 | 2.76 | 0.59 | 4.09 | 3.47 | 0.44 | 3.38 | 2.81 |
Index | Specie | Method | Accuracy | Source |
---|---|---|---|---|
SPAD | Aegiceras corniculatum | Newly developed three-band Vis: VI1 | R2 = 0.658 RPD = 1.724 | [26] |
Newly developed three-band Vis: VI4 | R2 = 0.671 RPD = 1.753 | |||
Aegiceras corniculatum, Bruguiera gymnorrhiza, Kandelia obvolata, Rhizophora stylosa, and Avicennia marina | Newly developed RSSI (B8, B2, B3) | R2adjust = 0.801 RMSEV = 3.46 REV = 4.63 | [25] | |
KRR model (9 bands without red-edge bands of Sentinel-2) | R2adjust = 0.776 RMSEV = 3.68 REV = 4.91 | |||
Aegiceras corniculatum | RF | R2Val = 0.671 RPD = 1.552 | [54] | |
Long-term restoration of Kandelia candel | Red edge position model | R2 = 0.8392 RMSE = 3.98 | [23] | |
Full-wave band spectrum model | R2 = 0.9353 RMSE = 2.26 | |||
Chlorophyll | Rhizophora apiculata and Bruguiera gymnorhiza | Simple ratio (559 nm/885 nm) | R2 = 0.75 RMSE = 0.60 | [55] |
Kandelia candel, Avicennia marina, Aegiceras corniculatum, and Sonneratia apetala | IMDATT = (R527 − R746)/(R527 − R747) | r = −0.88 RMSE = 8.70 | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Cui, L.; Dou, Z.; Wang, J.; Zhai, X.; Li, J.; Zhao, X.; Lei, Y.; Wang, J.; Li, W. Hyperspectral Analysis and Regression Modeling of SPAD Measurements in Leaves of Three Mangrove Species. Forests 2023, 14, 1566. https://doi.org/10.3390/f14081566
Li H, Cui L, Dou Z, Wang J, Zhai X, Li J, Zhao X, Lei Y, Wang J, Li W. Hyperspectral Analysis and Regression Modeling of SPAD Measurements in Leaves of Three Mangrove Species. Forests. 2023; 14(8):1566. https://doi.org/10.3390/f14081566
Chicago/Turabian StyleLi, Huazhe, Lijuan Cui, Zhiguo Dou, Junjie Wang, Xiajie Zhai, Jing Li, Xinsheng Zhao, Yinru Lei, Jinzhi Wang, and Wei Li. 2023. "Hyperspectral Analysis and Regression Modeling of SPAD Measurements in Leaves of Three Mangrove Species" Forests 14, no. 8: 1566. https://doi.org/10.3390/f14081566
APA StyleLi, H., Cui, L., Dou, Z., Wang, J., Zhai, X., Li, J., Zhao, X., Lei, Y., Wang, J., & Li, W. (2023). Hyperspectral Analysis and Regression Modeling of SPAD Measurements in Leaves of Three Mangrove Species. Forests, 14(8), 1566. https://doi.org/10.3390/f14081566