Synergistic Use of Sentinel-1 and Sentinel-2 Based on Different Preprocessing for Predicting Forest Aboveground Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Data Source
2.3. Satellite Data
2.3.1. Sentinel Data and Preprocessing
2.3.2. Texture Measures
2.4. Forest AGB Prediction
2.5. Statistical Methods for Predicting Forest AGB
3. Results
3.1. Relationships between Different Preprocessing S1 Images and AGB
3.2. S2 TOA and BOA Products for Modeling AGB
3.3. S1 SAR and Image Textures Using Different Preprocessing Techniques for Modeling AGB
3.3.1. Univariate SAR Models
3.3.2. Multivariate SAR Models
3.4. Combinations of S2 and SAR Images for Modeling AGB
3.4.1. Different Preprocessing of S2, S1, and Two Classes of Image Textures
3.4.2. Different Preprocessing of S2 and S1
4. Discussion
4.1. S2 TOA and BOA Products
4.2. SAR and SAR-Based Texture Measures
4.3. Integrations of S2 and S1 SAR for Modeling AGB
4.4. Assessment of Modeling Forest AGB
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Plots | SAR Bands | Data Range | Mean | Variance | RMSE (Mg/ha) | R | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5*5 | 17*17 | 31*31 | 5*5 | 17*17 | 31*31 | 5*5 | 17*17 | 31*31 | ||||
Oak | VVNOSPK | 72.50 | 72.44 | 72.39 | 72.74 | 72.75 | 72.76 | 72.53 | 72.57 | 72.57 | 40.23 | 0.104 ** |
VHNOSPK | 72.60 | 72.54 | 72.55 | 72.72 | 72.72 | 72.72 | 72.61 | 72.61 | 72.62 | 40.31 | 0.080 ** | |
VVSPK | 72.53 | 72.49 | 72.49 | 72.75 | 72.75 | 72.76 | 72.57 | 72.61 | 72.62 | 40.28 | 0.092 ** | |
VHSPK | 72.59 | 72.55 | 72.58 | 72.72 | 72.72 | 72.73 | 72.62 | 72.63 | 72.71 | 40.31 | 0.081 ** | |
Chinese | VVNOSPK | 51.54 | 51.52 | 51.55 | 51.67 | 51.67 | 51.67 | 51.56 | 51.61 | 51.64 | 24.87 | 0.062 ** |
fir | VHNOSPK | 51.59 | 51.58 | 51.63 | 51.65 | 51.65 | 51.64 | 51.60 | 51.62 | 51.65 | 24.90 | 0.045 ** |
VVSPK | 51.54 | 51.57 | 51.59 | 51.67 | 51.67 | 51.67 | 51.58 | 51.64 | 51.66 | 24.88 | 0.062 ** | |
VHSPK | 51.58 | 51.59 | 51.64 | 51.65 | 51.65 | 51.64 | 51.61 | 51.64 | 51.65 | 24.90 | 0.045 ** | |
Masson | VVNOSPK | 38.39 | 38.39 | 38.40 | 38.40 | 38.40 | 38.40 | 38.39 | 38.39 | 38.40 | 48.68 | −0.011 |
pine | VHNOSPK | 38.39 | 38.37 | 38.39 | 38.40 | 38.39 | 38.39 | 38.39 | 38.39 | 38.40 | 48.66 | 0.010 |
VVSPK | 38.39 | 38.39 | 38.40 | 38.40 | 38.40 | 38.40 | 38.39 | 38.39 | 38.40 | 48.68 | −0.007 | |
VHSPK | 38.39 | 38.39 | 38.40 | 38.40 | 38.39 | 38.39 | 38.39 | 38.39 | 38.40 | 48.68 | −0.008 | |
All | VVNOSPK | 69.07 | 69.06 | 69.04 | 69.07 | 69.05 | 69.04 | 69.07 | 69.06 | 69.05 | 52.43 | 0.025 ** |
plots | VHNOSPK | 69.08 | 69.06 | 69.05 | 69.07 | 69.05 | 69.05 | 69.07 | 69.07 | 69.06 | 52.43 | 0.021 ** |
VVSPK | 69.06 | 69.05 | 69.04 | 69.07 | 69.05 | 69.04 | 69.06 | 69.06 | 69.05 | 52.43 | 0.038 ** | |
VHSPK | 69.07 | 69.06 | 69.05 | 69.07 | 69.05 | 69.04 | 69.07 | 69.06 | 69.06 | 52.43 | 0.023 ** |
Plots | SAR Bands | Contrast | Entropy | Correlation | RMSE (Mg/ha) | R | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5*5 | 17*17 | 31*31 | 5*5 | 17*17 | 31*31 | 5*5 | 17*17 | 31*31 | ||||
Oak | VVNOSPK | 72.73 | 72.71 | 72.69 | 72.61 | 72.56 | 72.54 | 72.48 | 72.45 | 72.48 | 40.26 | 0.115 ** |
VHNOSPK | 72.74 | 72.72 | 72.71 | 72.65 | 72.60 | 72.60 | 72.58 | 72.47 | 72.52 | 40.27 | 0.100 ** | |
VVSPK | 72.73 | 72.72 | 72.70 | 72.61 | 72.58 | 72.58 | 72.43 | 72.47 | 72.53 | 40.25 | 0.114 ** | |
VHSPK | 72.74 | 72.72 | 72.72 | 72.66 | 72.62 | 72.64 | 72.53 | 72.48 | 72.54 | 40.28 | 0.106 ** | |
Chinese | VVNOSPK | 51.64 | 51.63 | 51.62 | 51.55 | 51.52 | 51.53 | 51.56 | 51.54 | 51.56 | 24.87 | 0.062 ** |
fir | VHNOSPK | 51.65 | 51.65 | 51.64 | 51.59 | 51.56 | 51.59 | 51.62 | 51.55 | 51.59 | 24.88 | 0.053 ** |
VVSPK | 51.64 | 51.63 | 51.63 | 51.55 | 51.54 | 51.55 | 51.56 | 51.55 | 51.60 | 24.87 | 0.057 ** | |
VHSPK | 51.65 | 51.65 | 51.64 | 51.60 | 51.58 | 51.61 | 51.61 | 51.56 | 51.61 | 24.89 | 0.050 ** | |
Masson | VVNOSPK | 38.39 | 38.39 | 38.40 | 38.38 | 38.38 | 38.39 | 38.39 | 38.39 | 38.40 | 48.67 | −0.004 |
pine | VHNOSPK | 38.39 | 38.40 | 38.40 | 38.39 | 38.38 | 38.38 | 38.39 | 38.38 | 38.38 | 48.66 | 0.010 |
VVSPK | 38.39 | 38.40 | 38.40 | 38.38 | 38.38 | 38.40 | 38.39 | 38.38 | 38.40 | 48.67 | 0.001 | |
VHSPK | 38.39 | 38.40 | 38.40 | 38.39 | 38.39 | 38.38 | 38.39 | 38.38 | 38.39 | 48.66 | 0.012 | |
All | VVNOSPK | 69.07 | 69.07 | 69.05 | 69.08 | 69.06 | 69.05 | 69.08 | 69.07 | 69.07 | 52.43 | 0.027 ** |
plots | VHNOSPK | 69.06 | 69.06 | 69.05 | 69.08 | 69.07 | 69.05 | 69.08 | 69.08 | 69.07 | 52.43 | 0.032 ** |
VVSPK | 69.07 | 69.06 | 69.03 | 69.07 | 69.06 | 69.06 | 69.08 | 69.07 | 69.07 | 52.42 | 0.037 ** | |
VHSPK | 69.07 | 69.06 | 69.05 | 69.08 | 69.07 | 69.06 | 69.08 | 69.07 | 69.07 | 52.44 | 0.028 ** |
References
- Labrière, N.; Davies, S.J.; Disney, M.I.; Duncanson, L.I.; Herold, M.; Lewis, S.L.; Phillips, O.L.; Quegan, S.; Saatchi, S.S.; Schepaschenko, D.G.; et al. Toward a forest biomass reference measurement system for remote sensing applications. Glob. Chang. Biol. 2023, 29, 827–840. [Google Scholar] [CrossRef]
- Houghton, R.A.; Lawrence, K.T.; Hackler, J.L.; Brown, S. The spatial distribution of forest biomass in the Brazilian Amazon: A comparison of estimates. Glob. Chang. Biol. 2001, 7, 731–746. [Google Scholar] [CrossRef]
- Schepaschenko, D.; Chave, J.; Phillips, O.L.; Lewis, S.L.; Davies, S.J.; Réjou-Méchain, M.; Sist, P.; Scipal, K.; Perger, C.; Herault, B.; et al. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Sci. Data 2019, 6, 198. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Lu, D.; Wang, G.; Liu, L.; Li, D.; Zhu, J.; Yu, S. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 1–15. [Google Scholar] [CrossRef]
- Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; et al. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass. Geophys. Res. Lett. 2017, 44, 6823–6832. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gong, W.; Xing, Y.; Hu, X.; Gong, J. Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 277–289. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. Photogramm. Remote Sens. 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Nandy, S.; Srinet, R.; Padalia, H. Mapping Forest Height and Aboveground Biomass by Integrating ICESat-2, Sentinel-1 and Sentinel-2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India. Geophys. Res. Lett. 2021, 48, e2021GL093799. [Google Scholar] [CrossRef]
- Puliti, S.; Hauglin, M.; Breidenbach, J.; Montesano, P.; Neigh, C.S.R.; Rahlf, J.; Solberg, S.; Klingenberg, T.F.; Astrup, R. Modelling above-ground biomass stock over Norway using national forest inventory data with ArcticDEM and Sentinel-2 data. Remote Sens. Environ. 2020, 236, 111501. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- David, R.M.; Rosser, N.J.; Donoghue, D.N.M. Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sens. Environ. 2022, 282, 113232. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Laurin, G.V.; Balling, J.; Corona, P.; Mattioli, W.; Papale, D.; Puletti, N.; Rizzo, M.; Truckenbrodt, J.; Urban, M. Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef]
- Chang, J.; Shoshany, M. Mediterranean shrublands biomass estimation using Sentinel-1 and Sentinel-2. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5300–5303. [Google Scholar] [CrossRef]
- Song, X.-P.; Huang, W.; Hansen, M.C.; Potapov, P. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Sci. Remote Sens. 2021, 3, 100018. [Google Scholar] [CrossRef]
- Sola, I.; García-Martín, A.; Sandonís-Pozo, L.; Álvarez-Mozos, J.; Pérez-Cabello, F.; González-Audícana, M.; Montorio Llovería, R. Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 63–76. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2008, 113, D23S90. [Google Scholar] [CrossRef]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9780429192029. [Google Scholar]
- Foucher, S.; Zagolski, F.; Gaillard, C.; Voirin, Y.; Nguyen, M.N. Influence of speckle filtering on the assessment of agricultural surface parameters. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; Volume 4, pp. 2137–2139. [Google Scholar]
- Lee, J.S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Jong-Sen, L.; Grunes, M.R.; Schuler, D.L.; Pottier, E.; Ferro-Famil, L. Scattering-model-based speckle filtering of polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2006, 44, 176–187. [Google Scholar] [CrossRef]
- Wulder, M.A.; LeDrew, E.F.; Franklin, S.E.; Lavigne, M.B. Aerial Image Texture Information in the Estimation of Northern Deciduous and Mixed Wood Forest Leaf Area Index (LAI). Remote Sens. Environ. 1998, 64, 64–76. [Google Scholar] [CrossRef]
- Hlatshwayo, S.T.; Mutanga, O.; Lottering, R.T.; Kiala, Z.; Ismail, R. Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 65–77. [Google Scholar] [CrossRef]
- Cutler, M.E.J.; Boyd, D.S.; Foody, G.M.; Vetrivel, A. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS J. Photogramm. Remote Sens. 2012, 70, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture as a remotely sensed measure of vegetation structure. Remote Sens. Environ. 2012, 121, 516–526. [Google Scholar] [CrossRef]
- Soares, J.V.; Rennó, C.D.; Formaggio, A.R.; da Costa Freitas Yanasse, C.; Frery, A.C. An investigation of the selection of texture features for crop discrimination using SAR imagery. Remote Sens. Environ. 1997, 59, 234–247. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- St-Louis, V.; Pidgeon, A.M.; Radeloff, V.C.; Hawbaker, T.J.; Clayton, M.K. High-resolution image texture as a predictor of bird species richness. Remote Sens. Environ. 2006, 105, 299–312. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Ouma, Y.O. Optimization of Second-Order Grey-Level Texture in High-Resolution Imagery for Statistical Estimation of Above-Ground Biomass. J. Environ. Inform. 2006, 8, 70–85. [Google Scholar] [CrossRef]
- Castillo-Santiago, M.A.; Ricker, M.; de Jong, B.H.J. Estimation of tropical forest structure from SPOT-5 satellite images. Int. J. Remote Sens. 2010, 31, 2767–2782. [Google Scholar] [CrossRef]
- Ozdemir, I.; Karnieli, A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 701–710. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Tsakiri, M.; Patias, P. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 1–14. [Google Scholar] [CrossRef]
- Lopes, A.; Nezry, E.; Touzi, R.; Laur, H. Structure detection and statistical adaptive speckle filtering in SAR images. Int. J. Remote Sens. 1993, 14, 1735–1758. [Google Scholar] [CrossRef]
- Collins, M.J.; Wiebe, J.; Clausi, D.A. The effect of speckle filtering on scale-dependent texture estimation of a forested scene. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1160–1170. [Google Scholar] [CrossRef]
- Chen, S.; Useya, J.; Mugiyo, H. Decision-level fusion of Sentinel-1 SAR and Landsat 8 OLI texture features for crop discrimination and classification: Case of Masvingo, Zimbabwe. Heliyon 2020, 6, e05358. [Google Scholar] [CrossRef]
- LY/T 2658-2016; Tree Biomass Models and Related Parameters to Carbon Accounting for Quercus. China Standard Press: Beijing, China, 2016. (In Chinese)
- LY/T 2264-2014; Tree Biomass Models and Related Parameters to Carbon Accounting for Cunninghamia lanceolata. China Standard Press: Beijing, China, 2014. (In Chinese)
- LY/T 2263-2014; Tree Biomass Models and Related Parameters to Carbon Accounting for Pinus massoniana. China Standard Press: Beijing, China, 2014. (In Chinese)
- Yommy, A.S.; Liu, R.; Wu, A.S. SAR Image Despeckling Using Refined Lee Filter. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; pp. 260–265. [Google Scholar]
- Hall-Beyer, M. GLCM Texture: A Tutorial. 17th Int. Symp. Ballist. 2017, 2, 18–19. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Zhang, N.; Chen, M.; Yang, F.; Yang, C.; Yang, P.; Gao, Y.; Shang, Y.; Peng, D. Forest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China. Remote Sens. 2022, 14, 4434. [Google Scholar] [CrossRef]
- Nasiri, V.; Darvishsefat, A.A.; Arefi, H.; Griess, V.C.; Sadeghi, S.M.M.; Borz, S.A. Modeling Forest Canopy Cover: A Synergistic Use of Sentinel-2, Aerial Photogrammetry Data, and Machine Learning. Remote Sens. 2022, 14, 1453. [Google Scholar] [CrossRef]
- Grabska, E.; Frantz, D.; Ostapowicz, K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians. Remote Sens. Environ. 2020, 251, 112103. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Siachalou, S.; Patias, P. Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sens. Lett. 2017, 8, 508–517. [Google Scholar] [CrossRef]
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, D.; Zhang, D.; Wang, Z.; Du, B.; Yan, H.; Qiu, Z.; Feng, K.; Wang, J.; Jia, M. Mapping Phragmites australis Aboveground Biomass in the Momoge Wetland Ramsar Site Based on Sentinel-1/2 Images. Remote Sens. 2022, 14, 694. [Google Scholar] [CrossRef]
- Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution Over Europe (ELC10). Remote Sens. 2021, 13, 2301. [Google Scholar] [CrossRef]
- Sarker, M.L.R.; Nichol, J.; Ahmad, B.; Busu, I.; Rahman, A.A. Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation. ISPRS J. Photogramm. Remote Sens. 2012, 69, 146–166. [Google Scholar] [CrossRef]
- Silveira, E.M.O.; Radeloff, V.C.; Martinuzzi, S.; Martinez Pastur, G.J.; Bono, J.; Politi, N.; Lizarraga, L.; Rivera, L.O.; Ciuffoli, L.; Rosas, Y.M.; et al. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sens. Environ. 2023, 285, 113391. [Google Scholar] [CrossRef]
- Frison, P.-L.; Fruneau, B.; Kmiha, S.; Soudani, K.; Dufrêne, E.; Toan, T.L.; Koleck, T.; Villard, L.; Mougin, E.; Rudant, J.-P. Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology. Remote Sens. 2018, 10, 2049. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Gong, L.; Zhang, J. A correlation change detection method integrating PCA and multi- texture features of SAR image for building damage detection. Eur. J. Remote Sens. 2019, 52, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, K.; Jawahar, C.V.; Sengupta, S.; Sinha, S. Performance analysis of textural features for characterization and classification of SAR images. Int. J. Remote Sens. 2001, 22, 1555–1569. [Google Scholar] [CrossRef]
- Spracklen, B.; Spracklen, D.V. Synergistic Use of Sentinel-1 and Sentinel-2 to Map Natural Forest and Acacia Plantation and Stand Ages in North-Central Vietnam. Remote Sens. 2021, 13, 185. [Google Scholar] [CrossRef]
- Narvaes, I.D.S.; Santos, J.R.; Bispo, P.C.; Graça, P.M.A.; Guimarães, U.S.; Gama, F.F. Estimating Forest Above-Ground Biomass in Central Amazonia Using Polarimetric Attributes of ALOS/PALSAR Images. Forests 2023, 14, 941. [Google Scholar] [CrossRef]
- Champion, I.; Dubois-Fernandez, P.; Guyon, D.; Cottrel, M. Radar image texture as a function of forest stand age. Int. J. Remote Sens. 2008, 29, 1795–1800. [Google Scholar] [CrossRef]
- Li, G.; Lu, D.; Moran, E.; Dutra, L.; Batistella, M. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. ISPRS J. Photogramm. Remote Sens. 2012, 70, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Ndikumana, E.; Minh, D.H.T.; Nguyen, H.T.D.; Baghdadi, N.; Courault, D.; Hossard, L.; Moussawi, I. El Estimation of rice height and biomass using multitemporal SAR Sentinel-1 for Camargue, Southern France. Remote Sens. 2018, 10, 1394. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, N.; Wang, Y.; Li, M. A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing. GIScience Remote Sens. 2023, 60, 2163574. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Lu, D.; Chen, E.; Wei, X. Stratification-Based Forest Aboveground Biomass Estimation in a Subtropical Region Using Airborne Lidar Data. Remote Sens. 2020, 12, 1101. [Google Scholar] [CrossRef] [Green Version]
- van der Sanden, J.J.; Hoekman, D.H. Potential of Airborne Radar To Support the Assessment of Land Cover in a Tropical Rain Forest Environment. Remote Sens. Environ. 1999, 68, 26–40. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Optimal combination of predictors and algorithms for forest above-ground biomass mapping from Sentinel and SRTM data. Remote Sens. 2019, 11, 414. [Google Scholar] [CrossRef] [Green Version]
- Berninger, A.; Lohberger, S.; Stängel, M.; Siegert, F. SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical Forests of Kalimantan Using L- and C-Band. Remote Sens. 2018, 10, 831. [Google Scholar] [CrossRef] [Green Version]
- Nuthammachot, N.; Askar, A.; Stratoulias, D.; Wicaksono, P. Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation. Geocarto Int. 2022, 37, 366–376. [Google Scholar] [CrossRef]
Dominant Species | Allometric Equations | Number of Plots | Forest Variable | Mean | Std |
---|---|---|---|---|---|
Oak | 0.13188D1.82892H0.71119 | 5291 | DBH (cm) | 11.56 | 2.70 |
(Quercus spp.) | [40] | Tree Height (m) | 7.76 | 1.89 | |
GSV (m3/ha) | 51.99 | 30.80 | |||
Age (years) | 27.50 | 8.82 | |||
AGB (Mg/ha) | 55.31 | 41.64 | |||
Chinese fir | 0.065388D2.01735H0.49425 | 8592 | DBH (cm) | 14.25 | 3.11 |
(Cunninghamia lanceolata) | [41] | Tree Height (m) | 10.33 | 2.86 | |
GSV (m3/ha) | 73.49 | 33.39 | |||
Age (years) | 22.78 | 7.78 | |||
AGB (Mg/ha) | 48.27 | 25.01 | |||
Masson pine | 0.066615D2.09317H0.49763 | 6807 | DBH (cm) | 19.39 | 2.86 |
(Pinus massoniana) | [42] | Tree Height (m) | 13.76 | 2.02 | |
GSV (m3/ha) | 146.79 | 47.28 | |||
Age (years) | 35.37 | 7.50 | |||
AGB (Mg/ha) | 126.80 | 48.75 | |||
All plots | 20,690 | DBH (cm) | 15.25 | 4.26 | |
Tree Height (m) | 10.80 | 3.31 | |||
GSV (m3/ha) | 92.11 | 54.59 | |||
Age (years) | 28.13 | 9.63 |
Sensor | Band/Index | Definition |
---|---|---|
Sentinel-2 MultiSpectral Instrument (MSI) | Band 2 | Blue, 490 nm, 10 m |
Band 3 | Green, 560 nm, 10 m | |
Band 4 | Red, 665 nm, 10 m | |
Band 5 | Red Edge, 705 nm, 20 m | |
Band 6 | Red Edge, 749 nm, 20 m | |
Band 7 | Red Edge, 783 nm, 20 m | |
Band 8 | Near-infrared, 842 nm, 10 m | |
Band 11 | Shortwave infrared 1, 1610 nm, 20 m | |
Band 12 | Shortwave infrared 2, 2190 nm, 20 m | |
Sentinel-1 Synthetic Aperture Radar (SAR) | VV | Vertically transmitted and vertically received |
VH | Vertically transmitted and horizontally received |
Metric Type | Textural Metric | Formula |
---|---|---|
First-order | Mean (ME) | |
where represents the gray-tone values of pixel k, and N represents the number of gray-tone values. | ||
Data range (RA) | ||
where represents . | ||
Variance (VA) | ||
Second-order | Contrast (CON) | |
where . | ||
Entropy (ENT) | ||
Correlation (COR) | ||
where , , , and are the means and standard deviations of and , where and are the marginal probabilities of and in the normalized GLCM. |
Feature Sets | Definition |
---|---|
A: S2TOA | S2 bands based on TOA product |
B: S2BOA | S2 bands based on BOA product |
C: SAR/First/SecondNOSPK | Unfiltered SAR and all SAR-based textures |
D: SAR/First/SecondSPK | Speckle-filtered SAR and all SAR-based textures |
E: S2TOA + SAR/FirstNOSPK | Combines S2 TOA product, unfiltered SAR, and SAR-based first-order textures |
F: S2TOA +SAR/FirstSPK | Combines S2 TOA product, speckle-filtered SAR, and SAR-based first-order textures |
G: S2BOA + SAR/FirstNOSPK | Combines S2 BOA product, unfiltered SAR, and SAR-based first-order textures |
H: S2BOA + SAR/FirstSPK | Combines S2 BOA product, speckle-filtered SAR, and SAR-based first-order textures |
I: S2TOA + SAR/SecondNOSPK | Combines S2 TOA product, unfiltered SAR, and SAR-based second-order textures |
J: S2TOA + SAR/SecondSPK | Combines S2 TOA product, speckle-filtered SAR, and SAR-based second-order textures |
K: S2BOA + SAR/SecondNOSPK | Combines S2 BOA product, unfiltered SAR, and SAR-based second-order textures |
L: S2BOA + SAR/SecondSPK | Combines S2 BOA product, speckle-filtered SAR, and SAR-based second-order textures |
M: S2TOA + SAR/First/SecondNOSPK | Combines S2 TOA product, unfiltered SAR, and all SAR-based textures |
N: S2TOA + SAR/First/SecondSPK | Combines S2 TOA product, speckle-filtered SAR, and all SAR-based textures |
O: S2BOA + SAR/First/SecondNOSPK | Combines S2 BOA product, unfiltered SAR, and all SAR-based textures |
P: S2BOA + SAR/First/SecondSPK | Combines S2 BOA product, speckle-filtered SAR, and all SAR-based textures |
Tree Species | SAR Bands | R | RMSE (Mg/ha) | rRMSE (%) |
---|---|---|---|---|
Oak | VVNOSPK | −0.038 ** | 40.42 | 72.74 |
VHNOSPK | 0.042 ** | 40.41 | 72.72 | |
VVSPK | −0.043 ** | 40.42 | 72.75 | |
VHSPK | 0.039 ** | 40.41 | 72.72 | |
Chinese fir | VVNOSPK | 0.014 | 24.94 | 51.67 |
VHNOSPK | 0.025 * | 24.93 | 51.65 | |
VVSPK | 0.011 | 24.94 | 51.67 | |
VHSPK | 0.025 * | 24.93 | 51.65 | |
Masson pine | VVNOSPK | −0.034 ** | 48.69 | 38.40 |
VHNOSPK | −0.036 ** | 48.69 | 38.40 | |
VVSPK | −0.033 ** | 48.69 | 38.40 | |
VHSPK | −0.034 ** | 48.69 | 38.40 | |
All plots | VVNOSPK | 0.010 | 52.45 | 69.07 |
VHNOSPK | 0.003 | 52.46 | 69.08 | |
VVSPK | 0.014 | 52.45 | 69.07 | |
VHSPK | 0.007 | 52.45 | 69.07 |
Tree Species | Selected Variables | MLR | XGBoost | ||
---|---|---|---|---|---|
RMSE (Mg/ha) | rRMSE (%) | RMSE (Mg/ha) | rRMSE (%) | ||
Oak | VVNOSPK, VHNOSPK | 40.40 | 72.71 | 42.07 | 75.71 |
VH_CON5NOSPK, VH_ME31NOSPK | 40.43 | 72.75 | 40.72 | 73.28 | |
VVSPK, VHSPK | 40.40 | 72.70 | 42.10 | 75.84 | |
VH_ME17SPK, VH_ME31SPK | 40.42 | 72.74 | 41.28 | 74.33 | |
Chinese fir | VVNOSPK, VHNOSPK | 24.93 | 51.65 | 24.98 | 51.75 |
VH_RA31NOSPK, VH_COR31NOSPK | 24.91 | 51.60 | 24.87 | 51.53 | |
VVSPK, VHSPK | 24.93 | 51.64 | 25.07 | 51.93 | |
VH_CON31SPK, VV_CON31SPK | 24.92 | 51.63 | 24.81 | 51.40 | |
Masson pine | VVNOSPK, VHNOSPK | 48.70 | 38.40 | 48.83 | 38.51 |
VH_COR17NOSPK, VH_ME31NOSPK | 48.66 | 38.37 | 48.83 | 38.51 | |
VVSPK, VHSPK | 48.70 | 38.40 | 48.91 | 38.57 | |
VH_COR17SPK, VH_COR5SPK | 48.66 | 38.38 | 48.85 | 38.53 | |
All plots | VVNOSPK, VHNOSPK | 52.46 | 69.08 | 52.64 | 69.33 |
VH_ENT17NOSPK, VH_ME17NOSPK | 52.40 | 69.01 | 52.54 | 69.18 | |
VVSPK, VHSPK | 52.45 | 69.07 | 52.54 | 69.19 | |
VH_RA5SPK, VV_ME31SPK | 52.41 | 69.02 | 52.60 | 69.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, G.; Yu, H.; Fang, L.; Zheng, X. Synergistic Use of Sentinel-1 and Sentinel-2 Based on Different Preprocessing for Predicting Forest Aboveground Biomass. Forests 2023, 14, 1615. https://doi.org/10.3390/f14081615
Fang G, Yu H, Fang L, Zheng X. Synergistic Use of Sentinel-1 and Sentinel-2 Based on Different Preprocessing for Predicting Forest Aboveground Biomass. Forests. 2023; 14(8):1615. https://doi.org/10.3390/f14081615
Chicago/Turabian StyleFang, Gengsheng, Hangyuan Yu, Luming Fang, and Xinyu Zheng. 2023. "Synergistic Use of Sentinel-1 and Sentinel-2 Based on Different Preprocessing for Predicting Forest Aboveground Biomass" Forests 14, no. 8: 1615. https://doi.org/10.3390/f14081615
APA StyleFang, G., Yu, H., Fang, L., & Zheng, X. (2023). Synergistic Use of Sentinel-1 and Sentinel-2 Based on Different Preprocessing for Predicting Forest Aboveground Biomass. Forests, 14(8), 1615. https://doi.org/10.3390/f14081615