Characterisation of Chrysoporthe cubensis and Chrysoporthe deuterocubensis, the Stem Canker Diseases of Eucalyptus spp. in a Forest Plantation in Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. DNA Extraction, PCR Amplification, and Molecular Phylogeny
2.3. Pathogenicity Tests
2.3.1. Three-Years-Old Standing Tree
2.3.2. Seedling
2.3.3. Pathogenicity Testing Using Detached Leaves
3. Results
3.1. Fungal Isolations
3.2. Disease Symptoms and Morphology
3.2.1. Chrysoporthe deuterocubensis
3.2.2. Chrysoporthe cubensis
3.3. Phylogenetic Analysis
3.4. MAT Gene Amplification and Mating Types Assignment
3.5. Pathogenicity Tests
3.5.1. 3 Years Old Standing Tree
3.5.2. One-Year-Old Seedling
3.5.3. Detached Leaves
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooker, M.I.H. A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Aust. Syst. Bot. 2000, 13, 79–148. [Google Scholar] [CrossRef]
- Keane, P.J.; Kile, G.A.; Podger, F.D.; Brown, B.N. (Eds.) Diseases and Pathogens of Eucalypts; CSIRO: Melbourne, Australia, 2000. [Google Scholar]
- Nicolle, D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus—Myrtaceae), with special reference to the obligate seeders. Aust. J. Bot. 2006, 54, 391–407. [Google Scholar] [CrossRef]
- Yahya, A.Z. Planting of Eucalyptus in Malaysia. Acta Sci. Agric. 2020, 4, 139. [Google Scholar] [CrossRef]
- Wang, W.; Li, G.Q.; Liu, Q.L.; Chen, S.F. Cryphonectriaceae on Myrtales in China: Phylogeny, host range, and pathogenicity. Persoonia–Mol. Phylogeny Evol. Fungi 2020, 45, 101–131. [Google Scholar] [CrossRef]
- Chen, S.; Gryzenhout, M.; Roux, J.; Xie, Y.; Wingfield, M.J.; Zhou, X.D. Identification and pathogenicity of Chrysoporthe cubensis on Eucalyptus and Syzygium spp. in South China. Plant Dis. 2010, 94, 1143–1150. [Google Scholar] [CrossRef]
- Li, G.; Slippers, B.; Wingfield, M.J.; Chen, S. Variation in Botryosphaeriaceae from Eucalyptus plantations in YunNan Province in southwestern China across a climatic gradient. IMA Fungus 2020, 11, 22. [Google Scholar] [CrossRef]
- Li, G.; Liu, F.; Li, J.; Liu, Q.; Chen, S. Botryosphaeriaceae from Eucalyptus plantations and adjacent plants in China. Persoonia–Mol. Phylogeny Evol. Fungi 2018, 40, 63–95. [Google Scholar] [CrossRef]
- Burgess, T.I.; Wingfield, M.J.; Drenth, A. Quambalaria species associated with plantation and native eucalypts in Australia. Plant Pathol. 2008, 57, 702–714. [Google Scholar]
- Burgess, T.I.; Barber, P.A.; Sufaati, S.; Xu, D.; Hardy, G.S.J.; Dell, B. Mycosphaerella spp. on Eucalyptus in Asia: New species, new hosts and new records. Fungal Divers. 2007, 24, 135–157. [Google Scholar]
- Burgess, T.I.; Andjic, V.; Hardy, G.S.; Dell, B.; Xu, D. First report of Phaeophleospora destructans in China. J. Trop. For. Sci. 2006, 18, 144–146. [Google Scholar]
- Carstensen, G.D.; Venter, S.N.; Wingfield, M.J.; Coutinho, T.A. Two Ralstonia species associated with bacterial wilt of Eucalyptus. Plant Pathol. 2017, 66, 393–403. [Google Scholar]
- Old, K.M.; Wingfield, M.J.; Yuan, Z.Q. A Manual of Diseases of Eucalyptus in South-East Asia; Centre for International Forestry Research: Jakarta, Indonesia, 2003. [Google Scholar]
- Kanzi, A.M.; Steenkamp, E.T.; Van der Merwe, N.A.; Wingfield, B.D. The mating system of the Eucalyptus canker pathogen Chrysoporthe austroafricana and closely related species. Fungal Genet. Biol. 2019, 123, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Myburg, H.; Gryzenhout, M.; Heath, R.; Roux, J.; Wingfield, B.D.; Wingfield, M.J. Cryphonectria canker on Tibouchina in South Africa. Mycol. Res. 2002, 106, 1299–1306. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Lee, J.; Lee, T.; Lee, Y.-W.; Yun, S.-H.; Turgeon, B.G. Shifting fungal reproductive mode by manipulation of mating type genes: Obligatory heterothallism of Gibberella zeae. Mol. Microbiol. 2003, 50, 145–152. [Google Scholar] [CrossRef]
- Kim, H.; Borkovich, K.A. Pheromones Are Essential for Male Fertility and Sufficient to Direct Chemotropic Polarized Growth of Trichogynes during Mating in Neurospora crassa. Eukaryot. Cell 2006, 5, 544–554. [Google Scholar] [CrossRef]
- Mayrhofer, S.; Weber, J.M.; Poggeler, S. Pheromones and Pheromone Receptors Are Required for Proper Sexual Development in the Homothallic Ascomycete Sordaria macrospora. Genetics 2006, 172, 1521–1533. [Google Scholar] [CrossRef]
- Rauf, H.T.; Saleem, B.A.; Lali, M.I.U.; Khan, M.A.; Sharif, M.; Bukhari, S.A.C. A citrus fruits and leaves dataset for detection and classification of citrus diseases through machine learning. Data Brief 2019, 26, 104340. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar]
- Gryzenhout, M.; Wingfield, B.D.; Wingfield, M.J. Taxonomy, Phylogeny, and Ecology of Bark-Inhabiting and Tree-Pathogenic Fungi in the Cryphonectriaceae; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2009. [Google Scholar]
- Gryzenhout, M.; Myburg, H.; Van der Merwe, N.A.; Wingfield, B.D.; Wingfield, M.J. Chrysoporthe, a new genus to accommodate Cryphonectria cubensis. Stud. Mycol. 2004, 50, 119–142. [Google Scholar]
- Wu, W.; Chen, S. Species diversity, mating strategy and pathogenicity of Calonectria species from diseased leaves and soils in the Eucalyptus plantation in southern China. J. Fungi 2021, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Van Heerden, S.W.; Wingfield, M.J. Genetic diversity of Cryphonectria cubensis isolates in South Africa. Mycol. Res. 2001, 105, 94–99. [Google Scholar] [CrossRef]
- Pöggeler, S. MAT and its role in the homothallic ascomycete Sordaria macrospora. In Sex in Fungi: Molecular Determination and Evolutionary Implications; Wiley: Hoboken, NJ, USA, 2007; pp. 171–188. [Google Scholar]
- Klix, V.; Nowrousian, M.; Ringelberg, C.; Loros, J.J.; Dunlap, J.C.; Pöggeler, S. Functional Characterization of MAT1-1—Specific Mating-Type Genes in the Homothallic Ascomycete Sordaria macrospora Provides New Insights into Essential and Nonessential Sexual Regulators. Eukaryot. Cell 2010, 9, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Stauber, L.; Prospero, S.; Croll, D. Comparative Genomics Analyses of Lifestyle Transitions at the Origin of an Invasive Fungal Pathogen in the Genus Cryphonectria. mSphere 2020, 5, e00737-20. [Google Scholar] [CrossRef] [PubMed]
- Granados, G.M.; McTaggart, A.R.; Rodas, C.A.; Roux, J.; Wingfield, M.J. Species of Cryphonectriaceae occupy an endophytic niche in the Melastomataceae and are putative latent pathogens of Eucalyptus. Eur. J. Plant Pathol. 2020, 156, 273–283. [Google Scholar] [CrossRef]
- Slippers, B.; Stenlid, J.; Wingfield, M.J. Emerging pathogens: Fungal host jumps following anthropogenic introduction. Trends Ecol. Evol. 2005, 20, 420–421. [Google Scholar] [CrossRef]
Primer | Primer Sequence (5′-3′) | Annealing Temp. (°C) | Region Amplified | Amplicon Size | Reference |
---|---|---|---|---|---|
ITS1 | TCCGTAGGTGAACCTCGCG | 59.5 | 5.8S nrRNA | ~600 | [16] |
ITS4 | TCCTCCGCTTATTGATATGC | 52.1 | |||
Bt2aF | GGTAACCAAATCGGTGCTGCTTTC | 58.8 | Bt2a | ~400 | [18] |
Bt2bR | ACCCTCAGTGTAGTGACCCTTGGC | 62.5 | Bt2b | ||
EF1-728F | CATCGAGAAGTTCGAGAAGG | 52.6 | EF1-728F | 300–400 | [17] |
EF1-986R | TACTTGAAGGAACCCTTACC | 51.3 | EF1-986R | ||
acdmat111F | CGGGTGTGGACGTTTATC | 53.2 | MAT1-1-1 | 700–800 | [19] |
acdmat111R | CGGGTGTGGACGTTTATC | 53.6 | |||
acdmat112F | TTGAAAGCAACMCTGACCGA | 55.9 | MAT1-1-2 | 800–900 | [19] |
acdmat112R | GCCGTGGAGAATATGCAGAA | 55.1 | |||
mat113qF | TTCATCATTGCACGTACCGA | 53.2 | MAT1-1-3 | 400–700 | [19] |
acdmat113R | GTACTTTGCTTGGTGTTGAT | 53.6 | |||
acdmat121F | AACCGTCTTCTTGTTGGTC | 52.6 | MAT1-2-1 | 500–700 | [20] |
acdmat121R | GTGGTAGTCTTCTTGGAACG | 52.8 | |||
pre1Q1_L | GCTCTTGAACATCCGTCTC | 53.1 | pre1 | ~200 | [20] |
pre1Q1_R | TAGTCTCCTTGGTGGTGGT | 55.1 | |||
pre2Q1_L | GACAATGACACCGAAGACC | 53.3 | pre2 | 100–200 | [20] |
pre2Q1_R | CCAGGAGGAGTTGAAGTAGAC | 54.3 | [21] | ||
cappg1Q1L | CCGAGATCTCCAACATGCG | 55.8 | ppg1 | 100–200 | [21] |
cappg1Q1R | CCGAACTTGGACAGGATGG | 55.6 | |||
ppg2Q1_L | TCTTCCTCCTCATCCACGTC | 56.0 | ppg2 | ~200 | [21] |
ppg2Q1_R | CTGCAGAGCTGCAAAGAGG | 56.4 |
No. | Isolate | Number of Tested Isolates | Origin of Isolate | Number of Tested Trees | |
---|---|---|---|---|---|
Eucalyptus urograndis | Eucalyptus pellita | ||||
1 | Chrysoporthe cubensis | 20 | Pahang | 20 | 20 |
2 | Chrysoporthe deuterocubensis | 20 | Kelantan | 20 | 20 |
3 | Chrysoporthe deuterocubensis | 20 | Sabah | 20 | 20 |
4 | Chrysoporthe deuterocubensis | 20 | Selangor | 20 | 20 |
No. | Isolate | Number of Tested Isolates | Origin of Isolate | Number of Tested Trees Eucalyptus urograndis |
---|---|---|---|---|
1 | Chrysoporthe cubensis | 2 | Pahang | 2 |
2 | Chrysoporthe deuterocubensis | 2 | Kelantan | 2 |
3 | Chrysoporthe deuterocubensis | 2 | Sabah | 2 |
4 | Chrysoporthe deuterocubensis | 2 | Selangor | 2 |
Species | Planted (ha) | Spacing (m × m) | Planted (year) | Number of Infected Trees | Pathogen |
---|---|---|---|---|---|
Eucalyptus urograndis (Sabah) | 13.63 | 3.0 × 3.0 (1111 stem/ha) | 2015 | 52 | Chrysoporthe deuterocubensis |
Eucalyptus urograndis (Sabah) | 23.98 | 3.0 × 3.0 (1111 stem/ha) | 2013 | 58 | Chrysoporthe deuterocubensis |
Eucalyptus urograndis (Sabah) | 11.37 | 3.0 × 3.0 (1111 stem/ha) | 2008 | 54 | Chrysoporthe deuterocubensis |
Eucalyptus urograndis (Kelantan) | 10.38 | 3.0 × 3.0 (1111 stem/ha) | 2018 | 36 | Chrysoporthe deuterocubensis |
Eucalyptus urograndis (Pahang) | 47.20 | 3.0 × 3.0 (1111 stem/ha) | 2016 | 45 | Chrysoporthe cubensis |
Eucalyptus urograndis (Selangor) | 0.86 | 3.0 × 3.0 (1111 stem/ha) | 2018 | 12 | Chrysoporthe deuterocubensis |
Eucalyptus pellita (Selangor) | 1.92 | 3.0 × 3.0 (1111 stem/ha) | 2018 | 43 | Chrysoporthe deuterocubensis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awing, N.H.; Ambrose, A.; Abdu, A.; Hassan, A.; Terhem, R. Characterisation of Chrysoporthe cubensis and Chrysoporthe deuterocubensis, the Stem Canker Diseases of Eucalyptus spp. in a Forest Plantation in Malaysia. Forests 2023, 14, 1660. https://doi.org/10.3390/f14081660
Awing NH, Ambrose A, Abdu A, Hassan A, Terhem R. Characterisation of Chrysoporthe cubensis and Chrysoporthe deuterocubensis, the Stem Canker Diseases of Eucalyptus spp. in a Forest Plantation in Malaysia. Forests. 2023; 14(8):1660. https://doi.org/10.3390/f14081660
Chicago/Turabian StyleAwing, Norida Hanim, Annya Ambrose, Arifin Abdu, Affendy Hassan, and Razak Terhem. 2023. "Characterisation of Chrysoporthe cubensis and Chrysoporthe deuterocubensis, the Stem Canker Diseases of Eucalyptus spp. in a Forest Plantation in Malaysia" Forests 14, no. 8: 1660. https://doi.org/10.3390/f14081660