Ecological Stoichiometry of N and P across a Chronosequence of Chinese Fir Plantation Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Site
2.2. Experimental Design
2.3. Foliage and Soil Sampling
2.4. Chemical Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Peng, Y.; Chen, Y.; Lei, S.; Wang, X.; Farooq, T.H.; Liang, X.; Zhang, C.; Yan, W.; Chen, X. Ecological Stoichiometry and Stock Distribution of C, N, and P in Three Forest Types in a Karst Region of China. Plants 2023, 12, 2503. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Sheng, M.; Bai, Y.; Jie, Y.; Xiao, H. Response of C, N, and P stoichiometry characteristics of Broussonetia papyrifera to altitude gradients and soil nutrients in the karst rocky ecosystem, SW China. Plant Soil 2022, 475, 123–136. [Google Scholar] [CrossRef]
- Ding, P.; Noor, H.; Shah, A.A.; Yan, Z.; Sun, P.; Zhang, L.; Li, L.; Jun, X.; Sun, M.; Elansary, H.O.; et al. Nutrient Cycling and Nitrogen Management Impact of Sowing Method and Soil Water Consumption on Yield Nitrogen Utilization in Dryland Wheat (Triticum aestivum L.). Agronomy 2023, 13, 1528. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Chen, X.; Liu, S.; Lu, X.; Chen, H.Y.H.; Ruan, H. Phosphorus additions imbalance terrestrial ecosystem C:N:P stoichiometry. Glob. Chang. Biol. 2022, 28, 7353–7365. [Google Scholar] [CrossRef]
- Farooq, T.H.; Li, Z.; Yan, W.; Shakoor, A.; Kumar, U.; Shabbir, R.; Peng, Y.; Gayathiri, E.; Alotaibi, S.S.; Wróbel, J.; et al. Variations in litterfall dynamics, C: N: P stoichiometry and associated nutrient return in pure and mixed stands of camphor tree and masson pine forests. Front. Environ. Sci. 2022, 10, 903039. [Google Scholar] [CrossRef]
- Yan, W.; Farooq, T.H.; Chen, Y.; Wang, W.; Shabbir, R.; Kumar, U.; Riaz, M.U.; Alotaibi, S.S.; Peng, Y.; Chen, X. Soil Nitrogen Transformation Process Influenced by Litterfall Manipulation in Two Subtropical Forest Types. Front. Plant Sci. 2022, 13, 923410. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.; Xu, M.; Deng, J.; Han, X.; Yang, G.; Fen, Y.; Ren, G. Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia seudoacacia afforestation on the Loess Plateau, China. Geoderma 2019, 337, 280–289. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S., III. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 1999; Volume 30, pp. 1–67. [Google Scholar]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. N. Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Liu, C.; Yang, H.; Li, M.; Yu, C.; Wilcox, K.; Yu, Q.; He, N. C:N:P stoichiometry in China’s forests: From organs to ecosystems. Funct. Ecol. 2018, 32, 50–60. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, J.; Chen, B.; Hu, Y. Nutrient resorption efficiency of three tree species in Beijing plain afforestation and its C:N:P stoichiometry. Ann. For. Res. 2020, 63, 91–102. [Google Scholar] [CrossRef]
- Fan, H.; Wu, J.; Liu, W.; Yuan, Y.; Hu, L.; Cai, Q. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 2015, 392, 127–138. [Google Scholar] [CrossRef]
- Rashid, M.H.U.; Guo, H.; Zheng, S.; Li, L.; Ma, X.; Farooq, T.H.; Nawaz, M.F.; Gautam, N.P.; Wu, P. Effects of low phosphorus availability on root cambial activity, biomass production and root morphological pattern in two clones of Chinese fir. Forestry 2022, 96, 76–86. [Google Scholar] [CrossRef]
- Zou, X.; Liu, Q.; Huang, Z.; Chen, S.; Wu, P.; Ma, X.; Cai, L. Allocation of Phosphorus Fractions in Chinese Fir in Response to Low Phosphorus Availability Using 32P Tracer. Forests 2022, 13, 1769. [Google Scholar] [CrossRef]
- Fyllas, N.M.; Patino, S.; Baker, T.R.; Bielefeld Nardoto, G.; Martinelli, L.A.; Quesada, C.A.; Paiva, R.; Schwarz, M.; Horna, V.; Mercado, L.M.; et al. Basin-wide variations in foliar properties of Amazonian forest: Physiology, soils and climate. Biogeosciences 2009, 6, 2677–2708. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, J.; Zhao, X.; Chao, Z.; Wang, Y.; Zhang, X.; Wang, D. The linkages of plant, litter and soil C:N:P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. PeerJ 2020, 8, e9274. [Google Scholar] [CrossRef]
- Zhao, M.; Xiang, W.; Tian, D.; Deng, X.; Huang, Z.; Zhou, X.; Peng, C. Effects of increased nitrogen deposition and rotation length on long-term productivity of Cunninghamia lanceolata plantation in southern China. PLoS ONE 2013, 8, e55376. [Google Scholar] [CrossRef]
- Chen, Y.H.; Han, W.X.; Tang, L.Y.; Tang, Z.; Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 2013, 36, 178–184. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef]
- Wu, X.; Cao, Y.; Jiang, Y.; Chen, M.; Zhang, H.; Wu, P.; Ma, X. Dynamics of Non-Structural Carbohydrates Release in Chinese Fir Topsoil and Canopy Litter at Different Altitudes. Plants 2023, 12, 729. [Google Scholar] [CrossRef] [PubMed]
- Farooq, T.H.; Chen, X.; Shakoor, A.; Rashid, M.H.U.; Kumar, U.; Alhomrani, M.; Alamri, A.S.; Ravindran, B.; Yan, W. Unraveling the Importance of Forest Structure and Composition Driving Soil Microbial and Enzymatic Responses in the Subtropical Forest Soils. Forests 2022, 13, 1535. [Google Scholar] [CrossRef]
- Ma, X.; Heal, K.V.; Liu, A.; Jarvis, P.G. Nutrient cycling and distribution in different-aged plantations of Chinese fir in southern China. For. Ecol. Manag. 2007, 243, 61–74. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, W.; Peng, Y.; Wan, M.; Farooq, T.H.; Fan, W.; Lei, J.; Yuan, C.; Wang, W.; Qi, Y.; et al. Biomass Production and Carbon Stocks in Poplar-Crop Agroforestry Chronosequence in Subtropical Central China. Plants 2023, 12, 2451. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Shalom, A.-D.D.; Wu, P.; He, Z.; Liu, C.; Ma, X. Biomass production, nutrient cycling and distribution in age-sequence Chinese fir (Cunninghamia lanceolata) plantations in subtropical China. J. For. Res. 2016, 27, 357–368. [Google Scholar] [CrossRef]
- Marschner, H. (Ed.) Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Liu, Z.; Bai, Y.; Jiang, C.; Wang, S.; Meng, J. Species association of the dominant tree species in an old-growth forest and their implications for silvicultural practices in western Hunan Province, China. Austrian J. For. Sci. 2019, 136, 3. [Google Scholar]
- Farooq, T.H.; Ma, X.; Rashid, M.H.U.; Wu, W.; Xu, J.; Tarin, M.W.K.; He, Z.; Wu, P. Impact of stand density on soil quality in Chinese fir (Cunninghamia lanceolata) monoculture. Appl. Ecol. Environ. Res. 2019, 17, 3553–3566. [Google Scholar] [CrossRef]
- Farooq, T.H.; Chen, X.; Shakoor, A.; Li, Y.; Wang, J.; Rashid, M.H.U.; Kumar, U.; Yan, W. Unraveling the Influence of Land-Use Change on 13C, 15N, and Soil Nutritional Status in Coniferous, Broadleaved, and Mixed Forests in Southern China: A Field Investigation. Plants 2021, 10, 1499. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Slik, J.F.; Cao, K. Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecol. Biogeogr. 2012, 21, 809–818. [Google Scholar] [CrossRef]
- Sheng, W.T.; Yang, C.D.; Fan, S.H. Variation of Soil Properties of Chinese Fir plantation. For. Res. 2003, 16, 377–385. [Google Scholar]
- Ren, S.J.; Yu, G.R.; Tao, B.; Wang, S.Q. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environ. Sci. 2007, 28, 2665–2673. [Google Scholar]
- Reed, S.C.; Townsend, A.R.; Davidson, E.A.; Cleveland, C.C. Stoichiometric patterns in foliar nutrient resorption across multiple scales. N. Phytol. 2012, 196, 173–180. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C: N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A. Pattern and variation of C: N: P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2012, 98, 139–151. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F. The vegetation N: P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Zheng, L.J.; Huang, Z.Q.; He, Z.M.; Wang, X.Y.; Liu, Z.M.; Liu, R.Q.; Xiao, H.Y. Influence of forest and foliar ages on the composition of stable carbon and nitrogen isotope of Cunninghamia lanceolata in subtropical China. Sci. Silvae Sin. 2015, 51, 22–28. [Google Scholar]
Stand Age ↓ | Soil Bulk Density (g/cm3) | Soil Moisture Content (%) | ||||
---|---|---|---|---|---|---|
Soil Depth (cm) → | 0–20 | 20–40 | 40–60 | 0–20 | 20–40 | 40–60 |
3 | 1.23 | 1.46 | 1.61 | 27.41 | 29.61 | 29.20 |
8 | 1.31 | 1.17 | 1.20 | 27.74 | 22.29 | 20.67 |
18 | 1.06 | 1.26 | 1.39 | 36.67 | 33.41 | 30.36 |
26 | 1.24 | 1.19 | 1.38 | 35.05 | 33.46 | 26.09 |
Mean | 1.22 | 1.26 | 1.39 | 30.47 | 29.69 | 26.58 |
Stand Age (Year) | Slope Aspect | Slope Gradient (°) | Canopy Density | Average DBH (cm) | Average Height (m) | Density (tree/hm−2) |
---|---|---|---|---|---|---|
3 | N | 20 | 0.3 | 3.7 | 2.8 | 2500 |
8 | N | 28 | 0.7 | 6.8 | 5.6 | 2440 |
18 | N | 25 | 0.9 | 13.8 | 14.2 | 1825 |
26 | N | 30 | 0.8 | 17.1 | 16.0 | 1417 |
Stands | 3-Year-Old | 8-Year-Old | 18-Year-Old | 26-Year-Old | |
---|---|---|---|---|---|
Soil Depth | |||||
Soil N concentration (mg·g−1) | |||||
0–20 cm | 1.74 ± 0.23 a | 1.75 ± 0.24 a | 2.18 ± 0.33 a | 1.89 ± 0.18 a | |
20–40 cm | 1.21 ± 0.19 a | 1.33 ± 0.16 ab | 1.66 ± 0.29 b | 1.54 ± 0.20 ab | |
40–60 cm | 1.02 ± 0.19 a | 1.05 ± 0.18 a | 1.31 ± 0.15 ab | 1.40 ± 0.16 b | |
Mean | 1.32 ± 0.37 a | 1.38 ± 0.36 a | 1.72 ± 0.44 b | 1.61 ± 0.27 b | |
Soil P concentration (mg·g−1) | |||||
0–20 cm | 0.23 ± 0.01 a | 0.38 ± 0.03 b | 0.39 ± 0.01 b | 0.38 ± 0.03 b | |
20–40 cm | 0.21 ± 0.01 a | 0.36 ± 0.02 b | 0.37 ± 0.04 b | 0.35 ± 0.04 b | |
40–60 cm | 0.21 ± 0.01 a | 0.33 ± 0.01 b | 0.33 ± 0.04 b | 0.33 ± 0.04 b | |
Mean | 0.21 ± 0.01 a | 0.35 ± 0.03 b | 0.36 ± 0.03 b | 0.35 ± 0.04 b |
Stands | 3-Year-Old | 8-Year-Old | 18-Year-Old | 26-Year-Old | |
---|---|---|---|---|---|
Soil Depth | |||||
0–20 cm | 7.70 ± 1.01 a | 4.64 ± 0.40 b | 5.62 ± 0.78 b | 5.02 ± 0.19 b | |
20–40 cm | 5.87 ± 1.00 a | 3.74 ± 0.57 b | 4.50 ± 0.53 b | 4.45 ± 0.47 b | |
40–60 cm | 4.87 ± 0.97 a | 3.22 ± 0.43 b | 3.94 ± 0.54 ab | 4.25 ± 0.39 ab | |
Mean | 6.14 ± 1.51 a | 3.87 ± 0.74 b | 4.69 ± 0.92 c | 4.57 ± 0.47 c |
Soil N:P | Leaf N:P | Soil N | Leaf N | Soil P | Leaf P | |
---|---|---|---|---|---|---|
Soil N:P | 1 | −0.128 | 0.513 ** | 0.074 | −0.438 ** | 0.140 |
Leaf N:P | 1 | 0.014 | −0.466 ** | 0.184 | −0.802 ** | |
Soil N | 1 | −0.228 | 0.528 ** | −0.168 | ||
Leaf N | 1 | −0.293 | 0.834 ** | |||
Soil P | 1 | −0.319 | ||||
Leaf P | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Yan, W.; Farooq, T.H.; Chen, X.; Wang, J.; Yuan, C.; Qi, Y.; Khan, K.A. Ecological Stoichiometry of N and P across a Chronosequence of Chinese Fir Plantation Forests. Forests 2023, 14, 1685. https://doi.org/10.3390/f14081685
Cao J, Yan W, Farooq TH, Chen X, Wang J, Yuan C, Qi Y, Khan KA. Ecological Stoichiometry of N and P across a Chronosequence of Chinese Fir Plantation Forests. Forests. 2023; 14(8):1685. https://doi.org/10.3390/f14081685
Chicago/Turabian StyleCao, Juan, Wende Yan, Taimoor Hassan Farooq, Xiaoyong Chen, Jun Wang, Chenglin Yuan, Yaqin Qi, and Khalid Ali Khan. 2023. "Ecological Stoichiometry of N and P across a Chronosequence of Chinese Fir Plantation Forests" Forests 14, no. 8: 1685. https://doi.org/10.3390/f14081685
APA StyleCao, J., Yan, W., Farooq, T. H., Chen, X., Wang, J., Yuan, C., Qi, Y., & Khan, K. A. (2023). Ecological Stoichiometry of N and P across a Chronosequence of Chinese Fir Plantation Forests. Forests, 14(8), 1685. https://doi.org/10.3390/f14081685