Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices
Abstract
:1. Introduction
2. Biotic Communities Associated with Mangroves
2.1. Habitat for Local Communities
2.2. Mangroves Association with Corals and Seagrass
2.3. Reservoir of Microbial Communities
3. Mangrove Ecosystem and Economic Functions and Services
3.1. Carbon Sink
3.2. Natural Water Filters
3.3. Barriers to Natural Disasters
3.4. Livelihood Opportunities for Coastal Communities
3.4.1. Aquaculture
3.4.2. Fodder, Timber and Traditional Medicines
3.4.3. Ecotourism
4. Major Threats to Mangrove Ecosystems
4.1. Severe Threats
4.1.1. Coastal Development Leading to Degradation
4.1.2. Expansion of Aquaculture/Agriculture Leading to Over-Exploitation of Mangrove Forests
4.1.3. Deforestation for Acquisition of Timber
4.2. Moderate Threats
4.2.1. Climate Change
4.2.2. Eutrophication
4.2.3. Altered Hydrological Flow
4.3. Low Level Threats
4.3.1. Diseases
4.3.2. Tourism
4.3.3. Pollution
5. Challenges for Mangrove Management
5.1. Land-Use Conflicts
5.2. Low Stringency in Regulatory Action
5.3. Inadequate Policy and Government Frameworks
6. Strategies for Mitigating Mangrove Loss by Augmenting Resistance and Resilience to Threats
6.1. Smart Land Use Planning
6.2. Managed Catchment Based Activities
6.3. An Integrated Regional Monitoring Network to Access Impact of Climate Change
6.4. Mangroves Restoration/Reforestation
6.5. Community Education and Outreach
7. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Judith, K. Exploring Interstitiality with Mangroves: Semiotic Materialism and the Environmental Humanities; Routledge: New York, NY, USA, 2022. [Google Scholar]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef]
- Huntley, B.J. The Mangrove Biome. In Ecology of Angola: Terrestrial Biomes and Ecoregions; Huntley, B.J., Ed.; Springer: Cham, Switzerland, 2023; pp. 383–391. [Google Scholar]
- Chowdhury, A.; Prakash, R.; Bhattacharyya, S.; Naz, A. Role of Ponds as a Local Practice in Mitigating Salinity Intrusion Threats at Coastal Aquifer: A Case Study from Sundarban Biosphere Reserve, India. In Indigenous and Local Water Knowledge, Values and Practices; Basu, M., DasGupta, R., Eds.; Springer Nature: Singapore, 2023; pp. 287–306. [Google Scholar]
- Law, J.W.-F.; Pusparajah, P.; Ab Mutalib, N.-S.; Wong, S.H.; Goh, B.-H.; Lee, L.-H. A review on mangrove actinobacterial diversity: The roles of Streptomyces and novel species discovery. Prog. Microbes Mol. Biol. 2019, 2, 1. [Google Scholar] [CrossRef]
- Asy’Ari, R.; Putra, M. MAKABUT (mangroves-bekantan-gambut): A solution for the development of integrated eco-tourism area in mangrove-proboscis monkey’s habitat in Batu Ampar, Kubu Raya Regency, West Kalimantan. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 3–4 November 2020; p. 12033. [Google Scholar]
- Ma, W.; Wang, W.; Tang, C.; Chen, G.; Wang, M. Zonation of mangrove flora and fauna in a subtropical estuarine wetland based on surface elevation. Ecol. Evol. 2020, 10, 7404–7418. [Google Scholar] [CrossRef] [PubMed]
- Das, S.C.; Das, S.; Tah, J. Mangrove Forests and People’s Livelihoods. In Mangroves: Biodiversity, Livelihoods and Conservation; Das, S.C., Pullaiah, T., Ashton, E.C., Eds.; Springer Nature: Singapore, 2022; pp. 153–173. [Google Scholar]
- Mitra, A. Ecosystem services of mangroves: An overview. In Mangrove Forests in India: Exploring Ecosystem Services; Mitra, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–32. [Google Scholar]
- Genilar, L.A.; Kurniawaty, E.; Mokhtar, R.A.M.; Audah, K.A. Mangroves and their medicinal benefit: A mini review. Ann. Rom. Soc. Cell Biol. 2021, 25, 695–709. [Google Scholar]
- Beck, M.W.; Heck, N.; Narayan, S.; Menendez, P.; Reguero, B.G.; Bitterwolf, S.; Torres-Ortega, S.; Lange, G.-M.; Pfliegner, K.; McNulty, V.P. Return on investment for mangrove and reef flood protection. Ecosyst. Serv. 2022, 56, 101440. [Google Scholar] [CrossRef]
- Kamil, E.A.; Takaijudin, H.; Hashim, A.M. Mangroves as coastal bio-shield: A review of mangroves performance in wave attenuation. Civ. Eng. J. 2021, 7, 1964–1981. [Google Scholar] [CrossRef]
- Ahmed, S.; Sarker, S.K.; Friess, D.A.; Kamruzzaman, M.; Jacobs, M.; Islam, M.A.; Alam, M.A.; Suvo, M.J.; Sani, M.N.H.; Dey, T. Salinity reduces site quality and mangrove forest functions: From monitoring to understanding. Sci. Total Environ. 2022, 853, 158662. [Google Scholar] [CrossRef] [PubMed]
- Taillardat, P.; Friess, D.A.; Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 2018, 14, 20180251. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Barbier, E.; Duarte, C.M. Tackling the mangrove restoration challenge. PLoS Biol. 2022, 20, e3001836. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, R.; Hashimoto, S.; Saito, O. Fostering Mangrove Ecosystem Services for a Resilient Future for the Asia-Pacific Region: A Knowledge Synthesis. In Assessing, Mapping and Modelling of Mangrove Ecosystem Services in the Asia-Pacific Region; Saito, O., Dasgupta, R., Hashimoto, S., Eds.; Springer Nature: Singapore, 2022; pp. 283–292. [Google Scholar]
- Gouvêa, L.P.; Serrão, E.A.; Cavanaugh, K.; Gurgel, C.F.; Horta, P.A.; Assis, J. Global impacts of projected climate changes on the extent and aboveground biomass of mangrove forests. Divers. Distrib. 2022, 28, 2349–2360. [Google Scholar] [CrossRef]
- de Lacerda, L.D.; Ward, R.D.; Godoy, M.D.P.; de Andrade Meireles, A.J.; Borges, R.; Ferreira, A.C. 20-years cumulative impact from shrimp farming on mangroves of Northeast Brazil. Front. For. Glob. Chang. 2021, 4, 653096. [Google Scholar] [CrossRef]
- Adame, M.F.; Connolly, R.M.; Turschwell, M.P.; Lovelock, C.E.; Fatoyinbo, T.; Lagomasino, D.; Goldberg, L.A.; Holdorf, J.; Friess, D.A.; Sasmito, S.D. Future carbon emissions from global mangrove forest loss. Glob. Chang. Biol. 2021, 27, 2856–2866. [Google Scholar] [CrossRef]
- John, J.; Nandhini, A.; Velayudhaperumal Chellam, P.; Sillanpää, M. Microplastics in mangroves and coral reef ecosystems: A review. Environ. Chem. Lett. 2022, 20, 397–416. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, T.R.; Acter, T.; Uddin, N.; Kamal, M.; Chowdhury, A.S.; Rahman, M.S. Heavy metals contamination of river water and sediments in the mangrove forest ecosystems in Bangladesh: A consequence of oil spill incident. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100484. [Google Scholar] [CrossRef]
- Fryer, P.; Wheat, C.G.; Williams, T.; Kelley, C.; Johnson, K.; Ryan, J.; Kurz, W.; Shervais, J.; Albers, E.; Bekins, B. Mariana serpentinite mud volcanism exhumes subducted seamount materials: Implications for the origin of life. Philos. Trans. R. Soc. A 2020, 378, 20180425. [Google Scholar] [CrossRef] [PubMed]
- Safe’i, R. Analysis of damage to trees in the coastal mangrove forest of East Lampung Regency. Int. J. Sustain. Dev. Plan. 2022, 17, 307–312. [Google Scholar] [CrossRef]
- Arifanti, V. Mangrove Management and Climate Change: A Review in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 28 August 2019; p. 012022. [Google Scholar]
- Hanley, M.E.; Bouma, T.J.; Mossman, H.L. The gathering storm: Optimizing management of coastal ecosystems in the face of a climate-driven threat. Ann. Bot. 2020, 125, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, O.; Tadono, T.; Hayashi, M.; Harada, M.; Hamamoto, K.; Rosenqvist, A.; Bunting, P.; Lucas, R.; Hilarides, L.; Granziera, B.M. Satellite-Based Map of Global Mangrove Extent and Changes: Global Mangrove Watch (GMW). 2022. Available online: https://www.iges.or.jp/jp/pub/gmw-submission/en (accessed on 5 April 2023).
- Du, C.; Khan, S.; Ke, Y.; Zhou, D. Assessment of Spatiotemporal Dynamics of Mangrove in Five Typical Mangrove Reserve Wetlands in Asia, Africa and Oceania. Diversity 2023, 15, 148. [Google Scholar] [CrossRef]
- Ximenes, A.C.; Cavanaugh, K.C.; Arvor, D.; Murdiyarso, D.; Thomas, N.; Arcoverde, G.F.; da Conceição Bispo, P.; Van der Stocken, T. A comparison of global mangrove maps: Assessing spatial and bioclimatic discrepancies at poleward range limits. Sci. Total Environ. 2023, 860, 160380. [Google Scholar] [CrossRef]
- Zhang, Z.; Ahmed, M.R.; Zhang, Q.; Li, Y.; Li, Y. Monitoring of 35-Year Mangrove Wetland Change Dynamics and Agents in the Sundarbans Using Temporal Consistency Checking. Remote Sens. 2023, 15, 625. [Google Scholar] [CrossRef]
- Nunoo, F.K.; Agyekumhene, A. Mangrove Degradation and Management Practices along the Coast of Ghana. Agric. Sci. 2022, 13, 1057–1079. [Google Scholar] [CrossRef]
- Spalding, M.; Parrett, C.L. Global patterns in mangrove recreation and tourism. Mar. Policy 2019, 110, 103540. [Google Scholar] [CrossRef]
- Aung, T.T. Mangroves in Myanmar. In Mangroves: Biodiversity, Livelihoods and Conservation; Das, S.C., Pullaiah, T., Ashton, E.C., Eds.; Springer Nature: Singapore, 2022; pp. 331–371. [Google Scholar]
- Hassan, H.U.; Ali, Q.M.; Ahmad, N.; Attaullah, M.; Chatta, A.M.; Farooq, U.; Ali, A. Study of vertebrate diversity and associated threats in selected habitats of Sindh and Baluchistan, Pakistan. Int. J. Biol. Biotechnol. 2020, 17, 163–175. [Google Scholar]
- Aburto-Oropeza, O.; Burelo-Ramos, C.M.; Ezcurra, E.; Ezcurra, P.; Henriquez, C.L.; Vanderplank, S.E.; Zapata, F. Relict inland mangrove ecosystem reveals Last Interglacial sea levels. Proc. Natl. Acad. Sci. USA 2021, 118, e2024518118. [Google Scholar] [CrossRef] [PubMed]
- Arceo-Carranza, D.; Chiappa-Carrara, X.; Chávez López, R.; Yáñez Arenas, C. Mangroves as feeding and breeding grounds. In Mangroves: Ecology, Biodiversity and Management; Springer: Singapore, 2021; pp. 63–95. [Google Scholar]
- Davie, P.J. Crabs: A Global Natural History; Princeton University Press: Princeton, NJ, USA, 2021. [Google Scholar]
- Vozzo, M.L.; Bishop, M.J.; Dafforn, K.A.; Mayer-Pinto, M. Volvo Cars Australia-Sydney Institute of Marine Science ‘Living Seawall’ Biodiversity Assessment. 2021. Available online: https://static1.squarespace.com/static/60efa1626de4b55189f0d735/t/62c4dfe9e3afc61414478f89/1657069552808/SIMS_Volvo+Living+Seawall_24+Month+Report.pdf (accessed on 11 July 2023).
- Wulff, J.L. Targeted predator defenses of sponges shape community organization and tropical marine ecosystem function. Ecol. Monogr. 2021, 91, e01438. [Google Scholar] [CrossRef]
- Le Huy Baa, N.X.H.; Nguyenb, T.T.; Van Namb, T. The Bio-Habit and Role of Peanut Worm (Sipuculus Nudus) in Mangrove Ecosystems of Thanh Phu, Ben Tre Province and Can Gio, Ho Chi Minh City, Viet Nam. Chem. Eng. 2021, 84, 1–6. Available online: https://www.researchgate.net/profile/Van-Thai/publication/361228677_The_bio-habit_and_role_of_peanut_worm_sipuculus_nudus_in_mangrove_ecosystems_of_Thanh_Phu_Ben_Tre_province_and_Can_Gio_Ho_Chi_Minh_City_Viet_Nam/links/62a4876a55273755ebe31c05/The-bio-habit-and-role-of-peanut-worm-sipuculus-nudus-in-mangrove-ecosystems-of-Thanh-Phu-Ben-Tre-province-and-Can-Gio-Ho-Chi-Minh-City-Viet-Nam.pdf (accessed on 11 March 2023).
- Jane, S.F.; Smith, K.M.; Baker, D.; Saroni, A.; Cutler, E.; Carvalho, P. News media and fisheries-independent data reveal hidden impacts of hurricanes. Ambio 2022, 51, 2169–2181. [Google Scholar] [CrossRef]
- Goudkamp, K.; Chin, A. Mangroves and Saltmarshes. 2006. Available online: https://elibrary.gbrmpa.gov.au/jspui/retrieve/b16abcf6-52fb-445d-b7fd-9af2e7ffb4bc/State-of-the-Reef-Report-2006-Mangroves-and-saltmarshes.pdf (accessed on 2 February 2023).
- Egawa, R.; Sharma, S.; Nadaoka, K.; MacKenzie, R.A. Burrow dynamics of crabs in subtropical estuarine mangrove forest. Estuar. Coast. Shelf Sci. 2021, 252, 107244. [Google Scholar] [CrossRef]
- Min, W.W.; Kandasamy, K.; Balakrishnan, B. Crab species-specific excavation and architecture of burrows in restored mangrove habitat. J. Mar. Sci. Eng. 2023, 11, 310. [Google Scholar] [CrossRef]
- Ridlon, A.D.; Marks, A.; Zabin, C.J.; Zacherl, D.; Allen, B.; Crooks, J.; Fleener, G.; Grosholz, E.; Peabody, B.; Toft, J. Conservation of marine foundation species: Learning from native oyster restoration from California to British Columbia. Estuar. Coast 2021, 44, 1723–1743. [Google Scholar] [CrossRef]
- Coe, M.A.; Gaoue, O.G. Cultural keystone species revisited: Are we asking the right questions? J. Ethnobiol. Ethnomed. 2020, 16, 70. [Google Scholar] [CrossRef] [PubMed]
- Bettcher, L.; Fernandez, J.C.; Gastaldi, M.; Bispo, A.; Leal, C.V.; Leite, D.; Avelino-Alves, D.; Clerier, P.H.; Rezende, D.; Gulart, C.M. Checklist, diversity descriptors and selected descriptions of a highly diverse intertidal sponge (Porifera) assemblage at Costa do Descobrimento (Bahia, Brazil). Zootaxa 2023, 5277, 443–489. [Google Scholar] [CrossRef]
- Brown, S. Revising the Taxonomy and Biology of Ornamental Worms (Polychaeta: Sabellidae) around the Arabian Peninsula. 2020. Available online: https://repository.kaust.edu.sa/handle/10754/662775 (accessed on 2 April 2023).
- Hardiwinoto, S.; Syahbudin, A. Changes in insect biodiversity on rehabilitation sites in the southern coastal areas of Java Island, Indonesia. Biodiversitas J. Biol. Divers. 2020, 21, 1. [Google Scholar]
- Husain, P.; Al Idrus, A.; Ihsan, M.S. The ecosystem services of mangroves for sustainable coastal area and marine fauna in Lombok, Indonesia: A review. J. Inov. Pendidik. Dan Sains 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Setyawan, Y.P. The denser canopy of mangrove drives the structure of insect communities. Trop. Life Sci. Res. 2020, 31, 77–90. [Google Scholar] [CrossRef]
- Hajializadeh, P.; Safaie, M.; Naderloo, R.; Shojaei, M.G. Spatial and temporal distribution of brachyuran crabs in mangroves of the Persian Gulf. Wetlands 2022, 42, 99. [Google Scholar] [CrossRef]
- Sharifian, S.; Kamrani, E.; Saeedi, H. Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. J. Therm. Biol. 2020, 92, 102692. [Google Scholar] [CrossRef]
- Sinage, A.A.L. Distribuição Longitudinal e Sazonal da População do Camarão Explorado Pela Pesca Artesanal no Estuário de Macuse, Moçambique. 2019. Available online: http://monografias.uem.mz/handle/123456789/2874 (accessed on 11 March 2023).
- Nandi, N. Aquaculturable fishery resources in wetlands of West Bengal. J. Aquac. Mar. Biol. 2023, 12, 80–84. [Google Scholar] [CrossRef]
- Williams, G.A.; Chan, B.K.; Dong, Y.-W.; Hawkins, S.; Bohn, K.; Firth, L. Rocky Shores of Mainland China, Taiwan and Hong Kong: Past, Present and Future. Interact. Mar. Benthos Glob. Patterns Process. 2019, 87, 360–390. Available online: https://www.researchgate.net/profile/Yunwei-Dong-2/publication/335676645_Rocky_Shores_of_Mainland_China_Taiwan_and_Hong_Kong_Past_Present_and_Future/links/5d7857fb4585151ee4adfbe6/Rocky-Shores-of-Mainland-China-Taiwan-and-Hong-Kong-Past-Present-and-Future.pdf (accessed on 15 March 2023).
- Pitriana, P.; Valente, L.; von Rintelen, T.; Jones, D.S.; Prabowo, R.E.; von Rintelen, K. An annotated checklist and integrative biodiversity discovery of barnacles (Crustacea, Cirripedia) from the Moluccas, East Indonesia. ZooKeys 2020, 945, 17. [Google Scholar] [CrossRef]
- Azevedo, J.A.M.; Barros, A.B.; Miranda, P.R.B.d.; Costa, J.G.D.; Nascimento, V.X. Biomonitoring of heavy metals (Fe, Zn, Cu, Mn, Cd and Cr) in oysters: Crassostrea rhizophorae of mangrove areas of Alagoas (Brazil). Braz. Arch. Biol. Technol. 2019, 62, e19180211. [Google Scholar] [CrossRef]
- Zvonareva, S.S.; Mekhova, E.S.; Hà, V.T.; Kantor, Y.I. Checklist of bivalve molluscs in mangroves of Khánh Hòa Province, Vietnam. Molluscan Res. 2019, 39, 296–312. [Google Scholar] [CrossRef]
- Bahari, N.A.; Jaafar, N.S.N.; Nor, S.M.M.; Omar, W.B.W. Habitat preferences of mangrove clam (Geloina expansa) in East coast of Peninsular Malaysia. Aquac. Aquar. Conserv. Legis. 2021, 14, 3776–3781. [Google Scholar]
- Argente, F.; Ilano, A. Population dynamics and aquaculture potential of the mud clam, Geloina expansa (Mousson, 1849) (Bivalvia: Cyrenidae) in Loay-Loboc River, Bohol, Central Philippines. J. Sustain. Sci. Manag. 2021, 16, 43–55. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, J.; Yan, X.; Chen, J.; Cao, X.; Wu, J.; Liu, Y.; Wang, T. Marine-derived macrolides 1990–2020: An overview of chemical and biological diversity. Mar. Drugs 2021, 19, 180. [Google Scholar] [CrossRef]
- Picardal, J.P.; Avila, S.T.R.; Tano, M.F.; Marababol, M.S. The species composition and associated fauna of the mangrove forest in Tabuk and Cabgan Islets, Palompon Leyte, Philippines. CNU J. High. Educ. 2011, 5, 1–18. [Google Scholar]
- Islami, M.M.; Dody, D.G.B.a.S. Spatial variation in population characteristics of tumid venus clam Gafrarium tumidum Röding, 1798 (Bivalvia: Veneridae) in Ambon Bay, Maluku. Mar. Res. Indones. 2018, 43, 63–70. [Google Scholar] [CrossRef]
- Peck, H. The Application of Ecological Models and Trophic Analyses to Archaeological Marine Fauna Assemblages: Towards Improved Understanding of Prehistoric marine Fisheries and Ecosystems in Tropical Australia. Ph.D. Thesis, James Cook University, Douglas, QLD, Australia, 2016. [Google Scholar]
- Dolorosa, R.G.; Dangan-Galon, F. Population dynamics of the mangrove clam Polymesoda erosa (Bivalvia: Corbiculidae) in Iwahig, Palawan, Philippines. Int. J. Fauna Biol. Stud. 2014, 1, 11–15. [Google Scholar]
- da Silva Mourão, J.; Baracho, R.L.; de Faria Lopes, S.; Medeiros, M.C.; Diele, K. The harvesting process and fisheries production of the venus clam Anomalocardia flexuosa in a Brazilian extractive reserve, with implications for gender-sensitive management. Ocean Coast. Manag. 2021, 213, 105878. [Google Scholar] [CrossRef]
- Alves, R.R.N.; Pinto, M.F.; Borges, A.K.M.; Oliveira, T.P.R. Fisheries and Uses of Coastal Aquatic Fauna in the Northernmost Brazilian Atlantic Forest. In Animal Biodiversity and Conservation in Brazil’s Northern Atlantic Forest; Springer: Berlin/Heidelberg, Germany, 2023; pp. 229–255. [Google Scholar]
- Cunha-Lignon, M.; Mendonça, J.T.; Conti, L.A.; de Souza Barros, K.V.; Magalhães, K.M. Mangroves and Seagrasses. In Blue Economy: An Ocean Science Perspective; Springer: Berlin/Heidelberg, Germany, 2022; pp. 55–85. [Google Scholar]
- Lidour, K.; Béarez, P.; Beech, M.; Charpentier, V.; Méry, S. Intensive exploitation of marine crabs and sea urchins during the middle holocene in the eastern Arabian peninsula offers new perspectives on ancient maritime adaptations. J. Isl. Coast. Archaeol. 2021, 18, 498–526. [Google Scholar] [CrossRef]
- Tawasil, S.I.; Alibon, R.D.; Bensali, S.L. Species diversity of Echinoderms in Manubul Island, Sulu Pro-vince, Southern Philippines. Biodivers. J. 2021, 12, 301–311. [Google Scholar] [CrossRef]
- Madin, J.; Angkirim, M.A.; Yassine, M.; Nor’azlan, S.N. Feather Star Community in Sepanggar Bay, Sabah. In The Marine Ecosystems of Sabah; Universiti Malaysia Sabah Press: Sabah, Malaysia, 2022; p. 153. [Google Scholar]
- Keable, S.J.; Mah, C.L. Range extension of the Regulus seastar Pentaceraster regulus (Müller & Troschel, 1842) (Echinodermata: Asteroidea: Oreasteridae): Evidence of tropicalization of the east Australian coast. Tech. Rep. Aust. Mus. Online 2021, 35, 1–10. [Google Scholar]
- Brant, C. The Sentience of Sea Squirts. In Life Writing in the Posthuman Anthropocene; Springer: Berlin/Heidelberg, Germany, 2021; pp. 123–156. [Google Scholar]
- Habib, K.A.; Neogi, A.K.; Nahar, N.; Oh, J.; Lee, Y.-H.; Kim, C.-G. An overview of fishes of the Sundarbans, Bangladesh and their present conservation status. J. Threat. Taxa 2020, 12, 15154–15172. [Google Scholar] [CrossRef]
- Nair, R.J.; Dinesh Kumar, S. Overview of the fish diversity of Indian waters. In Proceedings of the DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals, Kochi, Japan, 2 February 2015–31 March 2018. [Google Scholar]
- Satheeshkumar, P. First record of a mangrove frog Fejervarya cancrivora (Amphibia: Ranidae) in the Pondicherry mangroves, Bay of Bengal-India. World J. Zool. 2011, 6, 328–330. [Google Scholar]
- Weijola, V. Case 3676 Tupinambis indicus Daudin, 1802 (currently Varanus indicus; Reptilia, Squamata): Proposed conservation of usage of the specific name by replacement of the neotype. Bull. Zool. Nomencl. 2015, 72, 134–141. [Google Scholar] [CrossRef]
- Saragih, G.; Hidayatullah, M.; Hadi, D. A preliminary study on the population and habitat of saltwater crocodile (Crocodylus porosus) in Timor Island, East Nusa Tenggara. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Tangerang, Indonesia, 24 October 2019; p. 012044. [Google Scholar]
- FOREST, S. World Biodiversity Congress. Available online: https://d1wqtxts1xzle7.cloudfront.net/47312793/Density_and_diversity_of_bird_species_at20160717-24890-kv1fd8-libre.pdf?1468819714=&response-content-disposition=inline%3B+filename%3DDensity_and_diversity_of_bird_species_at.pdf&Expires=1689590275&Signature=WSKCOeqFMlLlWoA2oz1sEFNjazexNOX2VKzCgZ1yeqharlnjepWJS1ml9LD7M~C0viHEoCgnvYMPEb~cJAv4KdU567R3DM3f031eJr1H9U5h1wJfj~wBPhDHk3KBQ9PopBRHNSn-mlkh5p2vrwsqMcjMlOe07C6whNXyIv-Aay-wJ4CGxtEpVt7gJRsUXRxs1g6bCkO1wlIm4TtJZT~yIUkAuwoeMKMAuBWkYuOBZx4Rf6e5MGQmOnq9Hg1HOVRL2HLo0PJciuRDjYKjFh8EhEPrs0Xs2Ip-y7VL2wpKpdzNNE54axEoVeFzyre3KaxPL6llJ3QcOAtls1YhpqfayQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 15 March 2023).
- Khaleghizadeh, A.; Anuar, S. Nest tree selection by the Brahminy Kite Haliastur indus in a Rhizophora mangrove forest. Trop. Zool. 2014, 27, 40–52. [Google Scholar] [CrossRef]
- Davies, G.B.; Symes, C.T.; Peek, J.R. Mangrove kingfishers (Halcyon senegaloides; Aves: Alcedinidae) nesting in arboreal Nasutitermes (Isoptera: Termitidae: Nasutitermitinae) termitaria in central Mozambique. Ann. Ditsong Natl. Mus. Nat. Hist. 2012, 2, 146–152. [Google Scholar]
- Etezadifar, F.; Barati, A. Nest-site selection of Western Reef Heron (Egretta gularis) in relation to mangrove (Avicennia marina) structure in the Persian Gulf: Implication for management. For. Ecol. Manag. 2013, 310, 74–79. [Google Scholar] [CrossRef]
- Padmakumar, V.; Joseph, S.P. Understanding the mangrove-associated avifauna and their conservation status in the Gorai Creek, Western Mumbai, Maharashtra, India: A Recent Study. Int. J. For. Anim. Fish. Res. 2022, 6, 3. [Google Scholar] [CrossRef]
- Crossland, A.C.; Sitorus, A.W.; Sitorus, A.S. Land use change impacts shorebird habitat at an important site for javan plover charadrius javanicus and sanderling calidris alba in java, indonesia. Stilt J. East Asian-Australas. Flyway 2014, 66, 30–36. [Google Scholar]
- Hale, J. Addendum to the Ecological Character Description for the Corner Inlet Ramsar Site. 2017. Available online: https://www.water.vic.gov.au/__data/assets/pdf_file/0025/85444/Corner-Inlet-Ramsar-Site-Ecological-Character-Description-Addendum.pdf (accessed on 14 April 2023).
- Tan, H.; Low, G.W.; Sadanandan, K.; Rheindt, F.E. Population assessment of the house crow, Corvus splendens, in Singapore. Malay. Nat. J. 2020, 72, 133–142. [Google Scholar]
- Hancock, J.; Kushlan, J.A. The Herons Handbook; A&C Black: London, UK, 2010. [Google Scholar]
- Johnstone, R.; van Balen, S. The birds of the Kai and Tayandu islands, Maluku region, Indonesia. West. Aust. Nat. 2013, 29, 11–56. [Google Scholar]
- Thong, V.D.; Denzinger, A.; Long, V.; Sang, N.V.; Huyen, N.T.T.; Thien, N.H.; Luong, N.K.; Tuan, L.Q.; Ha, N.M.; Luong, N.T. Importance of mangroves for bat research and conservation: A case study from Vietnam with notes on echolocation of Myotis hasselti. Diversity 2022, 14, 258. [Google Scholar] [CrossRef]
- Morrison, R. Flying fox: Characteristics, Habitat, Reproduction, Feeding. Available online: https://warbletoncouncil.org/zorro-volador-902 (accessed on 14 April 2023).
- Shanida, S.S.; Lestari, T.H.; Partasasmita, R. The effect of total solar eclipse on the daily activities of Nasalis larvatus (Wurmb.) in Mangrove Center, Kariangau, East Kalimantan. In Proceedings of the Journal of Physics: Conference Series, Bandung, Indonesia, 3–4 June 2016; p. 012017. [Google Scholar]
- Akbar, N.; Marus, I.; Ridwan, R.; Baksir, A.; Paembonan, R.; Ramili, Y.; Tahir, I.; Ismail, F.; Wibowo, E.; Madduppa, H. Feeding ground indications are based on species, seagrass density and existence of Dugong dugon in Hiri Island Sea, North Maluku, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Ternate, Indonesia (Virtual), 15 July 2021; p. 012058. [Google Scholar]
- Li, F.; Chan, B.P.L. Past and present: The status and distribution of otters (Carnivora: Lutrinae) in China. Oryx 2018, 52, 619–626. [Google Scholar] [CrossRef]
- Notified, I.S.F.D.C.R.; Bay, I.P.; Nadu, T. Sirenews. 2023. Available online: https://www.researchgate.net/profile/Prachi-Hatkar/publication/370561039_INDIA’S_FIRST_DUGONG_CONSERVATION_RESERVE_NOTIFIED_IN_PALK_BAY_TAMIL_NADU_BRINGING_HOPE_FOR_EXTINCTION-PRONE_DUGONGS/links/6455f98a4af78873525fb1ad/INDIAS-FIRST-DUGONG-CONSERVATION-RESERVE-NOTIFIED-IN-PALK-BAY-TAMIL-NADU-BRINGING-HOPE-FOR-EXTINCTION-PRONE-DUGONGS.pdf (accessed on 15 April 2023).
- Mendoza, A.R.R.; Patalinghug, J.M.R.; Divinagracia, J.Y. The benefit of one cannot replace the other: Seagrass and mangrove ecosystems at Santa Fe, Bantayan Island. J. Ecol. Environ. 2019, 43, 18. [Google Scholar] [CrossRef]
- Latiff, A. Biodiversity in Malaysia. Glob. Biodivers. 2018, 1, 307–349. [Google Scholar]
- Karthigeyan, K.; Jayanthi, J.; Sumathi, R.; Jalal, J. A review of the orchid diversity of Andaman & Nicobar Islands, India. Richardiana 2014, 15, 9–85. [Google Scholar]
- Alanís-Méndez, J.L.; Ortiz-Santos, L.d.C.; Chamorro-Florescano, I.A.; Pech-Canché, J.M.; Limón, F. Pollinators and floral visitors of two orchids in a protected natural area in Tuxpan, Veracruz. Ecosistemas Y Recur. Agropecu. 2019, 6, 361–368. [Google Scholar] [CrossRef]
- Antoh, A.A. Diversity of EPIFIT Orchid Types in the Mangrove Ecosystem in Ayari Village, Teluk Ampimoi Sub District, Yapen Islands District, Papua Province, Indonesia. Int. J. Multidiscip. Res. Anal. 2023, 6, 1328–1331. [Google Scholar]
- Nurtjahya, E.; Sari, E. Flora of Bangka-A Preliminary Check List. In Proceedings of the 10th Flora Malesiana Symposium, Edinburgh, UK, 11–15 July 2016. [Google Scholar]
- Tunnell, J.W., Jr.; Chávez, E.; Withers, K. Island biota. In Coral Reefs of the Southern Gulf of Mexico; Texas A&M Press: College Station, TX, USA, 2007; pp. 119–125. Available online: https://www.researchgate.net/profile/John-Tunnell-Jr/publication/293306381_Island_biota/links/58acbc0a92851c3cfda05a8f/Island-biota.pdf (accessed on 16 April 2023).
- Montero, J. Synergistic Effect of Seaweed (Phylum ocrophyta) and Water Lily (Nymphaeaceae alba) Extract as Catalysts for the Rapid Germination of Mangrove Seeds. Ascendens Asia J. Multidiscip. Res. Abstr. 2019, 3, 2. [Google Scholar]
- Melville, S. An Assessment of the Fauna Habitat along Kedron Brook. Rep. Wildl. Preserv. Soc. Qld. Brisb. 2001. Available online: http://kbcb.server101.com/references/references/Kedron_Brook_Fauna_Report.pdf (accessed on 14 April 2023).
- Kumar, M.; Srivastava, G.; Spicer, R.A.; Spicer, T.E.; Mehrotra, R.C.; Mehrotra, N.C. Sedimentology, palynostratigraphy and palynofacies of the late Oligocene Makum Coalfield, Assam, India: A window on lowland tropical vegetation during the most recent episode of significant global warmth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 342, 143–162. [Google Scholar] [CrossRef]
- Valenzuela, H.Y.; Bacalso, A.D.; Gano, C.B.; Pilones, K.D.; Picardal, J.P. The species composition and associated flora and fauna of the mangrove forest in Badian, Cebu Island, Philippines. IAMURE Int. J. Mar. Ecol 2013, 1, 1–23. [Google Scholar] [CrossRef]
- Zulpikar, F.; Handayani, T. Life form, diversity, and spatial distribution of macroalgae in Komodo National Park waters, East Nusa Tenggara. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 24–25 August 2021; p. 012026. [Google Scholar]
- Bastos, R.F.; Lippi, D.L.; Gaspar, A.L.B.; Yogui, G.T.; Frédou, T.; Garcia, A.M.; Ferreira, B.P. Ontogeny drives allochthonous trophic support of snappers: Seascape connectivity along the mangrove-seagrass-coral reef continuum of a tropical marine protected area. Estuar. Coast. Shelf Sci. 2022, 264, 107591. [Google Scholar] [CrossRef]
- Mishra, A.K.; Apte, D. Ecological connectivity with mangroves influences tropical seagrass population longevity and meadow traits within an island ecosystem. Mar. Ecol. Prog. Ser. 2020, 644, 47–63. [Google Scholar] [CrossRef]
- Jordan, P.; Fröhle, P. Bridging the gap between coastal engineering and nature conservation? A review of coastal ecosystems as nature-based solutions for coastal protection. J. Coast. Conserv. 2022, 26, 4. [Google Scholar] [CrossRef]
- Watanabe, A.; Nakamura, T. Carbon dynamics in coral reefs. In Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation; Kuwae, T., Hori, M., Eds.; Springer: Singapore, 2019; pp. 273–293. [Google Scholar]
- Akhand, A.; Watanabe, K.; Chanda, A.; Tokoro, T.; Chakraborty, K.; Moki, H.; Tanaya, T.; Ghosh, J.; Kuwae, T. Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Sci. Total Environ. 2021, 752, 142190. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Reef, R. Variable impacts of climate change on blue carbon. One Earth 2020, 3, 195–211. [Google Scholar] [CrossRef]
- Helfer, V.; Hassenrück, C. Microbial communities in mangrove sediments. Dyn. Sediment. Environ. Mangrove Coasts 2021, 141–175. [Google Scholar] [CrossRef]
- Liu, M.; Huang, H.; Bao, S.; Tong, Y. Microbial community structure of soils in Bamenwan mangrove wetland. Sci. Rep. 2019, 9, 8406. [Google Scholar] [CrossRef]
- Bag, S.; Sarkar, B.; Seal, M.; Chatterjee, A.; Mondal, A.; Chatterjee, S. Diversity and seasonal prevalence of starch hydrolysing, phosphate solubilizing and nitrogen-fixing bacterial groups of rooted and un-rooted regions of tropical mangrove sediments of Sundarbans, West Bengal, India. Mar. Biol. Res. 2022, 18, 531–543. [Google Scholar] [CrossRef]
- Fu, W.; Chen, X.; Zheng, X.; Liu, A.; Wang, W.; Ji, J.; Wang, G.; Guan, C. Phytoremediation potential, antioxidant response, photosynthetic behavior and rhizosphere bacterial community adaptation of tobacco (Nicotiana tabacum L.) in a bisphenol A-contaminated soil. Environ. Sci. Pollut. Res. 2022, 29, 84366–84382. [Google Scholar] [CrossRef] [PubMed]
- Fatimah, F.; Aula, N.; Salsabila, S.; Ramly, Z.A.; Rose, S.Y.; Surtiningsih, T.; Nurhariyati, T. Exploration of phosphate solubilizing bacteria from mangrove soil of Lamongan, East Java, Indonesia. Biodiversitas J. Biol. Divers. 2023, 24, 2. [Google Scholar]
- Mamangkey, J.; Suryanto, D.; Munir, E.; Mustopa, A.Z.; Sibero, M.T.; Mendes, L.W.; Hartanto, A.; Taniwan, S.; Ek-Ramos, M.J.; Harahap, A. Isolation and enzyme bioprospection of bacteria associated to Bruguiera cylindrica, a mangrove plant of North Sumatra, Indonesia. Biotechnol. Rep. 2021, 30, e00617. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, C.-J.; Li, M. Desulfovibrio mangrovi sp. nov., a sulfate-reducing bacterium isolated from mangrove sediments: A member of the proposed genus “Psychrodesulfovibrio”. Antonie Van Leeuwenhoek 2023, 116, 499–510. [Google Scholar] [CrossRef]
- Al Farraj, D.A.; Varghese, R.; Vágvölgyi, C.; Elshikh, M.S.; Alokda, A.; Mahmoud, A.H. Antibiotics production in optimized culture condition using low cost substrates from Streptomyces sp. AS4 isolated from mangrove soil sediment. J. King Saud. Univ. Sci. 2020, 32, 1528–1535. [Google Scholar] [CrossRef]
- Nugraha, A.P.; Sibero, M.T.; Nugraha, A.P.; Puspitaningrum, M.S.; Rizqianti, Y.; Rahmadhani, D.; Kharisma, V.D.; Ramadhani, N.F.; Ridwan, R.D.; Ernawati, D.S. Anti-Periodontopathogenic Ability of Mangrove Leaves (Aegiceras corniculatum) Ethanol Extract: In silico and in vitro study. Eur. J. Dent. 2022, 17, 46–56. [Google Scholar] [CrossRef]
- Kulkarni, S.O.; Shouche, Y.S. Mangrove Ecosystem and Microbiome. In Microbiome-Host Interactions; Sankaranarayanan, A., Dhanasekaran, D., Paul, D., Amaresan, N., Yogesh, S.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 259–273. [Google Scholar]
- Palit, K.; Rath, S.; Chatterjee, S.; Das, S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environ. Sci. Pollut. Res. 2022, 29, 32467–32512. [Google Scholar] [CrossRef]
- Fusi, M.; Booth, J.M.; Marasco, R.; Merlino, G.; Garcias-Bonet, N.; Barozzi, A.; Garuglieri, E.; Mbobo, T.; Diele, K.; Duarte, C.M. Bioturbation Intensity Modifies the Sediment Microbiome and Biochemistry and Supports Plant Growth in an Arid Mangrove System. Microbiol. Spectr. 2022, 10, e01117–e01122. [Google Scholar] [CrossRef]
- Thye, A.Y.-K.; Letchumanan, V.; Tan, L.T.-H.; Law, J.W.-F.; Lee, L.-H. Malaysia’s Breakthrough in Modern Actinobacteria (MOD-ACTINO) Drug Discovery Research. Prog. Microbes Mol. Biol. 2022, 5, 1. [Google Scholar] [CrossRef]
- Zhang, Z.; Nie, S.; Sang, Y.; Mo, S.; Li, J.; Kashif, M.; Su, G.; Yan, B.; Jiang, C. Effects of Spartina alterniflora invasion on nitrogen fixation and phosphorus solubilization in a subtropical marine mangrove ecosystem. Microbiol. Spectr. 2022, 10, e00682-21. [Google Scholar] [CrossRef] [PubMed]
- Nimnoi, P.; Pongsilp, N. Insights into Bacterial Communities and Diversity of Mangrove Forest Soils along the Upper Gulf of Thailand in Response to Environmental Factors. Biology 2022, 11, 1787. [Google Scholar] [CrossRef] [PubMed]
- Begmatov, S.; Savvichev, A.S.; Kadnikov, V.V.; Beletsky, A.V.; Rusanov, I.I.; Klyuvitkin, A.A.; Novichkova, E.A.; Mardanov, A.V.; Pimenov, N.V.; Ravin, N.V. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea. Microorganisms 2021, 9, 2362. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, E.; Lim, S.W.; Yeo, W.S.; Nandong, J. A review on process modeling and design of biohydrogen. Int. J. Hydrogen Energy 2022, 47, 30404–30427. [Google Scholar] [CrossRef]
- Halls, A. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity. In Proceedings of the Ramsar Convention Bureau, Gland, Switzerland; Available online: https://www.ramsar.org/sites/default/files/documents/library/wetlands_biodiversity_and_the_ramsar_convention.pdf (accessed on 11 March 2023).
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef]
- Barreto, C.R.; Morrissey, E.; Wykoff, D.; Chapman, S. Co-occurring mangroves and salt marshes differ in microbial community composition. Wetlands 2018, 38, 497–508. [Google Scholar] [CrossRef]
- Araújo, J.E.d.; Taketani, R.G.; Pereira e Silva, M.d.C.; Lourenço, M.V.d.M.; Andreote, F.D. Draft genome sequence of Rhodopirellula baltica Strain BR-MGV, a planctomycete isolated from Brazilian mangrove soil. Microbiol. Resour. Announc. 2018, 7, e01102–e01118. [Google Scholar] [CrossRef]
- de Araujo, J.E.; Taketani, R.G.; Pylro, V.S.; Leite, L.R.; Pereira e Silva, M.d.C.; Lemos, L.N.; de Mello Lourenço, M.V.; Andreote, F.D. Genomic analysis reveals the potential for hydrocarbon degradation of Rhodopirellula sp. MGV isolated from a polluted Brazilian mangrove. Braz. J. Microbiol. 2021, 52, 1397–1404. [Google Scholar] [CrossRef]
- Zhang, C.-J.; Pan, J.; Duan, C.-H.; Wang, Y.-M.; Liu, Y.; Sun, J.; Zhou, H.-C.; Song, X.; Li, M. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. Msystems 2019, 4, e00442-19. [Google Scholar] [CrossRef]
- De Santana, C.O.; Spealman, P.; Melo, V.M.M.; Gresham, D.; De Jesus, T.B.; Chinalia, F.A. Effects of tidal influence on the structure and function of prokaryotic communities in the sediments of a pristine Brazilian mangrove. Biogeosciences 2021, 18, 2259–2273. [Google Scholar] [CrossRef]
- Raut, Y.; Capone, D.G. Macroalgal detrital systems: An overlooked ecological niche for heterotrophic nitrogen fixation. Environ. Microbiol. 2021, 23, 4372–4388. [Google Scholar] [CrossRef] [PubMed]
- Rahim, N.A.A.; Merican, F.M.M.S.; Radzi, R.; Omar, W.M.W.; Nor, S.A.M.; Broady, P.; Convey, P. Unveiling The Diversity of Periphytic Cyanobacteria (Cyanophyceae) from Tropical Mangroves in Penang, Malaysia. Trop. Life Sci. Res. 2023. Available online: https://nora.nerc.ac.uk/id/eprint/534309/ (accessed on 11 March 2023).
- Acharya, S.; Patra, D.K.; Mahalik, G.; Mohapatra, P.K. Quantitative Ecological Study of Rhizophoraceae Mangroves of Bhitarkanika Wildlife Sanctuary Regions of Odisha Coast, India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021, 91, 897–908. [Google Scholar] [CrossRef]
- Ceccon, D.M.; Faoro, H.; da Cunha Lana, P.; de Souza, E.M.; de Oliveira Pedrosa, F. Metataxonomic and metagenomic analysis of mangrove microbiomes reveals community patterns driven by salinity and pH gradients in Paranaguá Bay, Brazil. Sci. Total Environ. 2019, 694, 133609. [Google Scholar] [CrossRef]
- Askari, M.; Homaei, A.; Kamrani, E.; Zeinali, F.; Andreetta, A. Estimation of carbon pools in the biomass and soil of mangrove forests in Sirik Azini creek, Hormozgan province (Iran). Environ. Sci. Pollut. Res. 2022, 29, 23712–23720. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Huang, R.; Van Zwieten, L.; Wang, H.; Wu, J. Trapping effect of mangrove and saltmarsh habitats on geochemical elements: A case study in Ximen Island, Zhejiang, China. J. Soils Sediments 2023, 23, 2327–2343. [Google Scholar] [CrossRef]
- Soanes, L.; Pike, S.; Armstrong, S.; Creque, K.; Norris-Gumbs, R.; Zaluski, S.; Medcalf, K. Reducing the vulnerability of coastal communities in the Caribbean through sustainable mangrove management. Ocean Coast. Manag. 2021, 210, 105702. [Google Scholar] [CrossRef]
- Edwards, A.J. Impact of climatic change on coral reefs, mangroves, and tropical seagrass ecosystems. In Climate Change; CRC Press: Boca Raton, FL, USA, 2021; pp. 209–234. [Google Scholar]
- Song, S.; Ding, Y.; Li, W.; Meng, Y.; Zhou, J.; Gou, R.; Zhang, C.; Ye, S.; Saintilan, N.; Krauss, K.W. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change. Nat. Commun. 2023, 14, 756. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Yan, B. Blue carbon sink function and carbon neutrality potential of mangroves. Sci. Total Environ. 2022, 822, 153438. [Google Scholar] [CrossRef]
- Leal, M.; Spalding, M.D. The State of the World’s Mangroves 2022; Leal, M., Spalding, M.D., Eds.; Global Mangrove Alliance: 2022; Available online: https://www.mangrovealliance.org/wp-content/uploads/2022/09/The-State-of-the-Worlds-Mangroves-Report_2022.pdf (accessed on 2 February 2023).
- Sumarmi, S.; Purwanto, P.; Bachri, S. Spatial Analysis of Mangrove Forest Management to Reduce Air Temperature and CO2 Emissions. Sustainability 2021, 13, 8090. [Google Scholar] [CrossRef]
- Alsumaiti, T.S.; Shahid, S.A. Mangroves Among Most Carbon-rich Ecosystem Living in Hostile Saline Rich Environment and Mitigating Climate Change–A Case of Abu Dhabi. J. Agri. Crop Res. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N. Global mangrove extent change 1996–2020: Global Mangrove Watch version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Jennerjahn, T.C. Relevance and magnitude of ‘Blue Carbon’ storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks. Estuar. Coast. Shelf Sci. 2020, 247, 107027. [Google Scholar] [CrossRef]
- Maza, M.; Lara, J.L.; Losada, I.J. Predicting the evolution of coastal protection service with mangrove forest age. Coast. Eng. 2021, 168, 103922. [Google Scholar] [CrossRef]
- Liu, C.; Liu, G.; Yang, Q.; Luo, T.; He, P.; Franzese, P.P.; Lombardi, G.V. Emergy-based evaluation of world coastal ecosystem services. Water Res. 2021, 204, 117656. [Google Scholar] [CrossRef]
- Hastuti, E.D.; Izzati, M.; Prihastanti, E. Water uptake and salt accumulation under Rhizophora stylosa seedling planted in controlled salinity and inundation levels. AACL Bioflux 2023, 16, 1069–1076. [Google Scholar]
- Li, H. Learning from Halophytes to Survive from Salt: Elucidating the Salt Tolerance Mechanisms of Schrenkiella parvula; Wageningen University: Wageningen, The Netherlands, 2022. [Google Scholar]
- Jusoff, K. Malaysian Mangrove Forests and their Significance to the Coastal Marine Environment. Pol. J. Environ. Stud. 2013, 22, 979–1005. [Google Scholar]
- Wang, Q.; Mei, D.; Chen, J.; Lin, Y.; Liu, J.; Lu, H.; Yan, C. Sequestration of heavy metal by glomalin-related soil protein: Implication for water quality improvement in mangrove wetlands. Water Res. 2019, 148, 142–152. [Google Scholar] [CrossRef]
- Eyegheleme, N.L.; Umashankar, V.; Miller, D.N.; Kota, A.K.; Boreyko, J.B. Oil–Water Separation using Synthetic Trees. Langmuir 2023, 39, 2520–2528. [Google Scholar] [CrossRef]
- Hayes, M.A.; Chapman, S.; Jesse, A.; O’Brien, E.; Langley, J.A.; Bardou, R.; Devaney, J.; Parker, J.D.; Cavanaugh, K.C. Foliar water uptake by coastal wetland plants: A novel water acquisition mechanism in arid and humid subtropical mangroves. J. Ecol. 2020, 108, 2625–2637. [Google Scholar] [CrossRef]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The global flood protection benefits of mangroves. Sci. Rep. 2020, 10, 4404. [Google Scholar] [CrossRef] [PubMed]
- Josiah, N.; Laknath, D.; Araki, S. Assessment of Tsunami Preparedness Measures in East Coast of Sri Lanka Based on 2004 Tsunami Event. In Proceedings of the 22nd Congress of International Association for Hydro Environment Engineering and Research and Asia Pacific Division, Sapporo, Japan; Available online: https://iahrapd2020.xsrv.jp/proceedings/pdf/6-5-2.pdf (accessed on 5 April 2023).
- LaVeist, T.A. Katrina’s Lesson: Time to Imagine an After COVID-19. Am. J. Public Health 2020, 110, 1445. [Google Scholar] [CrossRef] [PubMed]
- Pakoksung, K.; Suppasri, A.; Imamura, F. The near-field tsunami generated by the 15 January 2022 eruption of the Hunga Tonga-Hunga Ha’apai volcano and its impact on Tongatapu, Tonga. Sci. Rep. 2022, 12, 15187. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Hugé, J.; Abuchahla, G.M.; Cannicci, S.; Jayatissa, L.P.; Kairo, J.G.; Arachchilage, S.K.; Koedam, N.; Nijamdeen, T.W.M.; Mukherjee, N. Reconciling nature, people and policy in the mangrove social-ecological system through the adaptive cycle heuristic. Estuar. Coast. Shelf Sci. 2021, 248, 106942. [Google Scholar] [CrossRef]
- Temmerman, S.; Horstman, E.M.; Krauss, K.W.; Mullarney, J.C.; Pelckmans, I.; Schoutens, K. Marshes and mangroves as nature-based coastal storm buffers. Ann. Rev. Mar. Sci. 2023, 15, 95–118. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Arora, N.K. COP27: A summit of more misses than hits. Environ. Sustain. 2023, 6, 99–105. [Google Scholar] [CrossRef]
- Eger, A.M.; Marzinelli, E.M.; Beas-Luna, R.; Blain, C.O.; Blamey, L.K.; Byrnes, J.E.; Carnell, P.E.; Choi, C.G.; Hessing-Lewis, M.; Kim, K.Y. The value of ecosystem services in global marine kelp forests. Nat. Commun. 2023, 14, 1894. [Google Scholar] [CrossRef]
- McSherry, M.; Davis, R.P.; Andradi-Brown, D.A.; Ahmadia, G.N.; Van Kempen, M.; Brian, S.W. Integrated mangrove aquaculture: The sustainable choice for mangroves and aquaculture? Front. For. Glob. Chang. 2023, 6, 1094306. [Google Scholar] [CrossRef]
- Gentry, R.R.; Rassweiler, A.; Ruff, E.O.; Lester, S.E. Global pathways of innovation and spread of marine aquaculture species. One Earth 2023, 6, 20–30. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; Food and Agriculture Organization: Rome, Italy, 2023. [Google Scholar]
- Estante-Superio, E.; Panizales, J.; Arganioza, H.M.; Baliao, D.D. Issues and challenges in sustainable development of fisheries and aquaculture of the Southeast Asian Region: Aquaculture development: Impacts of intensification of aquaculture on the environment. In The Southeast Asian State of Fisheries and Aquaculture 2022; Seafdec, Ed.; Secretariat, Southeast Asian Fisheries Development Center: Bangkok, Thailand, 2022; pp. 182–187. [Google Scholar]
- Broszeit, S.; Langmead, O.; Praptiwi, R.A.; Creencia, L.; Then, A.Y.H.; Lim, V.-C.; Hau, T.D.; Hattam, C.; Edwards-Jones, A. Ecosystem Service Provision by Marine Habitats in Southeast Asia; PML Publishing: Plymouth, UK, 2022. [Google Scholar]
- Zu Ermgassen, P.S.; Mukherjee, N.; Worthington, T.A.; Acosta, A.; da Rocha Araujo, A.R.; Beitl, C.M.; Castellanos-Galindo, G.A.; Cunha-Lignon, M.; Dahdouh-Guebas, F.; Diele, K. Fishers who rely on mangroves: Modelling and mapping the global intensity of mangrove-associated fisheries. Estuar. Coast. Shelf Sci. 2020, 247, 106975. [Google Scholar] [CrossRef]
- Treviño, M.; Murillo-Sandoval, P.J. Uneven consequences: Gendered impacts of shrimp aquaculture development on mangrove dependent communities. Ocean Coast. Manag. 2021, 210, 105688. [Google Scholar] [CrossRef]
- Malleret, D.; Simbua, J. The Occupational Structure of the Mnazi Bay Ruvuma Estuary Marine Park Communities; IUCN Nairobi: Nairobi City, Kenya, 2004. [Google Scholar]
- Kassam, L.; Dorward, A. A comparative assessment of the poverty impacts of pond and cage aquaculture in Ghana. Aquaculture 2017, 470, 110–122. [Google Scholar] [CrossRef]
- Islam, A.H.M.S.; Barman, B.K.; Murshed-e-Jahan, K. Adoption and impact of integrated rice–fish farming system in Bangladesh. Aquaculture 2015, 447, 76–85. [Google Scholar] [CrossRef]
- Lakra, W.; Krishnani, K. Circular bioeconomy for stress-resilient fisheries and aquaculture. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 481–516. [Google Scholar]
- Malorgio, G.; Mulazzani, L.; Pugliese, P.; Rota, C.; Zanasi, C.; Zuccaro, M. The role of small-scale fisheries in Mediterranean coastal communities. An analytical framework for their development. New Medit 2017, 16, 19–26. [Google Scholar]
- Koh, H.L.; Teh, S.Y. Ecological Modeling for Mitigating Environmental and Climate Shocks: Achieving the UNSDGs; World Scientific: Singapore, 2021. [Google Scholar]
- Zuhri, F.; Tafsin, M.R. Mangrove utilization as sources of ruminant feed in Belawan Secanang Subdistrict, Medan Belawan District. J. Sylva Indones. 2022, 5, 1. [Google Scholar]
- Olorunnisola, A.O. The Past, Present and Future Outlook of the Wood Industry in Nigeria; IntechOpen: London, UK, 2023. [Google Scholar]
- Kusmana, C. Mangrove plant utilization by local coastal community in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Selangor, Malaysia, 6–8 November 2017; p. 012028. [Google Scholar]
- Walters, B.B.; Rönnbäck, P.; Kovacs, J.M.; Crona, B.; Hussain, S.A.; Badola, R.; Primavera, J.H.; Barbier, E.; Dahdouh-Guebas, F. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquat. Bot. 2008, 89, 220–236. [Google Scholar] [CrossRef]
- Friess, D.A.; Yando, E.S.; Alemu, J.B.; Wong, L.-W.; Soto, S.D.; Bhatia, N. Ecosystem services and disservices of mangrove forests and salt marshes. An Annual Review. In Oceanography and Marine Biology, 1st ed.; Hawkins, S.J., Allcock, A.L., Bates, A.E., Evans, A.J., Firth, L.B., McQuaid, C.D., Russell, B.D., Smith, I.P., Swearer, S.E., Todd, P.A., Eds.; Taylor & Francis: New York, NY, USA, 2020. [Google Scholar]
- Vinoth, R.; Kumaravel, S.; Ranganathan, R. Therapeutic and traditional uses of mangrove plants. J. Drug Deliv. Ther. 2019, 9, 849–854. [Google Scholar] [CrossRef]
- Kumar, A.; Naveen, B.; Abhilash, G.; Akila, C. Extraction and characterization of sea anemones compound and its Anti bacterial and hemolytic studies. Int. J. Rev. Life Sci. 2020, 10, 93–97. [Google Scholar]
- Habib, M.A.; Khatun, F.; Ruma, M.; Chowdhury, A.; Silve, A.; Rahman, A.; Hossain, M.I. A review on phytochemical constituents of pharmaceutically important mangrove plants, their medicinal uses and pharmacological activities. Vedic Res. Int. Phytomed. 2018, 6, 1–9. [Google Scholar] [CrossRef]
- Blamey, R.K. Principles of ecotourism. In The Encyclopedia of Ecotourism; Cabi Publishing: Wallingford, UK, 2001; pp. 5–22. [Google Scholar]
- Friess, D.A. Ecotourism as a tool for mangrove conservation. Sumatra J. Disaster Geogr. Geogr. Educ. 2017, 1, 24–35. [Google Scholar]
- Satyanarayana, B.; Bhanderi, P.; Debry, M.; Maniatis, D.; Foré, F.; Badgie, D.; Jammeh, K.; Vanwing, T.; Farcy, C.; Koedam, N. A socio-ecological assessment aiming at improved forest resource management and sustainable ecotourism development in the mangroves of Tanbi Wetland National Park, The Gambia, West Africa. Ambio 2012, 41, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.S.; van Steveninck, E.d.R.; Stuip, M.; Shah, M.A.R. Economic valuation of provisioning and cultural services of a protected mangrove ecosystem: A case study on Sundarbans Reserve Forest, Bangladesh. Ecosyst. Serv. 2013, 5, 88–93. [Google Scholar] [CrossRef]
- Basyuni, M.; Bimantara, Y.; Siagian, M.; Wati, R.; Slamet, B.; Sulistiyono, N.; Nuryawan, A.; Leidonad, R. Developing community-based mangrove management through eco-tourism in North Sumatra, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Medan, Indonesia, 11–12 October 2017; p. 012109. [Google Scholar]
- Willard, K.; Aipassa, M.I.; Sardjono, M.A.; Rujehan, R.; Ruslim, Y.; Kristiningrum, R. Locating the unique biodiversity of Balikpapan Bay as an ecotourism attraction in East Kalimantan, Indonesia. Biodiversitas J. Biol. Divers. 2022, 23, 5. [Google Scholar] [CrossRef]
- Van Riper, C.J.; Kyle, G.T.; Sutton, S.G.; Barnes, M.; Sherrouse, B.C. Mapping outdoor recreationists’ perceived social values for ecosystem services at Hinchinbrook Island National Park, Australia. Appl. Geogr. 2012, 35, 164–173. [Google Scholar] [CrossRef]
- Avau, J.; Cunha-Lignon, M.; De Myttenaere, B.; Godart, M.-F.; Dahdouh-Guebas, F. The Commercial Images Promoting Caribbean Mangroves to Tourists: Case Studies in Jamaica, Guadeloupe and Martinique. J. Coast. Res. 2011, 64, 1277–1281. [Google Scholar]
- Khoshtaria, T.; Chachava, N. Prospects of ecotourism development in recreation areas of South Georgia. Ann. Agrar. Sci. 2017, 15, 312–317. [Google Scholar] [CrossRef]
- Sumarmi, S.; Arinta, D.; Suprianto, A.; Aliman, M. The development of ecotourism with community-based tourism (CBT) in clungup mangrove conservation (CMC) of tiga warna beach for sustainable conservation. Folia Geogr. 2021, 63, 123. [Google Scholar]
- Gaora, P.A.; Pedrason, R.; Herman, E. Indonesia’s Climate Diplomacy under Joko Widodo: Shaping Equitable and Sustainable Global Future. Nation State J. Int. Stud. 2023, 6, 34–48. [Google Scholar]
- Keith Gumede, T.; Thandi Nzama, A. Approaches toward Community Participation Enhancement in Ecotourism. Prot. Area Manag.-Recent Adv. 2022, 1–13. [Google Scholar] [CrossRef]
- Das, S. Ecotourism, sustainable development and the Indian state. Econ. Political Wkly. 2011, 46, 60–67. [Google Scholar]
- Buot, I.E., Jr.; Origenes, M.G.; Obeña, R. Conservation Status of Native Mangrove Species in the Philippines. J. Wetl. Biodivers. 2022, 12, 51–65. [Google Scholar]
- Bhowmik, A.K.; Padmanaban, R.; Cabral, P.; Romeiras, M.M. Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis. Sustainability 2022, 14, 4433. [Google Scholar] [CrossRef]
- Arifanti, V.; Novita, N.; Tosiani, A. Mangrove deforestation and CO2 emissions in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Jakarta, Indonesia, 7–8 September 2021; p. 12006. [Google Scholar]
- Friess, D.A.; Yando, E.S.; Abuchahla, G.M.; Adams, J.B.; Cannicci, S.; Canty, S.W.; Cavanaugh, K.C.; Connolly, R.M.; Cormier, N.; Dahdouh-Guebas, F. Mangroves give cause for conservation optimism, for now. Curr. Biol. 2020, 30, R153–R154. [Google Scholar] [CrossRef]
- Yousefi, M.; Naderloo, R. Global habitat suitability modeling reveals insufficient habitat protection for mangrove crabs. Sci. Rep. 2022, 12, 21713. [Google Scholar] [CrossRef] [PubMed]
- Ramli, M.F.; Ariffin, A.S.; Zahar, M.; Sin, A.M.; Rozaki, Z. Conservation and Preservation for Endangered Mangrove Species: Comprehensive Case Study of Swamp Forest on North Coast Area of Malaysia. Ilmu Kelautan Indones. J. Mar. Sci. 2022, 27, 297–306. [Google Scholar]
- Rahim, A.; Soeprobowati, T.R.; Putranto, T.T. Assessment of mangrove biodiversity and community structure as a basis for sustainable conservation and management plan in Tambakbulusan, Demak, Central Java. Aquacult. Aquar. Conserv. Legis. 2023, 16, 753–767. [Google Scholar]
- Alongi, D. Estado actual y futuro de los manglares del mundo. Conserv. Del Medio Ambiente 2002, 29, 331–349. [Google Scholar]
- Buvaneswaran, M.P.; Alagesan, A. Coastal Agroforestry: Challenges and Opportunities. Coast. Agri. Clim. Chang. 2021, 136–155. [Google Scholar] [CrossRef]
- Danylchuk, A.J.; Griffin, L.P.; Ahrens, R.; Allen, M.S.; Boucek, R.E.; Brownscombe, J.W.; Casselberry, G.A.; Danylchuk, S.C.; Filous, A.; Goldberg, T.L. Cascading effects of climate change on recreational marine flats fishes and fisheries. Environ. Biol. Fishes 2023, 106, 381–416. [Google Scholar] [CrossRef]
- Strongin, K.; Polidoro, B.; Linardich, C.; Ralph, G.; Saul, S.; Carpenter, K. Translating globally threatened marine species information into regional guidance for the Gulf of Mexico. Glob. Ecol. Conserv. 2020, 23, e01010. [Google Scholar] [CrossRef]
- Humayun, S. Impediments to Integrated Approach towards India’ s Coastal Security a Threat Assessment a Case Study of Tamil Nadu and Puducherry Coast; Centre for South Asian Studies, Pondicherry University: Puducherry, India, 2022. [Google Scholar]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Liu, F.; Huang, Y.; Zhang, L.; Li, G. Marine environmental pollution, aquatic products trade and marine fishery Economy——An empirical analysis based on simultaneous equation model. Ocean Coast. Manag. 2022, 222, 106096. [Google Scholar] [CrossRef]
- Arévalo-Mejía, R.; Leblois, E.; Salinas-Tapia, H.; Mastachi-Loza, C.; Bâ, K.; Díaz-Delgado, C. A baseline assessment of hydrologic alteration degree for the Mexican catchments at gauged rivers (2016). Sci. Total Environ. 2020, 729, 139041. [Google Scholar] [CrossRef] [PubMed]
- Balkin, J.D.H. Human-Environment Interactions in the Lower Río Verde Valley, Oaxaca, Mexico: The Impacts of Ecological Change on Settlement Patterning (1600 BCE–CE 1522); University of Colorado: Colorado, MI, USA, 2020. [Google Scholar]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Lázár, A.N.; Nicholls, R.J.; Hall, J.W.; Barbour, E.J.; Haque, A. Contrasting development trajectories for coastal Bangladesh to the end of century. Reg. Environ. Chang. 2020, 20, 93. [Google Scholar] [CrossRef]
- Thakur, S.; Maity, D.; Mondal, I.; Basumatary, G.; Ghosh, P.B.; Das, P.; De, T.K. Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environ. Dev. Sustain. 2021, 23, 1917–1943. [Google Scholar] [CrossRef]
- Veettil, B.K.; Wickramasinghe, D.; Amarakoon, V. Mangrove forests in Sri Lanka: An updated review on distribution, diversity, current state of research and future perspectives. Reg. Stud. Mar. Sci. 2023, 62, 102932. [Google Scholar] [CrossRef]
- Sano, A. Social actors in the global market: Socio-economic impacts of shrimp aquaculture in South Sulawesi, Indonesia. ISS Work. Pap. Ser. Gen. Ser. 2000, 316, 1–70. [Google Scholar]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Hardy, G.E.; Le, T.V.; Nguyen, H.Q.; Nguyen, H.H.; Nguyen, T.V.; Dell, B. Mangrove forest landcover changes in coastal Vietnam: A case study from 1973 to 2020 in Thanh Hoa and Nghe An provinces. Forests 2021, 12, 637. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Slamet, N.S.; Dargusch, P.; Aziz, A.A.; Wadley, D. Mangrove vulnerability and potential carbon stock loss from land reclamation in Jakarta Bay, Indonesia. Ocean Coast. Manag. 2020, 195, 105283. [Google Scholar] [CrossRef]
- Kathiresan, K. Mangrove Forests of India: An Overview. In Mangroves: Biodiversity, Livelihoods and Conservation; Das, S.C., Pullaiah, T., Ashton, E.C., Eds.; Springer Nature: Singapore, 2022; pp. 233–270. [Google Scholar]
- Kissinger, G.; Herold, M.; De Sy, V. Drivers of deforestation and forest degradation: A synthesis report for REDD+ policymakers; Lexeme Consulting: Vancouver, BC, Canada, 2012. [Google Scholar]
- Mohd Hanafiah, K.; Abd Mutalib, A.H.; Miard, P.; Goh, C.S.; Mohd Sah, S.A.; Ruppert, N. Impact of Malaysian palm oil on sustainable development goals: Co-benefits and trade-offs across mitigation strategies. Sustain. Sci. 2022, 17, 1639–1661. [Google Scholar] [CrossRef] [PubMed]
- Sakinah, F.; Ranggadara, I.; Karima, I.S.; Suhendra, S. Spatio-Temporal Analysis Coastal Areas for Detection Mangrove Greenery Using Combined Mangrove Recognition Index. In Proceedings of the 2022 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 17–18 September 2000; pp. 273–277. [Google Scholar]
- Bunting, S.W.; Bostock, J.; Leschen, W.; Little, D.C. Evaluating the potential of innovations across aquaculture product value chains for poverty alleviation in Bangladesh and India. Front. Aquac. 2023, 2, 3. [Google Scholar] [CrossRef]
- Luo, J.; Sun, Z.; Lu, L.; Xiong, Z.; Cui, L.; Mao, Z. Rapid expansion of coastal aquaculture ponds in Southeast Asia: Patterns, drivers and impacts. J. Environ. Manage. 2022, 315, 115100. [Google Scholar] [CrossRef]
- Monsalve, E.R.; Quiroga, E. Farmed shrimp aquaculture in coastal wetlands of Latin America—A review of environmental issues. Mar. Pollut. Bull. 2022, 183, 113956. [Google Scholar] [CrossRef]
- Aslan, A.; Rahman, A.F.; Robeson, S.M.; Ilman, M. Land-use dynamics associated with mangrove deforestation for aquaculture and the subsequent abandonment of ponds. Sci. Total Environ. 2021, 791, 148320. [Google Scholar] [CrossRef]
- Brown, C.J.; Broadley, A.; Adame, M.F.; Branch, T.A.; Turschwell, M.P.; Connolly, R.M. The assessment of fishery status depends on fish habitats. Fish Fish. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Borges, R.; de Lacerda, L.D. Can sustainable development save mangroves? Sustainability 2022, 14, 1263. [Google Scholar] [CrossRef]
- Irvine-Broque, A. The Political Life of Mangroves; University of British Columbia: Vancouver, BC, Canada, 2022. [Google Scholar]
- Arias-Ortiz, A.; Masqué, P.; Glass, L.; Benson, L.; Kennedy, H.; Duarte, C.M.; Garcia-Orellana, J.; Benitez-Nelson, C.R.; Humphries, M.S.; Ratefinjanahary, I. Losses of soil organic carbon with deforestation in mangroves of Madagascar. Ecosystem 2021, 24, 1–19. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hamilton, S.; Barbier, E.B.; Primavera, J.; Lewis III, R.R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 2019, 3, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M. Impacts of climate change on blue carbon stocks and fluxes in mangrove forests. Forests 2022, 13, 149. [Google Scholar] [CrossRef]
- Castillo, M.; Mathew, D.; Karmel, M.E.R. Ocean and Climate Synergies: From Ocean Warming to Rising Sea Levels. 2022. Available online: https://repository.unescap.org/handle/20.500.12870/4439 (accessed on 11 March 2023).
- NOAA. 2022 Sea Level Rise Technical Report. Available online: https://noaa.gov/ (accessed on 12 May 2023).
- DeVries, T. The Ocean Carbon Cycle. Annu. Rev. Environ. Resour. 2022, 47, 317–341. [Google Scholar] [CrossRef]
- Alongi, D.M. Macro-and micronutrient cycling and crucial linkages to geochemical processes in Mangrove Ecosystems. J. Mar. Sci. Eng. 2021, 9, 456. [Google Scholar] [CrossRef]
- Lauvset, S.K.; Carter, B.; Pérez, F.F.; Jiang, L.Q.; Feely, R.A.; Velo, A.; Olsen, A. Processes driving global interior ocean pH distribution. Glob. Biogeochem. Cycles 2020, 34, e2019GB006229. [Google Scholar] [CrossRef]
- Rogers, A.; Frinault, B.; Barnes, D.; Bindoff, N.; Downie, R.; Ducklow, H.; Friedlaender, A.; Hart, T.; Hill, S.; Hofmann, E. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 2020, 12, 87–120. [Google Scholar] [CrossRef]
- Terhaar, J.; Kwiatkowski, L.; Bopp, L. Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 2020, 582, 379–383. [Google Scholar] [CrossRef]
- Canadell, J.G.; Monteiro, P.M.; Costa, M.H.; Da Cunha, L.C.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; et al. Global carbon and other biogeochemical cycles and feedbacks. In Climate change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 673–816. [Google Scholar]
- Li, X.; Wen, Y.; Chen, X.; Qie, Y.; Cao, K.F.; Wee, A.K.S. Correlations between photosynthetic heat tolerance and leaf anatomy and climatic niche in Asian mangrove trees. Plant Biol. 2022, 24, 960–966. [Google Scholar] [CrossRef]
- Alongi, D.M. Climate Change and Mangroves. In Mangroves: Biodiversity, Livelihoods and Conservation; Das, S.C., Pullaiah, T., Ashton, E.C., Eds.; Springer Nature: Singapore, 2022; pp. 175–198. [Google Scholar]
- Geletu, T.T. Lake eutrophication: Control of phytoplankton overgrowth and invasive aquatic weeds. Lakes Reserv. Res. Manag. 2023, 28, e12425. [Google Scholar] [CrossRef]
- Adyasari, D.; Pratama, M.A.; Teguh, N.A.; Sabdaningsih, A.; Kusumaningtyas, M.A.; Dimova, N. Anthropogenic impact on Indonesian coastal water and ecosystems: Current status and future opportunities. Mar. Pollut. Bull. 2021, 171, 112689. [Google Scholar] [CrossRef]
- Tsikoti, C.; Genitsaris, S. Review of Harmful Algal Blooms in the Coastal Mediterranean Sea, with a Focus on Greek Waters. Diversity 2021, 13, 396. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Sarkar, S.K. Algal blooms: Potential drivers, occurrences and impact. In Marine Algal Bloom: Characteristics, Causes and Climate Change Impacts; Springer: Berlin/Heidelberg, Germany, 2018; pp. 53–109. [Google Scholar]
- Hobday, A.J.; Okey, T.A.; Poloczanska, E.S.; Kunz, T.J.; Richardson, A.J. Impacts of climate change on Australian marine life. In Report to the Australian Greenhouse Office, Canberra, Australi; Australian Greenhouse Office: Canberra, ACT, Australia, 2006. [Google Scholar]
- Gillanders, B. Fish as proxies of ecological and environmental change. Rev. Fish Biol. Fish. 2016, 26, 265–286. [Google Scholar]
- Ngatia, L.; Grace III, J.M.; Moriasi, D.; Taylor, R. Nitrogen and phosphorus eutrophication in marine ecosystems. In Monitoring of Marine Pollution; Fouzia, H.B., Ed.; IntechOpen: London, UK, 2019; Volume 1, pp. 1–17. [Google Scholar]
- Muduli, P.R.; Barik, M.; Acharya, P.; Behera, A.T.; Sahoo, I.B. Variability of Nutrients and Their Stoichiometry in Chilika Lagoon, India. In Coastal Ecosystems: Environmental Importance, Current Challenges and Conservation Measures; Madhav, S., Nazneen, S., Singh, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 139–173. [Google Scholar]
- Cui, L.; Jiang, Z.; Huang, X.; Liu, S.; Wu, Y.; Fan, M. Decade changes of the food web structure in tropical seagrass meadow: Implication of eutrophication effects. Mar. Pollut. Bull. 2021, 173, 113122. [Google Scholar] [CrossRef] [PubMed]
- Sahavacharin, A.; Sompongchaiyakul, P.; Thaitakoo, D. The effects of land-based change on coastal ecosystems. Landsc. Ecol. Eng. 2022, 18, 351–366. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Perillo, G.M.; Turner, R.E.; Ashan, D.; Cragg, S.; Luo, Y.; Tu, C.; Li, Y. Anthropogenic, direct pressures on coastal wetlands. Front. Ecol. Evol. 2020, 8, 144. [Google Scholar] [CrossRef]
- Winterwerp, J.C.; Albers, T.; Anthony, E.J.; Friess, D.A.; Mancheño, A.G.; Moseley, K.; Muhari, A.; Naipal, S.; Noordermeer, J.; Oost, A. Managing erosion of mangrove-mud coasts with permeable dams–lessons learned. Ecol. Eng. 2020, 158, 106078. [Google Scholar] [CrossRef]
- Kanwal, S.; Ding, X.; Sajjad, M.; Nazeer, M.; Zia, I. Remote Sensing of Narrowing Barrier Islands along the Coast of Pakistan over Past 30 Years. J. Mar. Sci. Eng. 2021, 9, 295. [Google Scholar] [CrossRef]
- Ahmed, W.; Wu, Y.; Kidwai, S.; Li, X.; Zhang, G.; Zhang, J. Spatial and temporal variations of nutrients and chlorophyll a in the Indus River and its deltaic creeks and coastal waters (Northwest Indian Ocean, Pakistan). J. Mar. Syst. 2021, 218, 103525. [Google Scholar] [CrossRef]
- Ballut-Dajud, G.A.; Sandoval Herazo, L.C.; Fernández-Lambert, G.; Marín-Muñiz, J.L.; López Méndez, M.C.; Betanzo-Torres, E.A. Factors affecting wetland loss: A review. Land 2022, 11, 434. [Google Scholar] [CrossRef]
- Rafael, A.; Calumpong, H.P. Fungal infections of mangroves in natural forests and reforestation sites from Philippines. Aquacult. Aquar. Conserv. Legis. 2019, 12, 2062–2074. [Google Scholar]
- Rahman, K.-S.; Islam, M.N.; Ahmed, M.U.; Bosma, R.H.; Debrot, A.O.; Ahsan, M.N. Selection of mangrove species for shrimp based silvo-aquaculture in the coastal areas of Bangladesh. J. Coast. Conserv. 2020, 24, 59. [Google Scholar] [CrossRef]
- Mandal, B.; Ganguly, A.; Mukherjee, A. A review for understanding the reasons o f vanishing sundari tree Heritiera fomes buchanan-hamilton from Sundarba n mangroves. Environ. Ecol. 2021, 39, 813–817. [Google Scholar]
- Rahman, M. Impact of increased salinity on the plant community of the Sundarbans Mangrove of Bangladesh. Community Ecol. 2020, 21, 273–284. [Google Scholar] [CrossRef]
- Osorio, J.A.; Crous, C.J.; Wingfield, M.J.; De Beer, Z.W.; Roux, J. An assessment of mangrove diseases and pests in South Africa. For. Int. J. For. Res. 2017, 90, 343–358. [Google Scholar] [CrossRef]
- Osorio, J.A.; Wingfield, M.J.; Roux, J. A review of factors associated with decline and death of mangroves, with particular reference to fungal pathogens. S. Afr. J. Bot. 2016, 103, 295–301. [Google Scholar] [CrossRef]
- Skagias, K.; Vasiliadis, L.; Belias, D.; Christos, P. From mass tourism and mass culture to sustainable tourism in the post-covid19 Era: The case of Mykonos. In Proceedings of the Culture and Tourism in a Smart, Globalized, and Sustainable World: 7th International Conference of IACuDiT, Hydra, Greece, 2–4 September 2020; pp. 347–358. [Google Scholar]
- Das, G.K. Coastal Tourism and Pollution. In Coastal Environments of India: A Coastal West Bengal Perspective; Springer International Publishing: Cham, Switzerland, 2023; pp. 213–232. [Google Scholar]
- Vargas-del-Río, D.; Brenner, L. Mangroves in transition. Management of community spaces affected by conservation and tourism in Mexico. Ocean Coast. Manag. 2023, 232, 106439. [Google Scholar] [CrossRef]
- UNEP. Environmental Impacts of Tourism. Available online: https://www.gdrc.org/uem/eco-tour/envi/one.html (accessed on 12 May 2023).
- Al-Zawaidah, H.; Ravazzolo, D.; Friedrich, H. Macroplastics in rivers: Present knowledge, issues and challenges. Environ. Sci. Process. Impacts 2021, 23, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Suaria, G.; Bagnuolo, G.; Baini, M.; Galli, M.; De Rysky, E.; Ballini, M.; Aliani, S.; Fossi, M.C.; Uricchio, V.F. Visual observations of floating macro litter around Italy (Mediterranean Sea). Mediterr. Mar. Sci. 2019, 20, 271–281. [Google Scholar] [CrossRef]
- Castro-Jiménez, J.; González-Fernández, D.; Fornier, M.; Schmidt, N.; Sempéré, R. Macro-litter in surface waters from the Rhone River: Plastic pollution and loading to the NW Mediterranean Sea. Mar. Pollut. Bull. 2019, 146, 60–66. [Google Scholar] [CrossRef]
- Gomiero, A.; Strafella, P.; Fabi, G. From macroplastic to microplastic litter: Occurrence, composition, source identification and interaction with aquatic organisms. Experiences from the Adriatic Sea. In Plastics in the Environment; IntechOpen: London, UK, 2018. [Google Scholar]
- Gyraite, G.; Haseler, M.; Balčiūnas, A.; Sabaliauskaitė, V.; Martin, G.; Reisalu, G.; Schernewski, G. A New Monitoring Strategy of Large Micro-, Meso-and Macro-Litter: A Case Study on Sandy Beaches of Baltic Lagoons and Estuaries. Environ. Manag. 2022, 72, 410–423. [Google Scholar] [CrossRef]
- Lincoln, S.; Andrews, B.; Birchenough, S.N.R.; Chowdhury, P.; Engelhard, G.H.; Harrod, O.; Pinnegar, J.K.; Townhill, B.L. Marine litter and climate change: Inextricably connected threats to the world’s oceans. Sci. Total Environ. 2022, 837, 155709. [Google Scholar] [CrossRef] [PubMed]
- Dan, S.F.; Udoh, E.C.; Wang, Q. Contamination and ecological risk assessment of heavy metals, and relationship with organic matter sources in surface sediments of the Cross River Estuary and nearshore areas. J. Hazard. Mater. 2022, 438, 129531. [Google Scholar] [CrossRef] [PubMed]
- Bindiya, E.S.; Sreekanth, P.M.; Bhat, S.G. Conservation and Management of Mangrove Ecosystem in Diverse Perspectives. In Conservation and Sustainable Utilization of Bioresources; Springer Nature: Singapore, 2023; pp. 323–352. [Google Scholar]
- Mitra, A.; Zaman, S. Oil Pollution. In Environmental Science—A Ground Zero Observation on the Indian Subcontinent; Mitra, A., Zaman, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 349–371. [Google Scholar]
- Alimi, O.S.; Fadare, O.O.; Okoffo, E.D. Microplastics in African ecosystems: Current knowledge, abundance, associated contaminants, techniques, and research needs. Sci. Total Environ. 2021, 755, 142422. [Google Scholar] [CrossRef] [PubMed]
- Girones, L.; Oliva, A.L.; Negrin, V.L.; Marcovecchio, J.E.; Arias, A.H. Persistent organic pollutants (POPs) in coastal wetlands: A review of their occurrences, toxic effects, and biogeochemical cycling. Mar. Pollut. Bull. 2021, 172, 112864. [Google Scholar] [CrossRef]
- Kannankai, M.P.; Alex, R.K.; Muralidharan, V.V.; Nazeerkhan, N.P.; Radhakrishnan, A.; Devipriya, S.P. Urban mangrove ecosystems are under severe threat from microplastic pollution: A case study from Mangalavanam, Kerala, India. Environ. Sci. Pollut. Res. 2022, 29, 80568–80580. [Google Scholar] [CrossRef]
- Tekman, M.B.; Walther, B.; Peter, C.; Gutow, L.; Bergmann, M. Impacts of Plastic Pollution in the Oceans on Marine Species, Biodiversity and Ecosystems; WWW Germany: Berlin, Germany, 2022. [Google Scholar]
- Buncag, M.J.J. Community-based mangrove forest management sustainability: The case of some Asian countries. Int. J. Sci. Res. 2021, 10, 918–926. [Google Scholar]
- Afonso, F.; Félix, P.M.; Chainho, P.; Heumüller, J.A.; de Lima, R.F.; Ribeiro, F.; Brito, A.C. Community perceptions about mangrove ecosystem services and threats. Reg. Stud. Mar. Sci. 2022, 49, 102114. [Google Scholar] [CrossRef]
- Veettil, B.K.; Ward, R.D.; Quang, N.X.; Trang, N.T.T.; Giang, T.H. Mangroves of Vietnam: Historical development, current state of research and future threats. Estuar. Coast. Shelf Sci. 2019, 218, 212–236. [Google Scholar] [CrossRef]
- Nickayin, S.S.; Jahelka, A.; Ye, S.; Perrone, F.; Salvati, L. Planning for Just Cities with Nature-Based Solutions: Sustainability and Socio-Environmental Inequalities in San José de Chamanga, Ecuador. Land 2023, 12, 604. [Google Scholar] [CrossRef]
- Aipassa, M.I.; Siahaya, M.E.; Aponno, H.S.; Ruslim, Y.; Kristiningrum, R. Participation of community in mangrove conservation in coastal area of the Valentine Strait, West Seram, Maluku, Indonesia. Biodiversitas J. Bio. Divers. 2023, 24, 4. [Google Scholar] [CrossRef]
- Basurto Cisneros, C. The Importance of Integrated Coastal Zone Management in Coastal Cities: The Case Study of Cancun, Mexico; University of Twente: Enschede, The Netherlands, 2016. [Google Scholar]
- Cancelmo, J. Glorious Gulf of Mexico: Life Below the Blue. J. Bot. Res. Inst. Tex. 2016, 14, 72. [Google Scholar]
- Escudero-Castillo, M.; Felix-Delgado, A.; Silva, R.; Mariño-Tapia, I.; Mendoza, E. Beach erosion and loss of protection environmental services in Cancun, Mexico. Ocean Coast. Manag. 2018, 156, 183–197. [Google Scholar] [CrossRef]
- Zabbey, N.; Kpaniku, N.; Sam, K.; Nwipie, G.N.; Okoro, O.; Zabbey, F.; Babatunde, B.B. Could community science drive environmental management in Nigeria’s degrading coastal Niger delta? Prospects and challenges. Environ. Dev. 2021, 37, 100571. [Google Scholar] [CrossRef]
- Shumway, N.; Bell-James, J.; Fitzsimons, J.A.; Foster, R.; Gillies, C.; Lovelock, C.E. Policy solutions to facilitate restoration in coastal marine environments. Mar. Policy 2021, 134, 104789. [Google Scholar] [CrossRef]
- Malayang III, B.; Oracion, E.; Bomediano, M.; Calumpong, H.; Abesamis, R.; Montebon, R. Opportunities and Challenges to Fisheries Policy in the Philippines Today. J. Environ. Sci. Manag. 2020, 23, 111–120. [Google Scholar] [CrossRef]
- Suman, D.O. Mangrove management: Challenges and guidelines. In Coastal Wetlands; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S., Eds.; Elsevier: Morristown, NJ, USA, 2019; pp. 1055–1079. [Google Scholar]
- Griffiths, L.L.; Connolly, R.M.; Brown, C.J. Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean Coast. Manag. 2020, 183, 104946. [Google Scholar] [CrossRef]
- Vierros, M.; Balgos, M.; Snow, B. Assessing Progress on Ocean and Climate Action: 2020–2021: A Report of the Roadmap to Oceans and Climate Action (ROCA) Initiative; Roadmap to Oceans and Climate Action (ROCA): MA, USA, 2021. [Google Scholar]
- Salas, J.; Patterson, G.; de Barros Vidal, F. A Systematic Mapping of Artificial Intelligence Solutions for Sustainability Challenges in Latin America and the Caribbean. IEEE Lat. Am. Trans. 2022, 20, 2312–2329. [Google Scholar] [CrossRef]
- Akhbar, A.; Naharuddin, N.; Arianingsih, I.; Misrah, M.; Akhbar, R.K. Spatial model of forest area designation and function based on multi-criteria in dry land and mangrove forest ecosystems, Central Sulawesi, Indonesia. Biodiversitas J. Bio. Divers. 2022, 23, 7. [Google Scholar] [CrossRef]
- Lawrence, J.; Boston, J.; Bell, R.; Olufson, S.; Kool, R.; Hardcastle, M.; Stroombergen, A. Implementing pre-emptive managed retreat: Constraints and novel insights. Curr. Clim. Chang. Rep. 2020, 6, 66–80. [Google Scholar] [CrossRef]
- Ameyaw, P.D.; de Vries, W.T. Toward smart land management: Land acquisition and the associated challenges in Ghana. A look into a blockchain digital land registry for prospects. Land 2021, 10, 239. [Google Scholar] [CrossRef]
- Su, L.; Fan, J.; Fu, L. Exploration of smart city construction under new urbanization: A case study of Jinzhou-Huludao Coastal Area. Sustain. Comput. Inform. Syst. 2020, 27, 100403. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; Xu, Z.; Liu, Y.; Wang, X.; Li, B. Integrating regional and interregional approaches to identify ecological security patterns. Landsc. Ecol. 2021, 36, 2151–2164. [Google Scholar] [CrossRef]
- Steven, A.; Addo, K.A.; Llewellyn, G.; Ca, V.T.; Boateng, I.; Bustamante, R.; Doropoulos, C.; Gillies, C.; Hemer, M.; Lopes, P. Coastal Development: Resilience, Restoration and Infrastructure Requirements. Available online: https://www.oceanpanel.org/blue-papers/coastal-development-resilience-restoration-and-infrastructure-requirements (accessed on 15 April 2023).
- Dimple, D.; Rajput, J.; Al-Ansari, N.; Elbeltagi, A.; Zerouali, B.; Santos, C.A.G. Determining the Hydrological Behaviour of Catchment Based on Quantitative Morphometric Analysis in the Hard Rock Area of Nand Samand Catchment, Rajasthan, India. Hydrology 2022, 9, 31. [Google Scholar] [CrossRef]
- Dos Santos, V.; Oliveira, R.J.; Datok, P.; Sauvage, S.; Paris, A.; Gosset, M.; Sánchez-Pérez, J. Evaluating the performance of multiple satellite-based precipitation products in the Congo River Basin using the SWAT model. J. Hydrol. Reg. Stud. 2022, 42, 101168. [Google Scholar] [CrossRef]
- Sulochanan, B.; Ratheesh, L.; Veena, S.; Padua, S.; Prema, D.; Rohit, P.; Kaladharan, P.; Kripa, V. Water and sediment quality parameters of the restored mangrove ecosystem of Gurupura River and natural mangrove ecosystem of Shambhavi River in Dakshina Kannada, India. Mar. Pollut. Bull. 2022, 176, 113450. [Google Scholar] [CrossRef]
- Boanu, N.Y.; Dadson, I.Y.; Adu-Boahen, K.; Yeboah, E.O. Assessment of the Physico-chemical Properties in the Muni-Pomadze Ramsar Site and its Catchment in Winneba, Ghana. Environ. Prot. Res. 2022, 2, 95–111. [Google Scholar]
- Rizal, A.; Anna, Z. The effect on mangrove density with sediment transport rate in Sikakap Coastal area of Mentawai Island district, West Sumatera Province, Indonesia. World Sci. News 2020, 146, 202–214. [Google Scholar]
- Appeaning Addo, K.; Brempong, E.; Jayson-Quashigah, P. Assessment of the dynamics of the Volta river estuary shorelines in Ghana. Geoenviron. Disasters 2020, 7, 19. [Google Scholar] [CrossRef]
- Sundaramanickam, A.; Nithin, A.; Balasubramanian, T. Role of mangroves in pollution abatement. In Mangroves: Ecology, Biodiversity and Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 257–278. [Google Scholar]
- Herr, D.; Blum, J.; Himes-Cornell, A.; Sutton-Grier, A. An analysis of the potential positive and negative livelihood impacts of coastal carbon offset projects. J. Environ. Manag. 2019, 235, 463–479. [Google Scholar] [CrossRef]
- Karani, P.; Failler, P. Comparative coastal and marine tourism, climate change, and the blue economy in African Large Marine Ecosystems. Environ. Dev. 2020, 36, 100572. [Google Scholar] [CrossRef]
- Nijamdeen, T.M.; Hugé, J.; Ratsimbazafy, H.A.; Kodikara, K.A.S.; Dahdouh-Guebas, F. A social network analysis of mangrove management stakeholders in Sri Lanka’s Northern Province. Ocean Coast. Manag. 2022, 228, 106308. [Google Scholar] [CrossRef]
- Friess, D.A.; Adame, M.F.; Adams, J.B.; Lovelock, C.E. Mangrove forests under climate change in a 2 C world. Wiley Interdiscip. Rev. Clim. Change 2022, 13, e792. [Google Scholar] [CrossRef]
- Enenkel, M.; Brown, M.; Vogt, J.; McCarty, J.; Reid Bell, A.; Guha-Sapir, D.; Dorigo, W.; Vasilaky, K.; Svoboda, M.; Bonifacio, R. Why predict climate hazards if we need to understand impacts? Putting humans back into the drought equation. Clim. Chang. 2020, 162, 1161–1176. [Google Scholar] [CrossRef]
- Gudex-Cross, D.J. Remote Sensing Methods and Applications for Detecting Change in Forest Ecosystems; The University of Vermont and State Agricultural College: Burlington, VT, USA, 2018. [Google Scholar]
- Romañach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.; Teh, S.Y.; Barizan, R.S.R.; Zhai, L. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Fuchs, G.; Noebel, R. The Role of Ecosystem Restoration for the UNFCCC and the Paris Agreement. 2022. Available online: https://www.giz.de/en/downloads/giz2022_UN%20Decade_en_Policy%20Paper%204_UNFCCC.pdf (accessed on 5 March 2023).
- Young, R.E.; Gann, G.D.; Walder, B.; Liu, J.; Cui, W.; Newton, V.; Nelson, C.R.; Tashe, N.; Jasper, D.; Silveira, F.A. International principles and standards for the ecological restoration and recovery of mine sites. Restor. Ecol. 2022, 30, e13771. [Google Scholar] [CrossRef]
- Shaiban, H. Using Nurse Species as a Potential Nature-Based Solution for Restoring Herbaceous Plant Communities and Soils in Abandoned Quarries in Lebanon: Results from Ex-Situ Mesocosm Experiments; Université d’Avignon: Avignon, France, 2022. [Google Scholar]
- Bayo, B.; Habib, W.; Mahmood, S. Spatio-temporal assessment of mangrove cover in the Gambia using combined mangrove recognition index. Adv. Remote Sens. 2022, 2, 74–84. [Google Scholar]
- Nawir, A.A.; Gunarso, P.; Santoso, H.; Hakim, M. Experiences, Lessons and Future Directions for Forest Landscape Restoration in Indonesia. For. Landsc. Restor. Asia-Pac. For. 2016, 53. Available online: https://portal.gms-eoc.org/uploads/resources/1347/attachment/forest_landscape_restoration_for_asia-pacific_forests_2016_04_eng.pdf#page=63 (accessed on 12 March 2023).
- Kentula, M.E. Perspectives on setting success criteria for wetland restoration. Ecol. Eng. 2000, 15, 199–209. [Google Scholar] [CrossRef]
- Lewis III, R.R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Bosire, J.O.; Dahdouh-Guebas, F.; Walton, M.; Crona, B.I.; Lewis Iii, R.; Field, C.; Kairo, J.G.; Koedam, N. Functionality of restored mangroves: A review. Aquat. Bot. 2008, 89, 251–259. [Google Scholar] [CrossRef]
- Pathak, A.; Glick, P.; Hansen, L.J.; Hilberg, L.E.; Ritter, J.; Stein, B.A. Incorporating Nature-based Solutions Into Community Climate Adaptation Planning. 2022. Available online: https://www.researchgate.net/profile/Bruce-Stein/publication/360049898_Incorporating_Nature-based_Solutions_Into_Community_Climate_Adaptation_Planning/links/625ee141709c5c2adb879b0b/Incorporating-Nature-based-Solutions-Into-Community-Climate-Adaptation-Planning.pdf (accessed on 15 March 2023).
- Saatchi, S.S.; Nelson, B.; Podest, E.; Holt, J. Mapping land cover types in the Amazon Basin using 1 km JERS-1 mosaic. Int. J. Remote Sens. 2000, 21, 1201–1234. [Google Scholar] [CrossRef]
- Sarker, S.; Mahmudul Islam, M. Marine protected area and biodiversity conservation. In Life Below Water; Springer: Berlin/Heidelberg, Germany, 2022; pp. 629–644. [Google Scholar]
- Gerona-Daga, M.E.B.; Salmo, S.G. A systematic review of mangrove restoration studies in Southeast Asia: Challenges and opportunities for the United Nation’s Decade on Ecosystem Restoration. Front. Mar. Sci. 2022, 9, 987737. [Google Scholar] [CrossRef]
- Marchand, M. Mangrove restoration in Vietnam. Ho Chi Minh City WRU/TUD 2008. Available online: http://resolver.tudelft.nl/uuid:98b5ba43-1452-4631-81dc-ad043ef3992c (accessed on 12 March 2023).
- Chi, F. Long-Term Changes in Mangrove Forests and Cays Following Hurricanes at Turneffe Islands, Belize; University of British Columbia: Vancouver, BC, Canada, 2012. [Google Scholar]
- Waryszak, P.; Gavoille, A.; Whitt, A.A.; Kelvin, J.; Macreadie, P.I. Combining gray and green infrastructure to improve coastal resilience: Lessons learnt from hybrid flood defenses. Coast. Eng. J. 2021, 63, 335–350. [Google Scholar] [CrossRef]
- Ota, L.; Chazdon, R.L.; Herbohn, J.; Gregorio, N.; Mukul, S.A.; Wilson, S.J. Achieving quality forest and landscape restoration in the tropics. Forests 2020, 11, 820. [Google Scholar] [CrossRef]
- Debrot, A.O.; Veldhuizen, A.; Van Den Burg, S.W.; Klapwijk, C.J.; Islam, M.N.; Alam, M.I.; Ahsan, M.N.; Ahmed, M.U.; Hasan, S.R.; Fadilah, R. Non-timber forest product livelihood-focused interventions in support of mangrove restoration: A call to action. Forests 2020, 11, 1224. [Google Scholar] [CrossRef]
- Nguyen, H.; Harper, R.J.; Dell, B. Examining local community understanding of mangrove carbon mitigation: A case study from Ca Mau province, Mekong River Delta, Vietnam. Mar. Policy 2023, 148, 105398. [Google Scholar] [CrossRef]
- Worthington, T.A.; Andradi-Brown, D.A.; Bhargava, R.; Buelow, C.; Bunting, P.; Duncan, C.; Fatoyinbo, L.; Friess, D.A.; Goldberg, L.; Hilarides, L. Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth 2020, 2, 429–443. [Google Scholar] [CrossRef]
- Ahmad, R.; Abdullah, J.E.; Zainol, N.A.; Ramely, A. Attracting customers using sustainability: A look at the Datai, Langkawi. J. Account. Bus. Manag. 2023, 13, 57–78. [Google Scholar] [CrossRef]
- Kelly, E. Cascading Problems through the Ramsar Convention. 2023. Available online: https://studenttheses.uu.nl/handle/20.500.12932/43583 (accessed on 2 April 2023).
- Guttmann, R. Carbon Money. In Eco-Capitalism: Carbon Money, Climate Finance, and Sustainable Development; Guttmann, R., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 209–249. [Google Scholar]
Group | Common Name | Genus/Species | References |
---|---|---|---|
Sponges | Common Mangrove Sponge | Tedania sp. Mycale sp. Dysidea sp. Haliclona sp. | [46] |
Worms | Segmented worms | Sabellastarte sp. | [47] |
Insects | Ant | Polyrachis bicolor sp. | [48] |
Weevils | Rhynchites sp. | [49] | |
Bettles | Monolepta sp. | [50] | |
Crustaceans | Crabs | Ilyogynis microcheirum Portunus pelagicus Uca sp. Hippidea sp. | [51,52] |
Prawns | Penaeus monodon Exopalaemon styliferus Metapenaeus affinis Parapenaeopsis sculptilis | [53,54] | |
Barnacles | Balanus sp. Euraphia sp. Tetraclita sp. | [55,56] | |
Mollusks | Oyster | Crassostrea sp. | [57] |
Clam | Tridacna derasa Tridacna maxima nodontia edentula | [58,59,60] | |
Sea slug/sea hares | Dolobella sp. | [61] | |
Venus clam | Bursa sp. Paphia amabilis Venus clam Paphia Haliotis asinina Tectus pyramis Echininus cumingii Terebralia sulcata Rhinoclavis sinensis Rhinoclavis vertegus Ficus gracilis Plicacularia pullus Fasciolaria trapezium Oliva reticulata Mitra mitra Trisodos tortuosa Anadara maculosa Chicoreus brunneus | [62,63,64,65,66] | |
Echinoderms | Sea urchin | Protoreaster sp. Archaster sp. Linckia sp. Clypeaster sp. Cerithium sp. Tripneustes sp. Holothuria sp. Oreaster albeolatus Ophiarachna incrasala Echinocardium cordatum Diadema setosum Laganum laganum Echinometra mathaei | [62,67,68,69] |
Star fish | Astropecten sp. Protoreaster nodosus Linkia laevigata | [69,70] | |
Feather star | Comanthina bennetti Comanthina schlegeli | [71] | |
Sea star | Luidia sp. Culcita novaeguineae | [72] | |
Tunicates | Sea squirt | Didemnum molle Atriolum robustum Polycarpa aurata Rhopalea sp. | [73] |
Fishes | Rabbitfish | Siganid sp. | [74] |
Mudskipper | Periophthalmodon Periophthalmus | [74] | |
Spot-tail needlefish | Strongylura strongylura | [75] | |
Amphibians | Mangrove frog | Fejervarya cancrivora Rana cancrivora | [76] |
Reptiles | Snake | Cerberus rhybchos | [62] |
Lizard | Tupinambis indicus | [77] | |
Crocodiles | Crocodylus porosus | [78] | |
Birds | Eagles | Haliastur indus Pitta megarhyncha | [79,80] |
Kingfishers | Halcyon senegaloides Todiramphus sordidus | [81] | |
Herons | Nycticorax nycticorax Egretta gularis | [82,83] | |
Plovers | Charadrius sp. Pluvialis sp. Thinornis sp. | [84,85] | |
Terns | Sterna paradisaea | [85] | |
Crow | Corvus splendens | [86] | |
Green pigeon | Treron olax | [86] | |
Egrets | Egretta garzetta Egretta immaculata Egretta nigripes | [87,88] | |
Mammals | Bats | Cynopterus brachyotis Acerodon jubatus | [89,90] |
Monkey | Nasalis larvatus | [91] | |
Dugong | Dugong dugon | [92] | |
Otters | Lutrinae sp. | [93] |
Group | Common Name | Genus/Species | References |
---|---|---|---|
Angiosperm | Seagrasses | Cymodocea sp. Thalassia sp. Halodule sp. Halophila sp. Enhalus sp. | [94,95] |
Orchids | Acampe sp. Agrostophyllum sp. Apotasi sp. Ascocentrum sp. Bulbophyllum sp. Ceratostylis sp. Cleisostoma sp. Cymbidium sp. Dendrobium sp. Flickingeria sp. Grosourdya sp. Habenaria sp. Liparis sp. Malaxis sp. Podochilus sp. Pomatocalpa sp. Thelasis sp. | [96,97,98,99,100] | |
Lilies | Crinum sp. Hymenocallis sp. Nymphaeaceae sp. Lycoris sp. | [101,102] | |
Vines | Cryptostegia grandiflora | [41] | |
Bryophytes | Ferns | Acrostichum sp. Waterhousea sp. | [103,104] |
Algae | Marine algae | Padina sp. Ulva sp. Ventricaria ventricosa | [105,106] |
Group | Phyla | Functions | References |
---|---|---|---|
Bacteria | Actinobacteria |
| [125] |
Chloroflexota |
| [113,114] | |
Asgardarchaeota |
| [126] | |
Bacteroidetes |
| [45] | |
Thermoproteota |
| [127] | |
Calditrichota |
| [128] | |
Bacillota |
| [129] | |
Thermodesulfobacteriota |
| [124] | |
Euryarchaeota |
| [113] | |
Firmicutes |
| [130,131] | |
Halobacterota |
| [132] | |
Nitrososphaerota |
| [127] | |
Nitrospirota |
| [122] | |
Planctomycetota |
| [133] | |
Pseudomonadota |
| [134,135] | |
Thaumarchaeota |
| [122] | |
Zixibacteria |
| [136] | |
Cyanobacteria | Cyanobacteriota |
| [137,138] |
Fungi | Ascomycota |
| [123,139] |
Basidiomycota |
| [140] |
Country | Total Species | Critically Endangered (CR) | Endangered (EN) | Vulnerable (VU) | Near Threatened (NT) | Data Deficient (DD) | Least Concern from All (LC) |
---|---|---|---|---|---|---|---|
Indonesia | 47 | Sonneratia griffithii Bruguiera hainesii | Camptostemon philippinense Heritiera globose | Avicennia rumphiana | Aegialitis rotundifolia Aegiceras floridum Sonneratia ovata | Aglaia cucullata Excoecaria indica | Acrostichum speciosum Bruguiera gymnorhiza Pemphis acidula Acrostichum aureum Acrostichum danaeifolium Avicennia germinans Conocarpus erectus Laguncularia racemosa Rhizophora mangle Rhizophora racemosa Avicennia schaueriana Acanthus ebracteatus Acanthus ilicifolius Aegialitis annulata Aegiceras corniculatum Avicennia marina Bruguiera cylindrica Bruguiera exaristata Bruguiera parviflora Bruguiera sexangula Camptostemon schultzii Ceriops australis Ceriops tagal Cynometra iripa Dolichandrone spathacea Excoecaria agallocha Heritiera littoralis Lumnitzera littorea Lumnitzera racemosa Nypa fruticans Osbornia octodonta Rhizophora apiculata Rhizophora mucronata Rhizophora stylosa Scyphiphora hydrophylacea Sonneratia alba Sonneratia caseolaris Sonneratia lanceolata Xylocarpus granatum Xylocarpus moluccensis Avicennia alba Avicennia officinalis Kandelia candel Sonneratia apetala Kandelia obovate |
Malaysia | 40 | Bruguiera hainesii Sonneratia griffithii | Heritiera fomes Heritiera globose | Avicennia rumphiana | Aegiceras floridum Ceriops decandra Sonneratia ovata | Aglaia cucullata Excoecaria indica | |
India | 37 | Sonneratia griffithii | Heritiera fomes | Aegialitis rotundifolia Ceriops decandra | Aglaia cucullata Excoecaria indica | ||
Myanmar | 36 | Sonneratia griffithii | Heritiera fomes | Aegialitis rotundifolia Ceriops decandra | Aglaia cucullata Excoecaria indica | ||
Thailand | 35 | Sonneratia griffithii | Heritiera fomes | Aegialitis rotundifolia Ceriops decandra Sonneratia ovata | Aglaia cucullate | ||
Australia | 35 | Avicennia integra | Sonneratia ovata | ||||
Philippines | 34 | Camptostemon philippinense | Avicennia rumphiana | Aegiceras floridum Sonneratia ovata | Aglaia cucullate | ||
Vietnam | 33 | Aegiceras floridum Sonneratia ovata | |||||
Colombia | 12 | Avicennia bicolor Mora oleifera Pelliciera rhizophorae Tabebuia palustris | Rhizophora samoensis | ||||
Nigeria | 7 |
Threat/Challenge | Forecast Changes | Outcome | References |
---|---|---|---|
Rise in sea level | Sea levels may rise 1.5 to 2.5 m by 2099. |
| [242] |
Rise in temperature (air and water) | Temperatures may rise by 4 °C by the end of 21st century. |
| [249] |
Increased CO2 in atmosphere and oceanic acidification | The pH level of the oceans is gradually increasing, thereby making them more acidic. Consequently, CO2 level by the end of the century, may be double or triple that of today’s level. |
| [243,244] |
Changes in precipitation/storm patterns | The frequencies of storms and rainfall are projected to increase approximately 25% until 2050, and the intensity of storms andprecipitation will also be increased. |
| [250] |
Process/Activity | Impact | Contributors |
---|---|---|
Accentuate the importance of mangroves in carbon sequestration at national and international platforms that address climate change, as mangroves are less discussed in the international dialogues on carbon emission settlement eligibility of ecosystems in the United Nations Framework Convention on Climate Change (UNFCCC) [344]. | This would support the implementation of mangrove projects for the reduction of carbon emissions. This can have direct bearing on the implications of SDG 13, i.e., Climate Action. | United Nations, voluntary carbon markets traders from regional through national to global level. |
Develop the schemes for “Blue Carbon” (mangrove) under UNFCCC. The UNFCCC refers insignificantly to blue carbon ecosystems, which makes them unworthy to the carbon markets [345]. On the contrary, when it comes down to green carbon (terrestrial forests), there are well established market mechanisms focusing on greenhouse gas (GHG) emissions reduction owing to deforestation. Such tools need to be applied to mangrove ecosystems. | This would accelerate the investigations, designing, and development of more internationally coordinated procedures for mangroves carbon credits under blue carbon scheme and can directly contribute to SDG 13, i.e., Climate Action. | United Nations, voluntary carbon markets, traders from regional through national to global levels. |
Integrate mangrove management policies with legal systems that could provide accredited scenarios for effective mangrove management by ensuring proper legislation, regulation, and enforcement, and compliance by stakeholders from local through regional to national levels. | This would help to define entitlement to ownership, access, and the rights of use of mangrove forests. Moreover, this can enhance legal, financial, and technical capacity for effective mangrove management. Moreover, it can be in line with SDG 8, which is about Decent Work and Economic Growth. | National and international policymakers and law enforcement bodies, and other stakeholders and beneficiaries. |
Emphasise the intense socio-economic impacts of mangrove degradation on prevailing indigence in many rural coastal communities. This can be achieved by raising public awareness through extended outreach regarding the socio-economic importance of the mangroves and the implications of their loss. Global initiatives such as The Economics of Ecosystems and Biodiversity (TEEB) will be helpful in this regard. | Healthy mangrove forests contribute to the food security of millions of people around the world. Information and exchange of existing knowledge on ecosystem services and functions, their economic valuation, and alternative mangrove management approaches would help build a stronger case for interventions. It would also help to refine existing management approaches/practices if the Sustainable Development Goals to eliminate extreme poverty (SDG 1) and end hunger (SDG 2) set by the United Nations (UN) are to be achieved. | Socio-economists and regional forestry departments, FAO, NGOs, and academia. |
Include the role of mangroves as a key factor in climate change adaptation in the national disaster risk reduction plans and action framework. The environmental impact assessment can be carried out during planning and installation of the artificial coastal defence systems in/or near mangrove forests. Evaluation of the risks posed to the mangroves and all associated ecosystem services and functions can be taken into account. Consideration should also be given to using mangroves alongside the built substructure as “hybrid engineering”, where mangroves alone may not be sufficient. | Such initiatives would encourage stakeholders to protect and restore mangroves as a part of natural coastal infrastructure. This would also signify mangroves for their roles in minimising vulnerability and increasing the resilience to climate change impacts. This can be related to SDG 11 Sustainable Cities and Communities and SDG 15 Life on Land. | Disaster risk reduction authorities and other voluntary groups, organisations such as the WHO, UN, etc. |
Introduce some economic incentives in terms of pollution taxes, subsidies, merchandise permits, and performance bonds. | This would instigate environmentally responsible behaviour among people and improve local livelihoods, which is in connection with SDG 8 regarding Economic Growth. If properly applied with a command and control strategy, this would lead to desirable outcomes such as mangrove restoration and enhancement. | Socio-economists, banking sector, ministry of finance, and public development. |
Promote the clean development mechanism (CDM) practices in provision of mangrove restoration and conservation. | This would encourage accounting for ongoing carbon sequestration and stock, which is one of the agenda of SDG 13, i.e., Climate Action. | United Nations, national and local governments, and NGOs. |
Encourage and finance the developing countries to reduce the loss of mangrove forests, restore areas, and/or establish new mangrove areas. The structure and protocol of REDD+ (reducing emissions from deforestation and forest degradation, plus the sustainable management of forests, and the conservation and enhancement of forest carbon stocks) supported by FAO could serve as a tool for the development of national and international financing mechanisms. | Since REDD agenda is to offset GHG emissions, counter deforestation, and forest degradation while generating revenue, which can also be used to incentivise the relevant stakeholders and also contribute to SDG 8, i.e., Decent Work and Economic Growth. | FAO, international and national governments, and environmental legislators. |
Organise community-based poverty reduction programmes in areas where mangrove restoration and management are practiced. Where suitable, alternatives to mangrove dependency for consumables in the local community must be introduced. | If applied appropriately, these attempts can be successful in enhancing the ecological settings of mangroves as well as the living status of local communities. Moreover, this would help to meet MDG 1 (Millennium Development Goal) to eradicate extreme poverty and hunger. | Government, NGOs, and local bodies. |
Highlight the severity of mangrove biodiversity loss and degraded ecosystems through experts in the fields of economics, science, and technology. | Mangrove degradation has significant socio-economic impacts. This would inform policymakers to ramp up enterprises in mangrove management, restoration, and comprehensive cost-effective analysis prior to making policy decisions. | Environmental consultants, ministry of education and information technology, NGOs, and academia. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, H.; Hussain, S.; Mazumdar, P.; Chua, K.O.; Butt, T.E.; Harikrishna, J.A. Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices. Forests 2023, 14, 1698. https://doi.org/10.3390/f14091698
Akram H, Hussain S, Mazumdar P, Chua KO, Butt TE, Harikrishna JA. Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices. Forests. 2023; 14(9):1698. https://doi.org/10.3390/f14091698
Chicago/Turabian StyleAkram, Hina, Shoaib Hussain, Purabi Mazumdar, Kah Ooi Chua, Talib E. Butt, and Jennifer Ann Harikrishna. 2023. "Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices" Forests 14, no. 9: 1698. https://doi.org/10.3390/f14091698
APA StyleAkram, H., Hussain, S., Mazumdar, P., Chua, K. O., Butt, T. E., & Harikrishna, J. A. (2023). Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices. Forests, 14(9), 1698. https://doi.org/10.3390/f14091698