Multiple Factors Jointly Lead to the Lower Soil Microbial Carbon Use Efficiency of Abies fanjingshanensis in a Typical Subtropical Forest in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Chemical Analysis
2.3. Soil Enzymes Activities and Microbial Carbon Use Efficiency
2.4. DNA Extraction and Polymerase Chain Reaction (PCR) Amplification
2.5. Statistical Analysis
3. Results
3.1. The Physicochemical Indexes in Topsoil and Subsoil in ABI, HE, ME and LE
3.2. Microbial Biomass in Topsoil and Subsoil in ABI, HE, ME and LE
3.3. CUE and Soil Enzyme Activities
3.4. α-Diversity and Community Composition of Bacteria and Fungus in Soil in ABI, HE, ME and LE
3.5. Factors Driving the Seasonal Variation in Soil Microbial Community Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, C.; Ma, Y.; Wang, D. Microbiology combined with metabonomics revealing the response of soil microorganisms and their metabolic functions exposed to phthalic acid esters. Ecotoxicol. Environ. Saf. 2022, 233, 113338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Maltais-Landry, G.; Liao, H.L. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol. Biochem. 2021, 156, 108219. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chen, P.; Wang, F.H. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environ. Int. 2022, 161, 107133. [Google Scholar] [CrossRef] [PubMed]
- Lozowicka, B.; Wolejko, E.; Kaczynski, P. Effect of microorganism on behaviour of two commonly used herbicides in wheat/soil system. Appl. Soil Ecol. 2021, 162, 103879. [Google Scholar] [CrossRef]
- Karhu, K.; Alaei, S.; Li, J. Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios. Soil Biol. Biochem. 2022, 167, 108615. [Google Scholar] [CrossRef]
- Zhu, Y.; Shao, T.; Zhou, Y. Periphyton improves soil conditions and offers a suitable environment for rice growth in coastal saline alkali soil. Land Degrad. Dev. 2021, 32, 2775–2788. [Google Scholar] [CrossRef]
- Chen, W.Q.; Wang, J.Y.; Chen, X. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biol. Biochem. 2022, 172, 108766. [Google Scholar] [CrossRef]
- Geyer, K.M.; Dijkstra, P.; Sinsabaugh, R.; Frey, S.D. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol. Biochem. 2019, 128, 79–88. [Google Scholar] [CrossRef]
- Geyer, K.M.; Kyker-Snowman, E.; Grandy, A.S. Microbial carbon use efficiency: Accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 2016, 127, 173–188. [Google Scholar] [CrossRef]
- Fisk, M.; Santangelo, S.; Minick, K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biol. Biochem. 2015, 81, 212–218. [Google Scholar] [CrossRef]
- Xiong, X.; Lyu, M.; Deng, C.; Li, X.; Lu, Y.; Lin, W.; Jiang, Y.; Xie, J. Carbon and Nitrogen Availability Drives Seasonal Variation in Soil Microbial Communities along an Elevation Gradient. Forests 2022, 13, 1657. [Google Scholar] [CrossRef]
- Lv, K.; Wang, J.J.; Wu, G.P. Elevational Pattern and Control Factors of Soil Microbial Carbon Use Efficiency in the Daiyun Mountain. Environ. Sci. 2022, 43, 4364–4371. (In Chinese) [Google Scholar]
- Zhang, Y.; Chen, L.; Wang, J.Y.; Li, Y.; Wang, J.; Guo, Y.X.; Ren, C.J.; Bai, H.Y.; Sun, H.T.; Zhao, F.Z. Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai Mountain, China. Chin. J. Plant Ecol. 2023, 47, 275–288. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.Y.; Luo, W.M.; Mou, G.T.; Wu, X.L. C:N:P stoichiometric characteristics of the soil–vegetation system of three rare tree species growing on Mount Fanjing in Southwest China. Glob. Ecol. Conserv. 2021, 32, e01893. [Google Scholar] [CrossRef]
- Wang, Z.X.; Liu, F.Z.; Li, H.B.; Du, J.H.; Li, W.D.; Wang, W. Assessment of Conservation Effectiveness of Protected Areas Based on Target Control Samples: A Case Study of Abies fanjingshanensis Communities. Res. Environ. Sci. 2022, 35, 519–529. (In Chinese) [Google Scholar]
- Yao, L.M.; Shi, L.; Li, H.B.; Shang, K.; Zhu, Q.Q.; Zhou, G.R.; Jiang, L. A New Chinese Record Species of Glomeromycota through Morphology and Molecular Phylogeny ldentification. J. Guizhou Univ. 2020, 48, 117–119. (In Chinese) [Google Scholar]
- Li, X.Y.; Zhang, W.Y.; Liu, F. The Distribution Characteristics of Soil Carbon, Nitrogen and Phosphorus at Different Altitudes in Fanjingshan Mountain. Res. Soil Water Conserv. 2016, 23, 19–24. (In Chinese) [Google Scholar]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S.C. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Van Laak, M.; Klingenberg, U.; Peiter, E.; Reitz, T.; Zimmer, D.; Buczko, U. The equivalence of the Calcium-Acetate-Lactate and Double-Lactate extraction methods to assess soil phosphorus fertility. J. Plant Nutr. Soil Sci. 2018, 181, 795–801. [Google Scholar] [CrossRef]
- Eva-Maria, P.; Vesterdal, L.; Beer, C. Do tree species affect decadal changes in soil organic carbon and total nitrogen stocks in Danish common garden experiments? Eur. J. Soil Sci. 2022, 73, e13206. [Google Scholar]
- Zhang, Z.M.; Wu, X.L.; Zhang, J.C.; Huang, X.F. Distribution and migration characteristics of microplastics in farmland soils, surface water and sediments in Caohai Lake, southwestern plateau of China. J. Clean. Prod. 2022, 366, 132912. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Turner, B.L.; Talbot, J.M.; Waring, B.G.; Powers, J.S.; Kuske, C.R.; Moorhead, D.L.; Follstad Shah, J.J. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 2016, 8, 172–189. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R. Fastp: An ulra-fast all-in-one FASTQ prepocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. LASH: Fast length adjustment of short reads to improve genome assemlies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Stackebrand, E.; Coebel, B.M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species defimition in Bacteriology. Int. J. Syst. Evol. Microbol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Srensen, P. Carbon mineralization, nitrogen immobilization and pH change in soil after adding volatile fatty acids. Eur. J. Soil Sci. 2010, 49, 457–462. [Google Scholar] [CrossRef]
- Thakur, S.; Negi, V.S.; Dhyani, R. Influence of environmental factors on tree species diversity and composition in the Indian western Himalaya. For. Ecol. Manag. 2022, 503, 119746. [Google Scholar] [CrossRef]
- Lv, S.H.; Li, X.Q.; Bai, K.D. Microtopographic differentiation characteristics of soil physicochemical properties and leaf traits of Litsea glutinosa in karst rocky desertification mountain of southwestern Guangxi. J. Plant Resour. Environ. 2022, 31, 11–17. (In Chinese) [Google Scholar]
- Wang, Q.C.; Zheng, Y.; Song, C.G. Impacts of simulated nitrogen and phosphorus depositions on soil microbial biomass and soil nutrients along two secondary succession stages in a subtropical forest. Acta Ecol. Sin. 2021, 41, 6245–6256. [Google Scholar]
- Peng, S.; Liu, W.; Xu, G.A. meta-analysis of soil microbial and physicochemical properties following native forest conversion. Catena 2021, 204, 105447. [Google Scholar] [CrossRef]
- Wang, Y.G.; Wang, N.; Li, Y.Y.; Zhou, Y.C.; Bao, N.S.; Zhao, X. Dump reclamation in jalai nur open-pit coal mine and feedback response of soil microbiome. Environ. Eng. 2022, 7, 45–51. (In Chinese) [Google Scholar]
- Chen, X.B.; Zhu, D.Q.; Zhao, C.C.; Zhang, L.L.; Chen, L.X.; Duan, W.B. Community composition and diversity of fungi in soil sunder different types of Pinus koraiensis forests. Acta Pedol. Sin. 2019, 56, 1221–1234. (In Chinese) [Google Scholar]
- Beimforde, C.; Feldberg, K.; Nylinder, S.; Rikkinen, J.; Tuovila, H.; Dorfelt, H. Estimating the Phanerozoic history of the Ascomycotalineages: Combining fossil and molecular data. Mol. Phylogenet. Evol. 2014, 78, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.D.; Knorr, M.; Parrent, J.L.; Simpson, R.T. Chronicnitrogen enrichment affects the structure and function of thesoil microbial community in temperate hardwood and pineforests. For. Ecol. Manag. 2004, 196, 159–171. [Google Scholar] [CrossRef]
- Bernardes, F.S.; Herrera, G.; Gabriel, M.C. Relationship between microbial community and environmental conditions in a constructed wetland system treating greywater. Ecol. Eng. 2019, 139, 105581. [Google Scholar] [CrossRef]
- Ren, C.; Liu, K.; Dou, P. The Changes in Soil Microorganisms and Soil Chemical Properties Affect the Heterogeneity and Stability of Soil Aggregates before and after Grassland Conversion. Agriculture 2022, 12, 307. [Google Scholar] [CrossRef]
- Jiao, S.; Lu, Y. Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Glob. Chang. Biol. 2020, 26, 4506–4520. [Google Scholar] [CrossRef]
- Noor, N.F.M.; Yusoff, M.E.; Rahman, M.A.A. The Disinfectant Effect of Modified Hydrothermal Nanotitania Extract on Candida albicans. Bio. Med. Res. Int. 2021, 2021, 6617645. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, X.; Zhao, C. Rapid microbial community evolution in initial Carex litter decomposition stages in Bayinbuluk alpine wetland during the freeze–thaw period. Ecol. Indic. 2021, 121, 107180. [Google Scholar] [CrossRef]
- Byrnes, J.E.K.; Gamfeldt, L.; Isbell, F.; Lefcheck, J.S.; Griffin, J.N.; Hector, A.; Cardinale, B.J.; Hooper, D.U.; Dee, L.E.; Duffy, J.E. Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges andsolutions. Methods Ecol. Evol. 2014, 5, 111–124. [Google Scholar] [CrossRef]
- Li, J.W.; Wang, G.S.; Allison, S.D. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry 2014, 119, 67–84. [Google Scholar] [CrossRef]
- Kivlin, S.N.; Waring, B.G.; Averill, C. Tradeoffs inmicrobial carbon allocation may mediate soil carbon storage in future climates. Front. Microbiol. 2013, 4, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.Z.; Ma, S.G.; Wang, W.W.; Li, X. Reseaveh advances in sil micmobial carbon use efficiency. Mount. Res. 2023, 41, 1–18. (In Chinese) [Google Scholar]
- Spohn, M.; Klaus, K.; Wanek, W. Microbial carbon use efficiency and biomass turnover times depending on soil depth-implications for carbon cycling. Soil Biol. Biochem. 2016, 96, 74–81. [Google Scholar] [CrossRef]
- Zhran, M.; Ge, T.D.; Tong, Y.Y. Assessment of depth-dependent microbial carbon use efficiency in long-term fertilized paddy soil using an 18O-H2O approach. Land Degrad. Dev. 2021, 32, 199–207. [Google Scholar] [CrossRef]
Indexes | 0–20 cm | 20–40 cm | ||||||
---|---|---|---|---|---|---|---|---|
ABI | HE | ME | LE | ABI | HE | ME | LE | |
pH | 4.05 ± 0.34 a | 4.04 ± 0.25 a | 4.65 ± 0.23 a | 4.03 ± 0.74 a | 4.07 ± 0.52 a | 4.31 ± 0.28 a | 4.77 ± 0.29 a | 4.69 ± 0.09 a |
Ca | 1.67 ± 0.47 a | 0.42 ± 0.23 a | 0.75 ± 0.68 a | 1.07 ±631 a | 1.98 ± 1.78 a | 0.58 ± 0.12 a | 0.72 ± 0.81 a | 0.57 ± 0.18 a |
Cu | 26 ± 6 a | 29 ± 24 a | 23 ± 2 a | 13 ± 2 a | 28 ± 11 a | 50 ± 54 a | 26 ± 4.37 a | 13 ± 1 a |
Fe | 28 ± 10 a | 15 ± 4 a | 22 ± 5 a | 22 ± 3 a | 31 ± 13 | 16 ± 1 a | 27 ± 2 a | 29 ± 5 a |
K | 2.26± 0.63 b | 8.86 ± 0.65 a | 2.79 ± 1.52 b | 4.50 ± 0.29 b | 2.20 ±0.13 b | 10.58 ±0.34 a | 3.35 ± 1.87 b | 5.89 ± 1.55 ab |
Zn | 1.82 ± 0.89 a | 1.56 ± 0.47 a | 0.43 ± 0.19 a | 0.50 ± 0.22 a | 0.37 ± 0.01 ab | 0.19 ± 0.01 a | 0.41 ± 0.02 ab | 0.32 ± 0.02 b |
TP | 0.63± 0.02 a | 0.59 ± 0.01 b | 0.64 ± 0.02 ac | 0.41 ± 0.01 d | 0.68 ± 0.15 s | 0.82 ± 0.81 b | 0.58 ± 0.18 ac | 0.11 ± 0.03 d |
SOC | 235± 88 a | 141 ± 11 b | 196 ± 33 c | 170 ± 37 d | 160 ± 79 a | 59 ± 24 b | 51 ± 7 b | 57 ± 24 b |
AK | 121 ± 39 a | 101 ± 11 a | 102 ± 28 a | 128 ± 16 a | 83 ± 27 a | 49 ± 12 a | 53 ± 10 a | 41 ± 9 a |
AP | 109 ± 26 a | 90 ± 22 b | 63 ± 12 c | 63 ± 10 c | 67 ± 18 a | 58 ± 28 a | 38 ± 9 b | 27 ± 3 b |
MC | 161 ± 2 a | 100 ± 2 b | 58 ± 2 c | 38 ± 3 d | 91 ± 3 a | 48 ± 1 c | 65 ± 27 b | 35 ± 2 d |
TN | 9.99 ± 1.70 a | 5.28 ± 0.42 b | 3.52 ± 0.68 b | 3.39 ± 0.82 b | 5.04 ± 0.68 a | 1.89 ± 0.52 b | 2.29 ± 0.64 b | 2.31 ± 0.41 b |
C:N | 24 ± 8 a | 27 ± 4 a | 56 ± 6 b | 56 ± 23 b | 31 ± 11 a | 38 ± 27 a | 25 ± 9 a | 25 ±11 a |
CEC | 25 ± 2 a | 10 ± 1 b | 28 ± 2 a | 11 ± 1b | 18 ± 1 a | 6 ± 0 b | 15 ±1 a | 8 ± 0 b |
0.25–1.00 mm | 17 ± 3 a | 25 ± 2 b | 7 ± 0 c | 13 ± 1 a | 16 ± 1 a | 16 ± 1 a | 0.88 ± 0.09 b | 17 ± 1 a |
0.05–0.25 mm | 15± 2 a | 10 ± 0 b | 26 ± 2 c | 17 ± 1 a | 10 ± 1 a | 4 ± 0 b | 19 ± 0 c | 6 ± 0 b |
0.01–0.05 mm | 20 ± 2 a | 19 ± 1 a | 21 ± 3 a | 15 ± 0 a | 16 ± 1 a | 21± 1 a | 27 ± 1 b | 22 ± 0 a |
0.005–0.01 mm | 7 ± 0 a | 17 ± 2 b | 16 ± 1 b | 18 ± 1 b | 21 ± 2 a | 11 ± 1 b | 11 ± 1 b | 15 ± 1 b |
0.001–0.005 mm | 18 ± 1 a | 14 ± 1 a | 15 ± 1 a | 22 ± 1 a | 22 ± 3 a | 22 ± 1 a | 18 ± 1 a | 22 ± 2 a |
<0.001 mm | 22 ± 2 a | 15 ± 1 b | 15 ± 1 b | 15 ± 1b | 15 ± 1 a | 26 ± 2 b | 24 ± 0 b | 18 ± 1 a |
ABI | HE | ME | LE | ||||||
---|---|---|---|---|---|---|---|---|---|
Bacterials | Fungus | Bacterials | Fungus | Bacterials | Fungus | Bacterials | Fungus | ||
ACE | Topsoil | 1309 ± 98 a | 603 ± 25 a | 1257 ± 35 b | 661 ± 83 b | 1319 ± 24 a | 639 ± 36 a | 1289 ± 29 b | 553 ± 53 b |
Subsoil | 1286 ± 107 a | 597 ± 23 a | 1150 ± 131a | 577 ± 87 b | 1346 ± 28 b | 598± 31 a | 1252 ± 58 a | 534 ± 96 c | |
Chao1 | Topsoil | 1325 ± 101 a | 625 ± 12 a | 1287 ± 43 a | 638 ± 27 a | 1340 ± 41 a | 647 ± 37 b | 1310 ± 37 a | 556 ± 59 c |
Subsoil | 1296 ± 111 a | 620 ± 27 a | 1085 ± 251 b | 562 ± 39 b | 1367 ± 37 a | 625 ± 43 a | 1280 ± 40 a | 555 ± 109 b | |
Simpson | Topsoil | 0.99 ± 0.00 a | 0.83 ± 0.06 a | 0.98 ± 0.01 a | 0.93 ± 0.03 | 0.99 ± 0.00 a | 0.93 ± 0.03 a | 0.99 ± 0.00 a | 0.89 ± 0.08 a |
Subsoil | 0.99 ± 0.00 a | 0.83 ± 0.05 a | 0.98 ± 0.00 a | 0.95 ± 0.01 a | 0.99 ± 0.00 a | 0.88 ± 0.05 a | 0.99 ± 0.00 a | 0.83 ± 0.13 a | |
Shannon | Topsoil | 8.29 ± 0.22 a | 3.85 ± 0.64 a | 7.89 ± 0.29 a | 5.18 ± 1.00 b | 8.44 ± 0.24 a | 5.17 ± 0.73 b | 8.62 ± 0.03 b | 5.13 ± 0.79 b |
Subsoil | 8.19 ± 0.22 a | 3.83 ± 0.47a | 7.43 ± 0.47 b | 5.95 ± 0.61 b | 8.24 ± 0.02 a | 4.49 ± 0.51 c | 8.19 ± 0.03 a | 4.63 ± 1.53 c | |
PD_whole_tree | Topsoil | 63 ± 4 a | 86 ± 7 a | 60 ± 2 a | 90 ± 1 a | 62 ± 1 a | 91 ± 7 a | 61 ± 2 a | 83 ± 3 a |
Subsoil | 61 ± 5 a | 82 ± 4 a | 52 ± 10 a | 77 ± 5 a | 63 ± 0 a | 85± 1 a | 60 ± 2 a | 82 ± 10 a | |
Coverage | Topsoil | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a |
Subsoil | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a | 0.99 ± 0.00 a |
ABI | HE | ME | LE | ||
---|---|---|---|---|---|
Bacterial | Topsoil | - | p_Acidobacteria c_Acidobacteriia o_Acidobacteriales g_Candidatus_Koribacter f_Koribacteraceae | f_Xanthobacteraceae | c_Gammaproteobacteria p_Proteobacteria o_Betaproteobacteriales |
Subsoil | - | g_Candidatus_Koribacter f_Koribacteraceae f_Beijerinckiaceae g_Roseiarcus | f_Burkholderiaceae | g_Candidatus_Solibacter o_Gammaproteobacteria_ Incertae_Sedis | |
Fungus | Topsoil | f_Clavulinaceae g_Tuber f_Tuberaceae s_Tuber zhongdianense | o_Archaeorhizomycetales c_Archaeorhizomycetes g_Archaeorhizomyces f_Archaeorhizomycetaceae g_Meliniomyces f_Helotiaceae | s_Lactarius salmonicolor s_Lactarius horakii f_Agaricaceae f_Entolomataceae | f_Cylindrosympodiaceae o_Venturiales s_Sympodiella_quercina g_Sympodiella o_Xylariales |
Subsoil | o_Agaricales o_Archaeorhizomycetales c_Archaeorhizomycetes g_Archaeorhizomyces f_Archaeorhizomycetaceae | O_Hypocreales f_Erysiphaceae s_Erysiphe paeoniae g_Erysiphe o_Erysiphales o_Eurotiales f_Nectriaceae f_Aspergillaceae f_Aspergillaceae s_Paecilomyces_penicillatus g_Paecilomyces g_Fusariumg Aspergillus s_Aspergillus_flavus f_Trichocomaceae g_Talaromyces | f_Entolomataceae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, Z.; Zhang, J.; Liu, Y.; Luo, W.; Mou, G.; Huang, X. Multiple Factors Jointly Lead to the Lower Soil Microbial Carbon Use Efficiency of Abies fanjingshanensis in a Typical Subtropical Forest in Southwest China. Forests 2023, 14, 1716. https://doi.org/10.3390/f14091716
Wu X, Zhang Z, Zhang J, Liu Y, Luo W, Mou G, Huang X. Multiple Factors Jointly Lead to the Lower Soil Microbial Carbon Use Efficiency of Abies fanjingshanensis in a Typical Subtropical Forest in Southwest China. Forests. 2023; 14(9):1716. https://doi.org/10.3390/f14091716
Chicago/Turabian StyleWu, Xianliang, Zhenming Zhang, Jiachun Zhang, Yingying Liu, Wenmin Luo, Guiting Mou, and Xianfei Huang. 2023. "Multiple Factors Jointly Lead to the Lower Soil Microbial Carbon Use Efficiency of Abies fanjingshanensis in a Typical Subtropical Forest in Southwest China" Forests 14, no. 9: 1716. https://doi.org/10.3390/f14091716
APA StyleWu, X., Zhang, Z., Zhang, J., Liu, Y., Luo, W., Mou, G., & Huang, X. (2023). Multiple Factors Jointly Lead to the Lower Soil Microbial Carbon Use Efficiency of Abies fanjingshanensis in a Typical Subtropical Forest in Southwest China. Forests, 14(9), 1716. https://doi.org/10.3390/f14091716