Effects on the Synthesis and Accumulation of Triterpenes in Leaves of Cyclocarya paliurus under MeJA Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Methods
2.3. RNA Isolation and cDNA Synthesis
2.4. Quantitative Real-Time PCR
2.5. Determination of Triterpenoids
2.6. Statistical Analysis
3. Results
3.1. Effects of MeJA Treatment on the Contents of Total Triterpenoids in Leaves of C. paliurus
3.2. Effects of MeJA Treatment on the Contents of Triterpene Compounds in Leaves of C. paliurus
3.3. Relative Expression of Key Enzyme Genes in Leaves at Different Stages of Maturity under Treatment of MeJA
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qu, Y.; Shang, X.; Zeng, Z.; Yu, Y.; Bian, G.; Wang, W.; Liu, L.; Tian, L.; Zhang, S.; Wang, Q.; et al. Whole-Genome Duplication Reshaped Adaptive Evolution in a Relict Plant Species, Cyclocarya Paliurus. Genom. Proteom. Bioinf. 2023; in press. [Google Scholar] [CrossRef]
- Shen, Y.; Peng, Y.; Zhu, X.; Li, H.; Zhang, L.; Kong, F.; Wang, J.; Yu, D. The Phytochemicals and Health Benefits of Cyclocarya paliurus (Batalin) Iljinskaja. Front. Nutr. 2023, 10, 1158158. [Google Scholar] [CrossRef]
- Chen, Z.; Jian, Y.; Wu, Q.; Wu, J.; Sheng, W.; Jiang, S.; Shehla, N.; Aman, S.; Wang, W. Cyclocarya paliurus (Batalin) Iljinskaja: Botany, Ethnopharmacology, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2022, 285, 114912. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, Q.; Wu, J.; Yang, Y.; Yang, Y.; Xie, Q.; Liu, L.; Wang, B.; Qiu, Y.; Yu, H.; et al. Qingqianliusus a-N, 3,4-Seco-Dammarane Triterpenoids from the Leaves of Cyclocarya paliurus and Their Biological Activities. Arab. J. Chem. 2023, 16, 104441. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, B.; Chen, X.; Mao, X.; Fu, X. Squalene Epoxidase (SE) Gene Related to Triterpenoid Biosynthesis Assists to Select Elite Genotypes in Medicinal Plant: Cyclocarya paliurus (Batal.) Iljinskaja. Plant Physiol. Biochem. 2023, 199, 107726. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhao, J.; Wang, J.; Li, J.; Ouyang, K.; Wang, W. Effects of Cyclocarya paliurus Polysaccharide on Lipid Metabolism-Related Genes DNA Methylation in Rats. Int. J. Biol. Macromol. 2019, 123, 343–349. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.X.; Xu, S.S.; Fang, S.Y.; Zhu, L.P.; Song, Z.; Shang, X.L.; Fang, S.Z.; Pan, K.; Cao, X.L.; et al. New Triterpenoids from the Cyclocarya paliurus (Batalin) Iljinskaja and Their Anti-Fibrotic Activity. Phytochemistry 2022, 204, 113434. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tang, D.; Xiong, Q.; Chen, J.; Xu, X.; Zhang, Q.; Li, J.; Zhou, X.; Yin, Z. Mechanism of Molecules Crosstalk and the Critical Role of Jasmonic Acid on Triterpenoid Synthesis in Cyclocarya Paliurus Cells under Aspergillus Niger Elicitor. J. Plant Biochem. Biotechnol. 2022, 31, 864–879. [Google Scholar] [CrossRef]
- Yang, D.J.; Zhong, Z.C.; Xie, Z.M. Studies on the Sweet Principles from the Leaves of Cyclocarya paliurus (Batal.) Iljinskaya. Acta Pharm. Sin. B 1992, 27, 841–844. [Google Scholar] [CrossRef]
- Chen, X.; Chen, B.; Shang, X.; Fang, S. RNA in Situ Hybridization and Expression of Related Genes Regulating the Accumulation of Triterpenoids in Cyclocarya paliurus. Tree Physiol. 2021, 41, 2189–2197. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, R.; Tong, X.; Zou, L. New Insights into Methyl Jasmonate Regulation of Triterpenoid Biosynthesis in Medicinal Fungal Species Sanghuangporus baumii (Pilat) L.W. Zhou & Y.C. Dai. J. Fungi 2022, 8, 889. [Google Scholar] [CrossRef]
- Rong, T.; Wei, G.; Yu, G.; Fei, X.; Tao, L.; Yuan, J.; Chen, W.; Wen, X.; Wen, W. Proteomic Insights into Protostane Triterpene Biosynthesis Regulatory Mechanism after MeJA Treatment in Alisma orientale (Sam.) Juz. Biochim. Biophys. Acta Proteins Proteom. 2021, 1869, 140671. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.R.; Lin, J.F.; Guo, L.Q.; You, L.F.; Zeng, X.L.; Wen, J.M. Cloning and Characterization of Squalene Synthase Gene from Poria Cocos and Its up-Regulation by Methyl Jasmonate. World J. Microbiol. Biotechnol. 2014, 30, 613–620. [Google Scholar] [CrossRef]
- Zeng, X.; Luo, T.; Li, J.; Li, G.; Zhou, D.; Liu, T.; Zou, X.; Pandey, A.; Luo, Z. Transcriptomics-Based Identification and Characterization of 11 CYP450 Genes of Panax ginseng Responsive to MeJA. Acta Biochim. Biophys. Sin. 2018, 50, 1094–1103. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, S.; Yang, W.; Shang, X.; Fu, X. Light Quality Affects Flavonoid Production and Related Gene Expression in Cyclocarya paliurus. J. Photochem. Photobiol. B 2018, 179, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.T.; Chen, X.; Wang, Y.; Zhao, H.; Fu, X.; Fang, S. Localization and Dynamic Change of Saponins in Cyclocarya paliurus (Batal.) Iljinskaja. PLoS ONE 2019, 14, e0223421. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fang, S.; Yin, Z.; Fu, X.; Shang, X.; Yang, W.; Yang, H. Chemical Fingerprint and Multicomponent Quantitative Analysis for the Quality Evaluation of Cyclocarya paliurus Leaves by HPLC-Q-TOF-MS. Molecules 2017, 22, 1927. [Google Scholar] [CrossRef]
- Sun, C.; Shang, X.; Ding, H.; Cao, Y.; Fang, S. Natural Variations in Flavonoids and Triterpenoids of Cyclocarya paliurus Leaves. J. Forestry. Res. 2020, 32, 805–814. [Google Scholar] [CrossRef]
- Sun, H.; Tan, J.; Lv, W.; Li, J.; Wu, J.; Xu, J.; Zhu, H.; Yang, Z.; Wang, W.; Ye, Z.; et al. Hypoglycemic Triterpenoid Glycosides from Cyclocarya paliurus (Sweet Tea Tree). Bioorg. Chem. 2020, 95, 103493. [Google Scholar] [CrossRef]
- Liu, W.; Deng, S.; Zhou, D.; Huang, Y.; Li, C.; Hao, L.; Zhang, G.; Su, S.; Xu, X.; Yang, R.; et al. 3,4-Seco-Dammarane Triterpenoid Saponins with Anti-Inflammatory Activity Isolated from the Leaves of Cyclocarya paliurus. J. Agric. Food Chem. 2020, 68, 2041–2053. [Google Scholar] [CrossRef]
- Qi, X.; Fang, H.; Yu, X.; Xu, D.; Li, L.; Liang, C.; Lu, H.; Li, W.; Chen, Y.; Chen, Z. Transcriptome Analysis of JA Signal Transduction, Transcription Factors, and Monoterpene Biosynthesis Pathway in Response to Methyl Jasmonate Elicitation in Mentha canadensis L. Int. J. Mol. Sci. 2018, 19, 2364. [Google Scholar] [CrossRef]
- Ma, Y.N.; Xu, D.B.; Li, L.; Zhang, F.; Fu, X.Q.; Shen, Q.; Lyu, X.Y.; Wu, Z.K.; Pan, Q.F.; Shi, P.; et al. Jasmonate Promotes Artemisinin Biosynthesis by Activating the TCP14-ORA Complex in Artemisia annua. Sci. Adv. 2018, 4, eaas9357. [Google Scholar] [CrossRef]
- Yao, R.L.; Li, H.; Zhang, X.; Wang, Y. Effects of MeJA on Terpenoid Synthetase Activities and Their Cytochemical Localizations in Pinus massonina. Guihaia 2018, 38, 876–885. [Google Scholar]
- Olejnik, A.; Sliwowska, A.; Nowak, I. Jasmonic Acid, Methyl Jasmonate and Methyl Dihydrojasmonate as Active Compounds of Topical Formulations. Colloids Surf. A 2018, 558, 558–569. [Google Scholar] [CrossRef]
- Sun, T.; Zou, L.; Zhang, L.; Zhang, J.; Wang, X. Methyl Jasmonate Induces Triterpenoid Biosynthesis in Inonotus baumii. Biotechnol. Biotechnol. Equip. 2017, 31, 312–317. [Google Scholar] [CrossRef]
- Hu, Y.F.; You, J.; Li, C.J.; Hua, C.; Wang, C. Exogenous Application of Methyl Jasmonate Induces Defence against Meloidogyne hapla in Soybean. Nematology 2017, 19, 293–304. [Google Scholar] [CrossRef]
- Feng, S.; Sun, J.; Sun, S.; Wang, Y.; Tian, C.; Sun, Q.; Chen, X. Transcriptional Profiles Underlying the Effects of Methyl Jasmonate on Apple Ripening. J. Plant Growth Regul. 2016, 36, 271–280. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Y.; Zhang, Q.; Cheng, L.; Han, M.; Ren, Y.; Yang, L. Effects of Drought-Re-Watering-Drought on the Photosynthesis Physiology and Secondary Metabolite Production of Bupleurum Chinense DC. Plant Cell Rep. 2019, 38, 1181–1197. [Google Scholar] [CrossRef]
- Kochan, E.; Balcerczak, E.; Lipert, A.; Szymańska, G.; Szymczyk, P. Methyl Jasmonate as a Control Factor of the Synthase Squalene Gene Promoter and Ginsenoside Production in American Ginseng Hairy Root Cultured in Shake Flasks and a Nutrient Sprinkle Bioreactor. Ind. Crops Prod. 2018, 115, 182–193. [Google Scholar] [CrossRef]
- Sun, W.J.; Zhan, J.Y.; Zheng, T.R.; Sun, R.; Wang, T.; Tang, Z.Z.; Bu, T.L.; Li, C.L.; Wu, Q.; Chen, H. The Jasmonate-Responsive Transcription Factor CbWRKY24 Regulates Terpenoid Biosynthetic Genes to Promote Saponin Biosynthesis in Conyza blinii H. Lév. J. Genet. 2018, 97, 1379–1388. [Google Scholar] [CrossRef]
- Liu, T.; Luo, T.; Guo, X.; Zou, X.; Zhou, D.; Afrin, S.; Li, G.; Zhang, Y.; Zhang, R.; Luo, Z. PgMYB2, a MeJA-Responsive Transcription Factor, Positively Regulates the Dammarenediol Synthase Gene Expression in Panax ginseng. Int. J. Mol. Sci. 2019, 20, 2219. [Google Scholar] [CrossRef]
- Sharma, A.; Rather, G.A.; Misra, P.; Dhar, M.K.; Lattoo, S.K. Jasmonate Responsive Transcription Factor WsMYC2 Regulates the Biosynthesis of Triterpenoid Withanolides and Phytosterol Via Key Pathway Genes in Withania somnifera (L.) Dunal. Plant Mol. Biol. 2019, 100, 543–560. [Google Scholar] [CrossRef]
Primer Name | Oligonucleotide Sequence (5′–3′) |
---|---|
CpHMGR F D | TTTAGCGATGGACATGAGCA |
CpHMGR R D | GGAGTGGCAGAGCGTCAGAGGC |
CpSQS F D | GAACAGGCTGGATGCGATAC |
CpSQS R D | TCAATTATTTGGTCGTTTGG |
CpDXR F D | GCTGGTTCAATGTAACTCTTC |
CpDXR R D | CTCTATGACTCCTTGCTCCC |
18s F | AGTATGGTCGCAAGGCTGAAA |
18s R | CAGACAAATCGCTCCACCAA |
Compound | tR (min) | [M − H]− | MS/MS Fragment Ion (m/z) | Formula | Regressive Equation a |
---|---|---|---|---|---|
Arjunolic acid | 47.1 | 487.3429 | 445.2942; 401.3056; 389.2698 | C30H48O5 | y = 5465.1x + 33,575 |
Cyclocaric acid B | 49.7 | 485.3275 | / | C30H46O5 | y = 8579.6x − 91,948 |
Pterocaryoside B | 54.2 | 621.4001 | 521.3107; 489.3571 | C35H58O9 | y = 3716.1x + 52,647 |
Pterocaryoside A | 60.0 | 635.4162 | 535.3265; 489.3573 | C36H60O9 | y = 3746.1x + 56,466 |
Hederagenin | 60.5 | 471.3481 | 145.0286 | C30H48O4 | y = 6054.7x + 25,521 |
Oleanolic acid | 83.5 | 455.3549 | / | C30H48O3 | y = 7144.8x + 963.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Q.; Wang, Z.; Chen, X.; Dong, X.; Cheng, S.; Zhang, S. Effects on the Synthesis and Accumulation of Triterpenes in Leaves of Cyclocarya paliurus under MeJA Treatment. Forests 2023, 14, 1735. https://doi.org/10.3390/f14091735
Xia Q, Wang Z, Chen X, Dong X, Cheng S, Zhang S. Effects on the Synthesis and Accumulation of Triterpenes in Leaves of Cyclocarya paliurus under MeJA Treatment. Forests. 2023; 14(9):1735. https://doi.org/10.3390/f14091735
Chicago/Turabian StyleXia, Qinghui, Zijue Wang, Xiaoling Chen, Xingxing Dong, Shuiyuan Cheng, and Shaopeng Zhang. 2023. "Effects on the Synthesis and Accumulation of Triterpenes in Leaves of Cyclocarya paliurus under MeJA Treatment" Forests 14, no. 9: 1735. https://doi.org/10.3390/f14091735
APA StyleXia, Q., Wang, Z., Chen, X., Dong, X., Cheng, S., & Zhang, S. (2023). Effects on the Synthesis and Accumulation of Triterpenes in Leaves of Cyclocarya paliurus under MeJA Treatment. Forests, 14(9), 1735. https://doi.org/10.3390/f14091735